import sentencepiece as spm from tokenizers import Tokenizer, normalizers, pre_tokenizers, decoders, trainers, models from tokenizers.models import BPE, Unigram from transformers import PreTrainedTokenizerFast, convert_slow_tokenizer import warnings from typing import Dict, List, Tuple from packaging import version from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors from tokenizers.models import BPE, Unigram, WordPiece def _get_prepend_scheme(add_prefix_space: bool, original_tokenizer) -> str: if add_prefix_space: prepend_scheme = "always" if not getattr(original_tokenizer, "legacy", True): prepend_scheme = "first" else: prepend_scheme = "never" return prepend_scheme class SpmConverter2(convert_slow_tokenizer.SpmConverter): def __init__(self, *args): convert_slow_tokenizer.requires_backends(self, "protobuf") super().__init__(*args) # from .utils import sentencepiece_model_pb2 as model_pb2 model_pb2 = convert_slow_tokenizer.import_protobuf() m = model_pb2.ModelProto() with open(self.original_tokenizer.vocab_file, "rb") as f: m.ParseFromString(f.read()) self.proto = m if self.proto.trainer_spec.byte_fallback: if not getattr(self, "handle_byte_fallback", None): warnings.warn( "The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option" " which is not implemented in the fast tokenizers. In practice this means that the fast version of the" " tokenizer can produce unknown tokens whereas the sentencepiece version would have converted these " "unknown tokens into a sequence of byte tokens matching the original piece of text." ) def tokenizer(self, proto): model_type = proto.trainer_spec.model_type vocab_scores = self.vocab(proto) unk_id = self.unk_id(proto) _, merges = convert_slow_tokenizer.SentencePieceExtractor(self.original_tokenizer.vocab_file).extract() bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)} tokenizer = Tokenizer( BPE( bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, ) ) return tokenizer # Usage spm_tokenizer = spm.SentencePieceProcessor(model_file="/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k/all.model") spm_tokenizer.vocab_file = "/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k/all.model" spm_converter = SpmConverter2(spm_tokenizer) converted = spm_converter.converted() converted.save('/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/converted.json') tok = PreTrainedTokenizerFast( tokenizer_file='/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/converted.json', clean_up_tokenization_spaces=False, pad_token='', unk_token='', bos_token='', eos_token='', mask_token='', model_max_length=1024, padding_side='right', truncation_side='right' ) tok.save_pretrained('/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer')