import os import sentencepiece as spm from datasets import load_dataset # Load the pre-trained SentencePiece model sp = spm.SentencePieceProcessor() sp.load('wiki_en.model') # Load the Hindi dataset dataset_hi = load_dataset('ai4bharat/samanantar', 'hi', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') test_hi = dataset_hi['tgt'][:1000] # Assuming you want to use the first 10000 sentences for extending the vocabulary with open('test_hi.txt', 'w', encoding='utf-8') as f: for sample in test_hi: f.write(sample + '\n') # Concatenate all sentences into a single string additional_text = "\n".join(test_hi) # Train the model further to extend the vocabulary spm.SentencePieceTrainer.Train( input="test_hi.txt", model_prefix='wiki_extended', vocab_size=3000 ) # Save the updated model with the extended vocabulary in the current working directory sp = spm.SentencePieceProcessor() save_path = 'wiki_extended.model' sp.Load(save_path) # Alternatively, you can specify a different directory with a shorter path # save_path = '/short/path/to/wiki_extended.model' # sp.save(save_path)