# Usage argument: path of the folder whose token you want to count import os import pandas as pd import json import gzip from tqdm import tqdm from multiprocessing import Pool from transformers import AutoTokenizer import sys # Variables to set HF_TOKEN = "" base_path = "root" # Add huggingface token os.environ["HF_TOKEN"] = HF_TOKEN tokenizer = AutoTokenizer.from_pretrained('google/gemma-7b') def count_words_in_file(file_path): language_id = os.path.basename(file_path).split('_')[0] # words_count = 0 token_count = 0 try: with gzip.open(file_path, 'rt') as f: for line in f: data = json.loads(line) # words_count += len(data["raw_content"].split()) token_count += len(tokenizer.encode(data["raw_content"])) except: print("bad zip file") return language_id, 0 return language_id, token_count def process_folder(folder_path): files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith('.json.gz')] folder_name = folder_path.split('/')[-1] with Pool() as pool: results = list(tqdm(pool.imap(count_words_in_file, files), total=len(files), desc=f'Processing {folder_name}') ) return results def main(input_folder, output_file): # folders = [f.path for f in os.scandir(input_folder) if f.is_dir()] snaps = ["2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", "2019-04", "2019-09", "2019-13", "2019-18", "2019-22", "2019-26", "2019-30", "2019-35", "2019-39", "2019-43", "2019-47", "2019-51", "2020-05", "2020-10", "2020-16", "2020-24", "2020-29", "2020-34", "2020-40", "2020-45", "2020-50", "2021-04", "2021-10", "2021-17", "2021-21", "2021-25", "2021-31", "2021-39", "2021-43", "2021-49", "2022-05", "2022-21", "2022-27", "2022-33", "2022-40", "2022-49", "2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"] langs = ["as", "bn", "gu", "kn", "hi", "ml", "mr", "ne", "or", "sa", "sd", "ta", "ur", "te", "mai"] column_names = {} column_names["snapshot-id"] = sorted(snaps) for lang in sorted(langs): column_names[lang] = [0] * len(snaps) for idx, folder in enumerate(sorted(snaps)): results = process_folder(input_folder + "/" + folder) for language_id, number in results: column_names[language_id][idx] += number print([column_names[language_id][idx] for language_id in langs]) df = pd.DataFrame(column_names) df.to_csv(output_file, index=False) if __name__ == "__main__": folder = sys.argv[1] input_folder = os.path.join(base_path, folder) output_file = folder + "_token_counts.csv" main(input_folder, output_file)