File size: 3,557 Bytes
c8ef0a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import sentencepiece as spm
import re


from datasets import load_dataset, DatasetDict, Dataset
import random

# # Load code datasets
code_dataset_go = load_dataset('code_x_glue_ct_code_to_text', 'go', split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code'][:400000]
code_dataset_java = load_dataset('code_x_glue_ct_code_to_text', 'java', split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code'][:400000]
code_dataset_javascript = load_dataset('code_x_glue_ct_code_to_text', 'javascript', split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code'][:400000]
code_dataset_php = load_dataset('code_x_glue_ct_code_to_text', 'php', split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code'][:400000]
code_dataset_python = load_dataset('code_x_glue_ct_code_to_text', 'python', split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code'][:400000]
code_dataset_ruby = load_dataset('code_x_glue_ct_code_to_text', 'ruby', split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code'][:400000]

wikipedia_en = load_dataset("wikipedia", "20220301.en", cache_dir='/sml2/atul/CENTRAL_CACHE')['train']['text']

# # Randomly sample a subset of text data
num_docs = 1000000
en_sampled = random.sample(wikipedia_en, num_docs)

# # Combine sampled text datasets with code datasets
combined_train_set = en_sampled
combined_train_set_code = code_dataset_go + code_dataset_java + code_dataset_javascript + code_dataset_php + code_dataset_python + code_dataset_ruby

# # Write the combined data to the output file
with open('en_code_traintext.txt', 'w') as f:
    for text in combined_train_set:
        lines = text.split("\n")
        for l in lines:
            if l:
                f.write(l.strip() + '\n')
    for code in combined_train_set_code:
        f.write(code + '\n')


spm.SentencePieceTrainer.Train(
    input='en_code_traintext.txt',
    model_prefix='en_code_50kspm_tokenizer',
    vocab_size=32000,
    pad_id=0,
    unk_id=1,
    bos_id=2,
    eos_id=3,
    pad_piece='<pad>',
    unk_piece='<unk>',
    bos_piece='<bos>',
    eos_piece='<eos>',
    model_type='bpe',
    num_threads=256,
    add_dummy_prefix=False,
    byte_fallback=True,
    character_coverage=0.9999,
    remove_extra_whitespaces=False,
    allow_whitespace_only_pieces=True,
    split_digits=True,
    user_defined_symbols='\n,\r,<pad>,<eos>,<bos>,<mask>,<unused0>,<unused1>,<unused2>,<unused3>,<unused4>,<unused5>,<unused6>,<unused7>,<unused8>,<unused9>,<unused10>,<unused11>,<unused12>,<unused13>,<unused14>,<unused15>,<unused16>,<unused17>,<unused18>,<unused19>,<unused20>,<unused21>,<unused22>,<unused23>,<unused24>,<unused25>,<unused26>,<unused27>,<unused28>,<unused29>,<unused30>,<unused31>,<unused32>,<unused33>,<unused34>,<unused35>,<unused36>,<unused37>,<unused38>,<unused39>,<unused40>,<unused41>,<unused42>,<unused43>,<unused44>,<unused45>,<unused46>,<unused47>,<unused48>,<unused49>,<unused50>,<unused51>,<unused52>,<unused53>,<unused54>,<unused55>,<unused56>,<unused57>,<unused58>,<unused59>,<unused60>,<unused61>,<unused62>,<unused63>,<unused64>,<unused65>,<unused66>,<unused67>,<unused68>,<unused69>,<unused70>,<unused71>,<unused72>,<unused73>,<unused74>,<unused75>,<unused76>,<unused77>,<unused78>,<unused79>,<unused80>,<unused81>,<unused82>,<unused83>,<unused84>,<unused85>,<unused86>,<unused87>,<unused88>,<unused89>,<unused90>,<unused91>,<unused92>,<unused93>,<unused94>,<unused95>,<unused96>,<unused97>,<unused98>,<start_of_turn>,<end_of_turn>,〈|javascript|〉,〈|python|〉,〈|sql|〉,〈|shell|〉,〈|c|〉,〈|cpp|〉,〈|java|〉,〈|go|〉',
)