import os import json import gzip import re from tqdm import tqdm from multiprocessing import Pool langs = ["as", "bn", "gu", "kn", "hi", "ml", "mr", "ne", "or", "sa", "sd", "ta", "ur", "te", "mai"] language_characters = { "as": {"range": (0x0980, 0x09FF)}, # Assamese "bn": {"range": (0x0980, 0x09FF)}, # Bengali "gu": {"range": (0x0A80, 0x0AFF)}, # Gujarati "kn": {"range": (0x0C80, 0x0CFF)}, # Kannada "hi": {"range": (0x0900, 0x097F)}, # Hindi "ml": {"range": (0x0D00, 0x0D7F)}, # Malayalam "mr": {"range": (0x0900, 0x097F)}, # Marathi "ne": {"range": (0x0900, 0x097F)}, # Nepali "or": {"range": (0x0B00, 0x0B7F)}, # Oriya "sa": {"range": (0x0900, 0x097F)}, # Sanskrit "sd": {"range": (0x0600, 0x06FF)}, # Sindhi "ta": {"range": (0x0B80, 0x0BFF)}, # Tamil "ur": {"range": (0x0600, 0x06FF)}, # Urdu "te": {"range": (0x0C00, 0x0C7F)}, # Telugu "mai": {"range": (0x0900, 0x097F)} # Maithili } language_percentage = 40 num_of_words = 4 def check_language_percentage(text, language): unicode_range = language_characters.get(language) language_character_count = sum(unicode_range["range"][0] <= ord(char) <= unicode_range["range"][1] for char in text) # Calculate the percentage of characters belonging to the specified language percentage = (language_character_count / len(text)) * 100 # Check if the percentage meets the threshold of 30% if percentage >= language_percentage: return True else: return False def valid(json_obj, lang): content = json_obj["raw_content"] sentences = content.split('\n') filtered_sentences = [] for sentence in sentences: end_of_sentence_pattern = r'[।?!]+' lines = re.split(end_of_sentence_pattern, sentence) lines = [line for line in lines if line != ""] filtered_lines = [] for i in range(len(lines)): if(not(lines[i] == "।" or lines[i] == "?" or lines[i] == "!")): if(check_language_percentage(lines[i], lang) and len(lines[i].split()) >= num_of_words): filtered_lines.append(lines[i]) i += 1 if(i+1 < len(lines)): filtered_lines.append(lines[i]) else: i += 1 # else: # filtered_lines.append(lines[i]) filtered_sentences.append("".join(filtered_lines)) json_obj["raw_content"] = re.sub(r'\n+', '\n', "\n".join(filtered_sentences)) return json_obj def process_file(file_info): input_path, output_path = file_info lang = input_path.split('/')[-1].split('_')[0] filtered_documents = [] # Read JSON objects and filter them with gzip.open(input_path, 'rt') as input_file: for line in input_file: json_obj = json.loads(line) new_obj = valid(json_obj, lang) if(len(new_obj["raw_content"].split()) >= 50): filtered_documents.append(new_obj) # Write filtered JSON objects to new file with gzip.open(output_path, 'wt') as output_file: for doc in filtered_documents: output_file.write(json.dumps(doc, ensure_ascii=False) + '\n') def filter_json_files(input_folder, output_folder): # Create output folder if it doesn't exist if not os.path.exists(output_folder): os.makedirs(output_folder) file_infos = [] # Iterate through each JSON file in the input folder for filename in sorted(os.listdir(input_folder)): if filename.endswith(".json.gz"): input_path = os.path.join(input_folder, filename) output_path = os.path.join(output_folder, filename) file_infos.append((input_path, output_path)) # Initialize tqdm with the total number of files with tqdm(total=len(file_infos)) as pbar: # Create a pool of workers with Pool(processes=160) as pool: # Use tqdm as a context manager to automatically close the pool and update the progress bar for _ in pool.imap_unordered(process_file, file_infos): pbar.update() print("Filtering done for ", input_folder.split('/')[-1]) snapshots = ["2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", "2019-04", "2019-09", "2019-13", "2019-18", "2019-22", "2019-26", "2019-30", "2019-35", "2019-39", "2019-43", "2019-47", "2019-51", "2020-05", "2020-10", "2020-16", "2020-24", "2020-29", "2020-34", "2020-40", "2020-45", "2020-50", "2021-04", "2021-10", "2021-17", "2021-21", "2021-25", "2021-31", "2021-39", "2021-43", "2021-49", "2022-05", "2022-21", "2022-27", "2022-33", "2022-40", "2022-49", "2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"] for snap in snapshots: input_folder = f"/mnt/weka/peacock/wet-data/output/global_filtered_without_bloom_new/{snap}" output_folder = f"/mnt/weka/peacock/wet-data/output/heuristic_filtered_without_bloom_new/{snap}" filter_json_files(input_folder, output_folder)