from datasets import concatenate_datasets, load_dataset, load_from_disk import argparse from tokenizers import Tokenizer, decoders, models, pre_tokenizers, processors, trainers from transformers import GPT2TokenizerFast, AutoTokenizer from datasets import config import logging from datasets import DatasetDict, Dataset import csv import time import json tokenizer = AutoTokenizer.from_pretrained('Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Base') def initialize_logger(log_file): logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s: %(message)s') def log_parameters(vocab_size, pretrained_model, en_fertility_score, hi_fertility_score , ta_fertility_score , log_file='parameters.log'): initialize_logger(log_file) logging.info(f"Vocabulary Size: {vocab_size}, Tokenizer type: {pretrained_model}, English Fertility Score: {en_fertility_score} , Hindi Fertility Score: {hi_fertility_score}, Telugu Fertility Score: {ta_fertility_score}") dataset_hi= load_dataset('ai4bharat/samanantar', 'hi', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') dataset_ta= load_dataset('ai4bharat/samanantar', 'te', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') test_en = dataset_hi['src'][:10000] test_hi = dataset_hi['tgt'][:10000] test_ta = dataset_ta['tgt'][:10000] en_fertility_score=0 hi_fertility_score=0 ta_fertility_score=0 for data in test_en: tok=tokenizer(data) en_fertility_score += len(tok['input_ids']) / len(data.split()) en_fertility_score=en_fertility_score/10000 for data in test_hi: # print(data) tok=tokenizer(data) # print(tok) # exit() hi_fertility_score += len(tok['input_ids']) / len(data.split()) hi_fertility_score=hi_fertility_score/10000 for data in test_ta: tok=tokenizer(data) ta_fertility_score += len(tok['input_ids']) / len(data.split()) ta_fertility_score=ta_fertility_score/10000 log_parameters(64000, "Telugu-Llama7B", en_fertility_score, hi_fertility_score , ta_fertility_score )