File size: 3,392 Bytes
c8ef0a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import sentencepiece as spm
from tokenizers import Tokenizer, normalizers, pre_tokenizers, decoders, trainers, models
from tokenizers.models import BPE, Unigram
from transformers import PreTrainedTokenizerFast, convert_slow_tokenizer
import warnings
from typing import Dict, List, Tuple

from packaging import version
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors
from tokenizers.models import BPE, Unigram, WordPiece

def _get_prepend_scheme(add_prefix_space: bool, original_tokenizer) -> str:
    if add_prefix_space:
        prepend_scheme = "always"
        if not getattr(original_tokenizer, "legacy", True):
            prepend_scheme = "first"
    else:
        prepend_scheme = "never"
    return prepend_scheme

class SpmConverter2(convert_slow_tokenizer.SpmConverter):
    def __init__(self, *args):
        convert_slow_tokenizer.requires_backends(self, "protobuf")

        super().__init__(*args)

        # from .utils import sentencepiece_model_pb2 as model_pb2
        model_pb2 = convert_slow_tokenizer.import_protobuf()

        m = model_pb2.ModelProto()
        with open(self.original_tokenizer.vocab_file, "rb") as f:
            m.ParseFromString(f.read())
        self.proto = m

        if self.proto.trainer_spec.byte_fallback:
            if not getattr(self, "handle_byte_fallback", None):
                warnings.warn(
                    "The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option"
                    " which is not implemented in the fast tokenizers. In practice this means that the fast version of the"
                    " tokenizer can produce unknown tokens whereas the sentencepiece version would have converted these "
                    "unknown tokens into a sequence of byte tokens matching the original piece of text."
                )

    def tokenizer(self, proto):
        model_type = proto.trainer_spec.model_type
        vocab_scores = self.vocab(proto)
        unk_id = self.unk_id(proto)

        _, merges = convert_slow_tokenizer.SentencePieceExtractor(self.original_tokenizer.vocab_file).extract()
        bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)}
        tokenizer = Tokenizer(
            BPE(
                bpe_vocab,
                merges,
                unk_token=proto.trainer_spec.unk_piece,
                fuse_unk=True,
            )
        )

        return tokenizer

# Usage
spm_tokenizer = spm.SentencePieceProcessor(model_file="/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k/all.model")
spm_tokenizer.vocab_file = "/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k/all.model"
spm_converter = SpmConverter2(spm_tokenizer)
converted = spm_converter.converted()
converted.save('/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/converted.json')

tok = PreTrainedTokenizerFast(
    tokenizer_file='/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/converted.json', 
    clean_up_tokenization_spaces=False, 
    pad_token='<PAD>', 
    unk_token='<UNK>', 
    bos_token='<BOS>', 
    eos_token='<EOS>', 
    mask_token='<MASK>', 
    model_max_length=1024, 
    padding_side='right', 
    truncation_side='right'
)
tok.save_pretrained('/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer')