import os import json import gzip import pandas as pd from tqdm import tqdm from multiprocessing import Pool def process_file(file_info): input_path, output_path, clusters_file = file_info # Read line numbers to avoid from clusters file if(clusters_file != ""): try: clusters_df = pd.read_parquet(clusters_file) except FileNotFoundError: with open("temp.txt", "a+") as f: f.write(clusters_file + '\n') clusters_df = pd.DataFrame() clusters_df['id'] = [] clusters_df['id_int'] = [] clusters_df['clusters_id'] = [] else: with open("temp.txt", "a+") as f: f.write(clusters_file + '\n') clusters_df = pd.DataFrame() clusters_df['id'] = [] clusters_df['id_int'] = [] clusters_df['clusters_id'] = [] clusters_df['line_number'] = clusters_df['id'].apply(lambda x: int(x.split('/')[-1])) duplicate_docs = set() for _, row in clusters_df.iterrows(): if(row['id_int'] != row['cluster_id']): duplicate_docs.add(int(row['id'].split('/')[-1])) # Read JSON objects and filter them with gzip.open(input_path, 'rt') as input_file: try: filtered_documents = [json.loads(line) for idx, line in enumerate(input_file) if idx not in duplicate_docs] except: print(input_file) return # Write filtered JSON objects to new file with gzip.open(output_path, 'wt') as output_file: for doc in filtered_documents: output_file.write(json.dumps(doc, ensure_ascii=False) + '\n') def filter_json_files(input_folder, output_folder, clusters_folder, snap): # Create output folder if it doesn't exist if not os.path.exists(output_folder): os.makedirs(output_folder) file_infos = [] clusters_file = "" # Iterate through each JSON file in the input folder for filename in sorted(os.listdir(input_folder)): if filename.endswith(".json.gz"): input_path = os.path.join(input_folder, filename) output_path = os.path.join(output_folder, filename) # Determine the corresponding clusters file for i in range(1, 11): clusters_file_path = os.path.join(clusters_folder, f"total_{i}" , filename.split('_')[0], f"{snap}_{filename.split('_')[-1].split('.')[0]}.clusters.parquet") if(os.path.exists(clusters_file_path)): clusters_file = clusters_file_path break # print((input_path, output_path, clusters_file)) file_infos.append((input_path, output_path, clusters_file)) # Initialize tqdm with the total number of files with tqdm(total=len(file_infos)) as pbar: # Create a pool of workers with Pool(processes=160) as pool: # Use tqdm as a context manager to automatically close the pool and update the progress bar for _ in pool.imap_unordered(process_file, file_infos): pbar.update() print("Filtering done for ", input_folder.split('/')[-1]) snapshots = ["2018-17", "2018-22", "2018-26", "2018-30", "2018-34", "2018-39", "2018-43", "2018-47", "2018-51", "2019-04", "2019-09", "2019-13", "2019-18", "2019-22", "2019-26", "2019-30", "2019-35", "2019-39", "2019-43", "2019-47", "2019-51", "2020-05", "2020-10", "2020-16", "2020-24", "2020-29", "2020-34", "2020-40", "2020-45", "2020-50", "2021-04", "2021-10", "2021-17", "2021-21", "2021-25", "2021-31", "2021-39", "2021-43", "2021-49", "2022-05", "2022-21", "2022-27", "2022-33", "2022-40", "2022-49", "2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"] # snapshots = ["2023-06", "2023-14", "2023-23", "2023-40", "2023-50", "2024-10"] for snap in snapshots: input_folder = f"/mnt/weka/peacock/wet-data/output/local_filtered_without_bloom/{snap}" output_folder = f"/mnt/weka/peacock/wet-data/output/global_filtered_without_bloom_new/{snap}" clusters_folder = f"/mnt/weka/peacock/wet-data/output/fuzzy-clusters" filter_json_files(input_folder, output_folder, clusters_folder, snap)