peacock-data-public-datasets-tokenization / multiLingualFertility.py
applied-ai-018's picture
Add files using upload-large-folder tool
c8ef0a6 verified
import sentencepiece as spm
from datasets import concatenate_datasets, load_dataset, load_from_disk
import logging
from datasets import DatasetDict, Dataset
sp = spm.SentencePieceProcessor()
sp.load('ta_te_kan_ml_50kspm_tokenizer.model')
sentence = "The Indian cricket fans were very disappointed after India's loss against Australia in the World Cup."
tokens = sp.encode(sentence, out_type=str)
print(len(tokens) , tokens)
sentence = "विश्व कप में ऑस्ट्रेलिया के खिलाफ भारत की हार के बाद भारतीय क्रिकेट प्रशंसक काफी निराश थे।"
tokens = sp.encode(sentence, out_type=str)
print(len(tokens) , tokens)
decoded_sentence = sp.decode(tokens)
# exit()
# print("Tokens:", tokens)
# print("Decoded sentence:", decoded_sentence)
# exit()
def initialize_logger(log_file):
logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s: %(message)s')
def log_parameters(vocab_size, pretrained_model, en_fertility_score, hi_fertility_score , kn_fertility_score ,ml_fertility_score,ta_fertility_score,te_fertility_score, log_file='parameters.log'):
initialize_logger(log_file)
logging.info(f"Vocabulary Size: {vocab_size}, Tokenizer type: {pretrained_model}, English Fertility Score: {en_fertility_score} , Hindi Fertility Score: {hi_fertility_score}, Kannada Fertility Score: {kn_fertility_score}, <Malayalam Fertility Score: {ml_fertility_score}, Tamil Fertility Score: {ta_fertility_score}, Telugu Fertility Score: {te_fertility_score}")
dataset_hi= load_dataset('ai4bharat/samanantar', 'hi', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE')
dataset_kn= load_dataset('ai4bharat/samanantar', 'kn', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE')
dataset_ml= load_dataset('ai4bharat/samanantar', 'ml', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE')
dataset_ta= load_dataset('ai4bharat/samanantar', 'ta', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE')
dataset_te= load_dataset('ai4bharat/samanantar', 'te', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE')
test_en = dataset_hi['src'][:10000]
test_hi = dataset_hi['tgt'][:10000]
test_kn = dataset_kn['tgt'][:10000]
test_ml = dataset_ml['tgt'][:10000]
test_ta = dataset_ta['tgt'][:10000]
test_te = dataset_te['tgt'][:10000]
en_fertility_score=0
hi_fertility_score=0
kn_fertility_score=0
ml_fertility_score=0
ta_fertility_score=0
te_fertility_score=0
for data in test_en:
tok=sp.encode(data, out_type=str)
en_fertility_score += (len(tok)) / len(data.split())
en_fertility_score=en_fertility_score/10000
for data in test_hi:
tok=sp.encode(data, out_type=str)
hi_fertility_score += (len(tok)) / len(data.split())
hi_fertility_score=hi_fertility_score/10000
for data in test_kn:
tok=sp.encode(data, out_type=str)
kn_fertility_score += (len(tok)) / len(data.split())
kn_fertility_score=kn_fertility_score/10000
for data in test_ml:
tok=sp.encode(data, out_type=str)
ml_fertility_score += (len(tok)) / len(data.split())
ml_fertility_score=ml_fertility_score/10000
for data in test_ta:
tok=sp.encode(data, out_type=str)
ta_fertility_score += (len(tok)) / len(data.split())
ta_fertility_score=ta_fertility_score/10000
for data in test_te:
tok=sp.encode(data, out_type=str)
te_fertility_score += (len(tok)) / len(data.split())
te_fertility_score=te_fertility_score/10000
log_parameters(64000, "kn-ml-ta-te-only-spm", en_fertility_score, hi_fertility_score , kn_fertility_score, ml_fertility_score,ta_fertility_score,te_fertility_score )