from datasets import concatenate_datasets, load_dataset, load_from_disk import argparse from tokenizers import Tokenizer, decoders, models, pre_tokenizers, processors, trainers from transformers import GPT2TokenizerFast, AutoTokenizer from datasets import config from datasets import DatasetDict, Dataset import logging def initialize_logger(log_file): logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s: %(message)s') def log_parameters(vocab_size, batch_size, fertility_score, proportion_continued_words, log_file='parameters.log'): initialize_logger(log_file) logging.info(f"Vocabulary Size: {vocab_size}, Batch Size: {batch_size}, Fertility Score: {fertility_score}, Proportion of Continued word: {proportion_continued_words}") def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument( "--batch_size", type=int, required=True, help="Batch size to use for training" ) parser.add_argument( "--vocab_size", type=int, required=True, help="Vocabulary size to use for tokenizer" ) parser.add_argument( "--use_config", choices=['xlm-roberta', 'vanilla','gemma'], required=True, help="Use XLM-RoBERTa config or Vanilla BPE" ) parser.add_argument( "--do_evaluate", action='store_true', help="Enable evaluation." ) args = parser.parse_known_args() return args def train_tokenizer(args): # indic_datasets_hi= load_dataset('satpalsr/indicCorpv2', 'hi', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE')['text'][:20502390] indic_datasets_en= load_dataset('satpalsr/indicCorpv2', 'en', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE')['text'][:205090] # indic_datasets_bn= load_dataset('satpalsr/indicCorpv2', 'bn', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE')['text'][:20502390] # combined_train_set= indic_datasets_hi + indic_datasets_en + indic_datasets_bn combined_train_set=indic_datasets_en data = { "train":{"text": combined_train_set}, "validation": {"text": []}, "test": {"text": []}, } # print(data) custom_dataset = DatasetDict() for split in data: custom_dataset[split] = Dataset.from_dict(data[split]) custom_dataset=custom_dataset["train"] def batch_iterator(): for idx in range(0, len(custom_dataset), args.batch_size): yield custom_dataset[idx: idx + args.batch_size]['text'] if args.use_config == 'vanilla': tokenizer = Tokenizer(models.BPE()) tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False) print(f"[INFO] The brown fox jumped over the lazy dog\n{tokenizer.pre_tokenizer.pre_tokenize_str('The brown fox jumped over the lazy dog')}") print(f"[INFO] Training...") trainer = trainers.BpeTrainer(vocab_size=args.vocab_size, special_tokens=["<|endoftext|>"]) tokenizer.train_from_iterator(batch_iterator(), trainer=trainer) tokenizer.post_processor = processors.ByteLevel(trim_offsets=False) tokenizer.decoder = decoders.ByteLevel() tokenizer = GPT2TokenizerFast(tokenizer_object=tokenizer) elif args.use_config == 'xlm-roberta': print("skipped") tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base') trained_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(), vocab_size=args.vocab_size) elif args.use_config == 'gemma': print("skipped") tokenizer = AutoTokenizer.from_pretrained('hf-internal-testing/dummy-gemma') trained_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(), vocab_size=args.vocab_size) trained_tokenizer.save_pretrained('hi-indiccorp-gemma-bgpt-bpe-tokenizer1') print(f"[INFO] Tokenizer saved to disk") # test_hi= load_dataset('ai4bharat/samanantar', 'hi', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') # test_bn= load_dataset('ai4bharat/samanantar', 'bn', split='train', cache_dir='/sml1/atul/CENTRAL_CACHE') # print("-------------------------------") # print(test_hi) # print(test_bn) # print("-------------------------------") # print(len(test_hi["tgt"])) # print(len(test_bn["tgt"])) def main(): args, _ = parse_arguments() train_tokenizer(args) if __name__ == "__main__": main()