|
import sentencepiece as spm |
|
from datasets import concatenate_datasets, load_dataset, load_from_disk |
|
import logging |
|
from datasets import DatasetDict, Dataset |
|
|
|
sp = spm.SentencePieceProcessor() |
|
sp.load('ta_te_kan_ml_50kspm_tokenizer.model') |
|
sentence = "The Indian cricket fans were very disappointed after India's loss against Australia in the World Cup." |
|
|
|
tokens = sp.encode(sentence, out_type=str) |
|
print(len(tokens) , tokens) |
|
|
|
sentence = "विश्व कप में ऑस्ट्रेलिया के खिलाफ भारत की हार के बाद भारतीय क्रिकेट प्रशंसक काफी निराश थे।" |
|
|
|
tokens = sp.encode(sentence, out_type=str) |
|
print(len(tokens) , tokens) |
|
|
|
decoded_sentence = sp.decode(tokens) |
|
|
|
|
|
|
|
|
|
|
|
def initialize_logger(log_file): |
|
logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s: %(message)s') |
|
|
|
def log_parameters(vocab_size, pretrained_model, en_fertility_score, hi_fertility_score , kn_fertility_score ,ml_fertility_score,ta_fertility_score,te_fertility_score, log_file='parameters.log'): |
|
initialize_logger(log_file) |
|
logging.info(f"Vocabulary Size: {vocab_size}, Tokenizer type: {pretrained_model}, English Fertility Score: {en_fertility_score} , Hindi Fertility Score: {hi_fertility_score}, Kannada Fertility Score: {kn_fertility_score}, <Malayalam Fertility Score: {ml_fertility_score}, Tamil Fertility Score: {ta_fertility_score}, Telugu Fertility Score: {te_fertility_score}") |
|
|
|
dataset_hi= load_dataset('ai4bharat/samanantar', 'hi', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') |
|
dataset_kn= load_dataset('ai4bharat/samanantar', 'kn', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') |
|
dataset_ml= load_dataset('ai4bharat/samanantar', 'ml', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') |
|
dataset_ta= load_dataset('ai4bharat/samanantar', 'ta', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') |
|
dataset_te= load_dataset('ai4bharat/samanantar', 'te', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') |
|
|
|
test_en = dataset_hi['src'][:10000] |
|
test_hi = dataset_hi['tgt'][:10000] |
|
test_kn = dataset_kn['tgt'][:10000] |
|
test_ml = dataset_ml['tgt'][:10000] |
|
test_ta = dataset_ta['tgt'][:10000] |
|
test_te = dataset_te['tgt'][:10000] |
|
|
|
en_fertility_score=0 |
|
hi_fertility_score=0 |
|
kn_fertility_score=0 |
|
ml_fertility_score=0 |
|
ta_fertility_score=0 |
|
te_fertility_score=0 |
|
|
|
for data in test_en: |
|
tok=sp.encode(data, out_type=str) |
|
en_fertility_score += (len(tok)) / len(data.split()) |
|
en_fertility_score=en_fertility_score/10000 |
|
|
|
for data in test_hi: |
|
tok=sp.encode(data, out_type=str) |
|
hi_fertility_score += (len(tok)) / len(data.split()) |
|
hi_fertility_score=hi_fertility_score/10000 |
|
|
|
for data in test_kn: |
|
tok=sp.encode(data, out_type=str) |
|
kn_fertility_score += (len(tok)) / len(data.split()) |
|
kn_fertility_score=kn_fertility_score/10000 |
|
|
|
for data in test_ml: |
|
tok=sp.encode(data, out_type=str) |
|
ml_fertility_score += (len(tok)) / len(data.split()) |
|
ml_fertility_score=ml_fertility_score/10000 |
|
|
|
for data in test_ta: |
|
tok=sp.encode(data, out_type=str) |
|
ta_fertility_score += (len(tok)) / len(data.split()) |
|
ta_fertility_score=ta_fertility_score/10000 |
|
|
|
for data in test_te: |
|
tok=sp.encode(data, out_type=str) |
|
te_fertility_score += (len(tok)) / len(data.split()) |
|
te_fertility_score=te_fertility_score/10000 |
|
|
|
log_parameters(64000, "kn-ml-ta-te-only-spm", en_fertility_score, hi_fertility_score , kn_fertility_score, ml_fertility_score,ta_fertility_score,te_fertility_score ) |
|
|
|
|
|
|
|
|