File size: 5,924 Bytes
c8ef0a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from datasets import concatenate_datasets, load_dataset, load_from_disk
import argparse
from tokenizers import Tokenizer, decoders, models, pre_tokenizers, processors, trainers
from transformers import GPT2TokenizerFast, AutoTokenizer
from datasets import config
from datasets import DatasetDict, Dataset
import logging
import re
import nltk
nltk.download('punkt')

def initialize_logger(log_file):
    logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s: %(message)s')

def log_parameters(vocab_size, batch_size, fertility_score, proportion_continued_words, log_file='parameters.log'):
    initialize_logger(log_file)
    logging.info(f"Vocabulary Size: {vocab_size}, Batch Size: {batch_size}, Fertility Score: {fertility_score}, Proportion of Continued word: {proportion_continued_words}")

def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--batch_size",
        type=int,
        required=True,
        help="Batch size to use for training"
    )
    parser.add_argument(
        "--vocab_size",
        type=int,
        required=True,
        help="Vocabulary size to use for tokenizer"
    )
    parser.add_argument(
        "--use_config",
        choices=['xlm-roberta', 'vanilla','llama'],
        required=True,
        help="Use XLM-RoBERTa config or Vanilla BPE"
    )
    parser.add_argument(
        "--do_evaluate",
        action='store_true',
        help="Enable evaluation."
    )
    args = parser.parse_known_args()
    return args
def train_tokenizer(args):

    code_dataset_go= load_dataset('code_x_glue_ct_code_to_text','go',split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code']
    code_dataset_java= load_dataset('code_x_glue_ct_code_to_text','java',split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code']
    code_dataset_javascript= load_dataset('code_x_glue_ct_code_to_text','javascript',split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code']
    code_dataset_php= load_dataset('code_x_glue_ct_code_to_text','php',split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code']
    code_dataset_python= load_dataset('code_x_glue_ct_code_to_text','python',split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code']
    code_dataset_ruby= load_dataset('code_x_glue_ct_code_to_text','ruby',split='train', cache_dir='/sml2/atul/CENTRAL_CACHE')['code']

    indic_datasets_hi= load_dataset('ai4bharat/sangraha', data_dir="verified/hin", cache_dir='/sml2/atul/CENTRAL_CACHE')['train']['text'][:1000000]
    indic_datasets_bn= load_dataset('ai4bharat/sangraha', data_dir="verified/ben", cache_dir='/sml2/atul/CENTRAL_CACHE')['train']['text'][:1000000]
    wikipedia_en = load_dataset("wikipedia", "20220301.en", cache_dir='/sml2/atul/CENTRAL_CACHE')['train']['text'][:1000000]
    joined_string = '. '.join(indic_datasets_hi + indic_datasets_bn + wikipedia_en)
    sentences = nltk.sent_tokenize(joined_string)

    # Set to store sentences with a maximum of 100 words each
    set_of_sentences = set()

    # Iterate through the sentences to form sets with a maximum of 100 words each
    current_sentence = ""
    for sentence in sentences:
        words = nltk.word_tokenize(sentence)
        if len(current_sentence.split()) + len(words) <= 100:
            current_sentence += " " + sentence
        else:
            set_of_sentences.add(current_sentence.strip())
            current_sentence = sentence

    # Add the last sentence
    if current_sentence:
        set_of_sentences.add(current_sentence.strip())

    combined_train_set=code_dataset_go+code_dataset_java+code_dataset_javascript+code_dataset_php+code_dataset_python+code_dataset_ruby+set_of_sentences

    data = {
            "train":{"text": combined_train_set},
            "validation": {"text": []},
            "test": {"text": []},
        }
        # print(data)
    custom_dataset = DatasetDict()
    for split in data:
        custom_dataset[split] = Dataset.from_dict(data[split])
    custom_dataset=custom_dataset["train"]

    def batch_iterator():
        for idx in range(0, len(custom_dataset), args.batch_size):
            yield custom_dataset[idx: idx + args.batch_size]['text']

    new_line="\n"
    replacing_dict={}
    for i in range(5,25):
        replacecable_token="<|reserved_special_token_"+str(i)+"|>"
        replacing_dict[replacecable_token]=new_line
        new_line+="\n"
    if args.use_config == 'vanilla':
        tokenizer = Tokenizer(models.BPE())
        tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False)
        print(f"[INFO] The brown fox jumped over the lazy dog\n{tokenizer.pre_tokenizer.pre_tokenize_str('The brown fox jumped over the lazy dog')}")
        print(f"[INFO] Training...")
        trainer = trainers.BpeTrainer(vocab_size=args.vocab_size, special_tokens=["<|endoftext|>"])
        tokenizer.train_from_iterator(batch_iterator(), trainer=trainer)
        tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
        tokenizer.decoder = decoders.ByteLevel()
        tokenizer = GPT2TokenizerFast(tokenizer_object=tokenizer)
    elif args.use_config == 'xlm-roberta':
        tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
        trained_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(), vocab_size=args.vocab_size)
    elif args.use_config == 'llama':
        print("skipped")
        tokenizer = AutoTokenizer.from_pretrained('meta-llama/Meta-Llama-3-8B')
        print(tokenizer)
        trained_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(), vocab_size=args.vocab_size, new_special_tokens=["<unk>","<pad>","<mask>"],special_tokens_map=replacing_dict)

    trained_tokenizer.save_pretrained('hi-sanghara-xlmr-bgpt-bpe-tokenizer1')
    print(f"[INFO] Tokenizer saved to disk")


def main():
    args, _ = parse_arguments()
    train_tokenizer(args)

if __name__ == "__main__":
    main()