import os import json import gzip import pandas as pd from tqdm import tqdm from multiprocessing import Pool langs = ["as", "bn", "gu", "kn", "hi", "ml", "mr", "ne", "or", "sa", "sd", "ta", "ur", "te", "mai"] toxic_words = {} for lang in langs: toxic_word = [] with open(f"toxic_word_list/{lang}.txt", "r") as f: for line in f: toxic_word.append(line.strip()) toxic_words[lang] = set(toxic_word) toxic_url = [] with open("blacklisted_urls.txt", "r") as f: for line in f: toxic_url.append(line.strip()) toxic_urls = set(toxic_url) def toxic(json_obj, lang): url = json_obj["source_domain"] if(url in toxic_urls): return True content = json_obj["raw_content"] words = content.split() for word in words: if(word in toxic_words[lang]): return True return False def process_file(file_info): input_path, output_path = file_info lang = input_path.split('/')[-1].split('_')[0] # Read JSON objects and filter them filtered_documents = [] with gzip.open(input_path, 'rt') as input_file: for line in input_file: json_obj = json.loads(line) if(not toxic(json_obj, lang)): filtered_documents.append(json_obj) # Write filtered JSON objects to new file with gzip.open(output_path, 'wt') as output_file: for doc in filtered_documents: output_file.write(json.dumps(doc, ensure_ascii=False) + '\n') def filter_json_files(input_folder, output_folder): # Create output folder if it doesn't exist if not os.path.exists(output_folder): os.makedirs(output_folder) file_infos = [] # Iterate through each JSON file in the input folder for filename in sorted(os.listdir(input_folder)): if filename.endswith(".json.gz"): input_path = os.path.join(input_folder, filename) output_path = os.path.join(output_folder, filename) # print((input_path, output_path, clusters_file)) file_infos.append((input_path, output_path)) # Initialize tqdm with the total number of files with tqdm(total=len(file_infos)) as pbar: # Create a pool of workers with Pool(processes=160) as pool: # Use tqdm as a context manager to automatically close the pool and update the progress bar for _ in pool.imap_unordered(process_file, file_infos): pbar.update() print("Filtering done for ", input_folder.split('/')[-1]) snapshots = ["2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", "2019-04", "2019-09", "2019-13", "2019-18", "2019-22", "2019-26", "2019-30", "2019-35", "2019-39", "2019-43", "2019-47", "2019-51", "2020-05", "2020-10", "2020-16", "2020-24", "2020-29", "2020-34", "2020-40", "2020-45", "2020-50", "2021-04", "2021-10", "2021-17", "2021-21", "2021-25", "2021-31", "2021-39", "2021-43", "2021-49", "2022-05", "2022-21", "2022-27", "2022-33", "2022-40", "2022-49", "2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"] # snapshots = ["2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"] for snap in snapshots: input_folder = f"/mnt/weka/peacock/wet-data/output/heuristic_filtered_without_bloom_new/{snap}" output_folder = f"/mnt/weka/peacock/wet-data/output/toxic_filtered_without_bloom_new/{snap}" filter_json_files(input_folder, output_folder)