question_id
stringlengths
8
35
subject
stringclasses
1 value
chapter
stringclasses
32 values
topic
stringclasses
178 values
question
stringlengths
26
9.64k
options
stringlengths
2
1.63k
correct_option
stringclasses
5 values
answer
stringclasses
293 values
explanation
stringlengths
13
9.38k
question_type
stringclasses
3 values
paper_id
stringclasses
149 values
0TpOHs7adCRBwUIj
maths
binomial-theorem
general-term
The coefficient of $${x^n}$$ in expansion of $$\left( {1 + x} \right){\left( {1 - x} \right)^n}$$ is
[{"identifier": "A", "content": "$${\\left( { - 1} \\right)^{n - 1}}n$$ "}, {"identifier": "B", "content": "$${\\left( { - 1} \\right)^n}\\left( {1 - n} \\right)$$ "}, {"identifier": "C", "content": "$${\\left( { - 1} \\right)^{n - 1}}{\\left( {n - 1} \\right)^2}$$ "}, {"identifier": "D", "content": "$$\\left( {n - 1} \\right)$$ "}]
["B"]
null
Given $$\left( {1 + x} \right){\left( {1 - x} \right)^n}$$ <br><br>= $${\left( {1 - x} \right)^n}$$ + $$x{\left( {1 - x} \right)^n}$$ <br><br>General term of $${\left( {1 - x} \right)^n}$$ = $${}^n{C_r}.{\left( { - 1} \right)^r}.{x^r}$$ <br><br>$$\therefore$$ Term containing $${x^n}$$ in $${\left( {1 - x} \right)^n}$$ = $${}^n{C_n}.{\left( { - 1} \right)^n}.{x^n}$$ <br><br>So coefficient of $${x^n}$$ in $${\left( {1 - x} \right)^n}$$ = $${}^n{C_n}.{\left( { - 1} \right)^n}$$ <br><br>General term of $$x{\left( {1 - x} \right)^n}$$ = $${}^n{C_r}.{\left( { - 1} \right)^r}.{x^{r + 1}}$$ <br><br>$$\therefore$$ Term containing $${x^n}$$ in $$x{\left( {1 - x} \right)^n}$$ = $${}^n{C_{n - 1}}.{\left( { - 1} \right)^{n - 1}}.{x^n}$$ <br><br>So coefficient of $${x^n}$$ in $$x{\left( {1 - x} \right)^n}$$ = $${}^n{C_{n - 1}}.{\left( { - 1} \right)^{n - 1}}$$ <br><br>$$\therefore$$ coefficient of $${x^n}$$ in $${\left( {1 - x} \right)^n}$$ + $$x{\left( {1 - x} \right)^n}$$ <br><br>= $${}^n{C_n}.{\left( { - 1} \right)^n}$$ + $${}^n{C_{n - 1}}.{\left( { - 1} \right)^{n - 1}}$$ <br><br>= $${\left( { - 1} \right)^{n - 1}}\left[ {{}^n{C_{n - 1}} - {}^n{C_n}} \right]$$ <br><br>= $${\left( { - 1} \right)^{n - 1}}\left[ {n - 1} \right]$$ <br><br>= $${\left( { - 1} \right)^n}\left[ {1 - n} \right]$$
mcq
aieee-2004
rTXLqH9tIJS0LPKw
maths
binomial-theorem
general-term
If the coefficient of $${x^7}$$ in $${\left[ {a{x^2} + \left( {{1 \over {bx}}} \right)} \right]^{11}}$$ equals the coefficient of $${x^{ - 7}}$$ in $${\left[ {ax - \left( {{1 \over {b{x^2}}}} \right)} \right]^{11}}$$, then $$a$$ and $$b$$ satisfy the relation
[{"identifier": "A", "content": "$$a - b = 1$$ "}, {"identifier": "B", "content": "$$a + b = 1$$"}, {"identifier": "C", "content": "$${a \\over b} = 1$$ "}, {"identifier": "D", "content": "$$ab = 1$$ "}]
["D"]
null
General term of $${\left[ {a{x^2} + \left( {{1 \over {bx}}} \right)} \right]^{11}}$$ is T<sub>r+1</sub>. <br><br>T<sub>r+1</sub> = $${}^{11}{C_r}{\left( {a{x^2}} \right)^{11 - r}}{\left( {{1 \over {bx}}} \right)^r}$$ <br><br>= $${}^{11}{C_r}{\left( a \right)^{11 - r}}{\left( b \right)^{ - r}}{\left( x \right)^{22 - 3r}}$$ <br><br>For the coefficient of x<sup>7</sup>, <br><br>$$ \Rightarrow $$ 22 - 3r = 7 <br><br>$$ \Rightarrow $$ r = 5 <br><br>So coefficient of x<sup>7</sup> = $${}^{11}{C_5}{\left( a \right)^6}{\left( b \right)^{ - 5}}$$ ......(1) <br><br>Now General term of $${\left[ {ax - \left( {{1 \over {b{x^2}}}} \right)} \right]^{11}}$$ is T<sub>r+1</sub>. <br><br>T<sub>r+1</sub> = $${}^{11}{C_r}{\left( {a{x}} \right)^{11 - r}}{\left( { - {1 \over {bx}}} \right)^r}$$ <br><br>= $${}^{11}{C_r}{\left( a \right)^{11 - r}}{\left( { - 1} \right)^r}{\left( b \right)^{ - r}}{\left( x \right)^{11 - r}}{\left( x \right)^{ - 2r}}$$ <br><br>For the coefficient of x<sup>-7</sup>, <br><br>11 - 3r = -7 <br><br>$$ \Rightarrow $$ r = 6 <br><br>$$\therefore$$ Coefficient of x<sup>-7</sup> = $${}^{11}{C_6}{\left( a \right)^5}{\left( { - 1} \right)^6}{\left( b \right)^{ - 6}}$$ <br><br>According to question, <br><br>Coefficient of x<sup>7</sup> = Coefficient of x<sup>-7</sup> <br><br>$$ \Rightarrow $$ $${}^{11}{C_5}{\left( a \right)^6}{\left( b \right)^{ - 5}}$$ = $${}^{11}{C_6}{\left( a \right)^5}{\left( { - 1} \right)^6}{\left( b \right)^{ - 6}}$$ <br><br>$$ \Rightarrow $$ $$ab = 1$$
mcq
aieee-2005
cpKuiseKzcfD4PcY
maths
binomial-theorem
general-term
If the coefficients of r<sup>th</sup>, (r+1)<sup>th</sup>, and (r + 2)<sup>th</sup> terms in the binomial expansion of $${{\rm{(1 + y )}}^m}$$ are in A.P., then m and r satisfy the equation
[{"identifier": "A", "content": "$${m^2} - m(4r - 1) + 4\\,{r^2} - 2 = 0$$ "}, {"identifier": "B", "content": "$${m^2} - m(4r + 1) + 4\\,{r^2} + 2 = 0$$ "}, {"identifier": "C", "content": "$${m^2} - m(4r + 1) + 4\\,{r^2} - 2 = 0$$ "}, {"identifier": "D", "content": "$${m^2} - m(4r - 1) + 4\\,{r^2} + 2 = 0$$ "}]
["C"]
null
Let r = 2 <br><br>$$\therefore$$ 2nd, 3rd and 4th terms are in AP. <br><br>2nd term = T<sub>2</sub> = $${}^m{C_1}.y$$ <br><br>Coefficient of T<sub>2</sub> = $${}^m{C_1}$$ <br><br>3rd term = T<sub>3</sub> = $${}^m{C_2}.{y^2}$$ <br><br>Coefficient of T<sub>3</sub> = $${}^m{C_2}$$ <br><br>4th term = T<sub>4</sub> = $${}^m{C_3}.{y^3}$$ <br><br>Coefficient of T<sub>2</sub> = $${}^m{C_3}$$ <br><br>$$\therefore$$ 2.$${}^m{C_2}$$ = $${}^m{C_1}$$ + $${}^m{C_3}$$ <br><br>$$ \Rightarrow $$ $$2.{{m\left( {m - 1} \right)} \over {1.2}}$$ = $${m \over 1}$$ + $${{m\left( {m - 1} \right)\left( {m - 2} \right)} \over {1.2.3}}$$ <br><br>$$ \Rightarrow $$ 6m<sup>2</sup> - 6m = 6m +m(m<sup>2</sup> - 3m + 2) <br><br>$$ \Rightarrow $$ 6m<sup>2</sup> - 6m = 6m + m<sup>3</sup> - 3m<sup>2</sup> + 2m <br><br>$$ \Rightarrow $$ 6m - 6 = 6 + m<sup>2</sup> - 3m + 2 <br><br>$$ \Rightarrow $$ m<sup>2</sup> - 9m + 14 = 0 <br><br>Now put r = 2 at each option and find answer. <br><br>In option C, $${m^2} - m(4r + 1) + 4\,{r^2} - 2 = 0$$ putting r = 2 we get <br><br>m<sup>2</sup> - 9m + 14 = 0. So Option C is correct.
mcq
aieee-2005
nV7NCqS5hYaVuBUA
maths
binomial-theorem
general-term
In the binomial expansion of $${\left( {a - b} \right)^n},\,\,\,n \ge 5,$$ the sum of $${5^{th}}$$ and $${6^{th}}$$ terms is zero, then $$a/b$$ equals
[{"identifier": "A", "content": "$${{n - 5} \\over 6}$$ "}, {"identifier": "B", "content": "$${{n - 4} \\over 5}$$ "}, {"identifier": "C", "content": "$${5 \\over {n - 4}}$$ "}, {"identifier": "D", "content": "$${6 \\over {n - 5}}$$ "}]
["B"]
null
According to the question, <br><br>t<sub>5</sub> + t<sub>6</sub> = 0 <br><br>$$\therefore$$ $${}^n{C_4}.{a^{n - 4}}.{b^4}$$ + $$\left( { - {}^n{C_5}.{a^{n - 5}}.{b^5}} \right)$$ = 0 <br><br>By solving we get, <br><br>$${a \over b} = {{n - 4} \over 5}$$
mcq
aieee-2007
3Hpkd6AMmJo5duCX
maths
binomial-theorem
general-term
The term independent of $$x$$ in expansion of <br/> $${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$ is
[{"identifier": "A", "content": "4 "}, {"identifier": "B", "content": "120"}, {"identifier": "C", "content": "210"}, {"identifier": "D", "content": "310"}]
["C"]
null
$${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$ <br><br>= $${\left( {{{{{\left( {{x^{1/3}}} \right)}^3} + {{\left( {{1^{1/3}}} \right)}^3}} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{{{\left( {\sqrt x } \right)}^2} - {{\left( 1 \right)}^2}} \over {x - {x^{1/2}}}}} \right)^{10}}$$ <br><br>= $${\left( {{{\left( {{x^{1/3}} + 1} \right)\left( {{x^{2/3}} - {x^{1/3}} + 1} \right)} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}$$ <br><br>= $${\left( {\left( {{x^{1/3}} + 1} \right) - {{\left( {\sqrt x + 1} \right)} \over {\sqrt x }}} \right)^{10}}$$ <br><br>= $${\left( {\left( {{x^{1/3}} + 1} \right) - \left( {1 + {1 \over {\sqrt x }}} \right)} \right)^{10}}$$ <br><br>= $${\left( {{x^{1/3}} - {1 \over {{x^{1/2}}}}} \right)^{10}}$$ <br><br>[<b>Note:</b> <br><br>For $${\left( {{x^\alpha } \pm {1 \over {{x^\beta }}}} \right)^n}$$ the $$\left( {r + 1} \right)$$<sup>th</sup> term with power m of x is <br><br>$$r = {{n\alpha - m} \over {\alpha + \beta }}$$] <br><br>Here $$\alpha = {1 \over 3}$$, $$\beta = {1 \over 2}$$ and m = 0 <br><br>then $$r = {{10 \times {1 \over 3} - 0} \over {{1 \over 3} + {1 \over 2}}}$$ = $${{10} \over 3} \times {6 \over 5}$$ = 4 <br><br>$$\therefore$$ T<sub>5</sub> is the term independent of x. <br><br>$$\therefore$$ T<sub>5</sub> = $${}^{10}{C_4}$$ = 210
mcq
jee-main-2013-offline
QUwbxq162QAKcHvSXAx82
maths
binomial-theorem
general-term
For x $$ \in $$ <b>R</b>, x $$ \ne $$ -1, <br/><br/>if (1 + x)<sup>2016</sup> + x(1 + x)<sup>2015</sup> + x<sup>2</sup>(1 + x)<sup>2014</sup> + . . . . + x<sup>2016</sup> = <br/><br/>$$\sum\limits_{i = 0}^{2016} {{a_i}} \,{x^i},\,\,$$ then a<sub>17</sub> is equal to :
[{"identifier": "A", "content": "$${{2017!} \\over {17!\\,\\,\\,2000!}}$$"}, {"identifier": "B", "content": "$${{2016!} \\over {17!\\,\\,\\,1999!}}$$"}, {"identifier": "C", "content": "$${{2017!} \\over {2000!}}$$"}, {"identifier": "D", "content": "$${{2016!} \\over {16!}}$$"}]
["A"]
null
Assume, <br><br>P = (1 + x)<sup>2016</sup> + x(1 + x)<sup>2015</sup> + . . . . .+ x<sup>2015</sup> . (1 + x) + x<sup>2016</sup> &nbsp;&nbsp;&nbsp;. . . . .(1) <br><br>Multiply this with $$\left( {{x \over {1 + x}}} \right),$$ <br><br>$$\left( {{x \over {1 + x}}} \right)P = $$ x(1 + x)<sup>2015</sup> + x<sup>2</sup>(1 + x)<sup>2014</sup> + <br><br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;. . . . . . + x<sup>2016</sup> + $${{{x^{2017}}} \over {1 + x}}$$ . . . . . (2) <br><br>Performing (1) $$-$$ (2), we get <br><br>$${P \over {1 + x}} = $$ (1 + x)<sup>2016</sup> $$-$$ $${{{x^{2017}}} \over {1 + x}}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp; P = (1 + x)<sup>2017</sup> $$-$$ x<sup>2017</sup> <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp; a<sub>17</sub> = coefficient of x<sup>17</sup> $$=$$ <sup>2017</sup>C<sub>17</sub> $$=$$ $${{2017!} \over {17!\,\,2000!}}$$
mcq
jee-main-2016-online-9th-april-morning-slot
XA8U3jV98E5XEVrRGyjEj
maths
binomial-theorem
general-term
If the coefficients of x<sup>−2</sup> and x<sup>−4</sup> in the expansion of $${\left( {{x^{{1 \over 3}}} + {1 \over {2{x^{{1 \over 3}}}}}} \right)^{18}},\left( {x &gt; 0} \right),$$ are m and n respectively, then $${m \over n}$$ is equal to :
[{"identifier": "A", "content": "182"}, {"identifier": "B", "content": "$${4 \\over 5}$$"}, {"identifier": "C", "content": "$${5 \\over 4}$$"}, {"identifier": "D", "content": "27"}]
["A"]
null
T<sub>r+1</sub>&nbsp;&nbsp;=&nbsp;&nbsp;<sup>18</sup>C<sub>r</sub>&nbsp;&nbsp;$${\left( {{x^{{1 \over 3}}}} \right)^{18 - r}}$$&nbsp;&nbsp;.&nbsp;&nbsp;$${\left( {{1 \over {2{x^{{1 \over 3}}}}}} \right)^r}$$ <br><br>=&nbsp;&nbsp;<sup>18</sup>C<sub>r</sub>&nbsp;&nbsp;$${\left( {{1 \over 2}} \right)^r}\,\,.\,\,{x^{{{18 - 2r} \over 3}}}$$ <br><br>For coefficient of x<sup>$$-$$2</sup>, <br><br>$${{18 - 2r} \over 3}$$ &nbsp;&nbsp;=&nbsp;&nbsp; $$-$$2 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;r&nbsp;&nbsp;=&nbsp;&nbsp;12 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;Coefficient of &nbsp;&nbsp;x<sup>$$-$$2</sup> &nbsp;&nbsp;&nbsp;&nbsp;is&nbsp;&nbsp;(m) = <sup>18</sup>C<sub>12</sub>&nbsp;&nbsp;$${\left( {{1 \over 2}} \right)^{12}}$$ <br><br>For coefficient of x<sup>$$-$$4</sup>, <br><br>$${{18 - 2r} \over 3}$$ = $$-$$ 4 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;&nbsp;r = 15 <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;Coefficient of x<sup>$$-$$4</sup> is (n) = <sup>18</sup>C<sub>15</sub> $$\left( {{1 \over {2}}} \right)$$<sup>15</sup> <br><br>$$ \therefore $$&nbsp;&nbsp;&nbsp;$${m \over n} = {{^{18}{C_{12}}{{\left( {{1 \over 2}} \right)}^{12}}} \over {^{18}{C_{15}}{{\left( {{1 \over 2}} \right)}^{15}}}}$$ <br><br>= $${{{}^{18}{C_6} \times {{\left( 2 \right)}^3}} \over {{}^{18}{C_3}}}$$ <br><br>= 182
mcq
jee-main-2016-online-10th-april-morning-slot
MegnCy5y6WH4JxsjLHqWr
maths
binomial-theorem
general-term
The coefficient of x<sup>−5</sup> in the binomial expansion of <br/><br/>$${\left( {{{x + 1} \over {{x^{{2 \over 3}}} - {x^{{1 \over 3}}} + 1}} - {{x - 1} \over {x - {x^{{1 \over 2}}}}}} \right)^{10}},$$ where x $$ \ne $$ 0, 1, is :
[{"identifier": "A", "content": "1"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "$$-$$ 4"}, {"identifier": "D", "content": "$$-$$ 1"}]
["A"]
null
$${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$ <br><br>= $${\left( {{{{{\left( {{x^{1/3}}} \right)}^3} + {{\left( {{1^{1/3}}} \right)}^3}} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{{{\left( {\sqrt x } \right)}^2} - {{\left( 1 \right)}^2}} \over {x - {x^{1/2}}}}} \right)^{10}}$$ <br><br>= $${\left( {{{\left( {{x^{1/3}} + 1} \right)\left( {{x^{2/3}} - {x^{1/3}} + 1} \right)} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}$$ <br><br>= $${\left( {\left( {{x^{1/3}} + 1} \right) - {{\left( {\sqrt x + 1} \right)} \over {\sqrt x }}} \right)^{10}}$$ <br><br>= $${\left( {\left( {{x^{1/3}} + 1} \right) - \left( {1 + {1 \over {\sqrt x }}} \right)} \right)^{10}}$$ <br><br>= $${\left( {{x^{1/3}} - {1 \over {{x^{1/2}}}}} \right)^{10}}$$ <br><br>[<b>Note:</b> <br><br>For $${\left( {{x^\alpha } \pm {1 \over {{x^\beta }}}} \right)^n}$$ the $$\left( {r + 1} \right)$$<sup>th</sup> term with power m of x is <br><br>$$r = {{n\alpha - m} \over {\alpha + \beta }}$$] <br><br>Here $$\alpha = {1 \over 3}$$, $$\beta = {1 \over 2}$$ and m = -5 <br><br>then $$r = {{10 \times {1 \over 3} - (-5)} \over {{1 \over 3} + {1 \over 2}}}$$ = $${{25} \over 3} \times {6 \over 5}$$ = 10 <br><br>$$\therefore$$ T<sub>11</sub> is the term with x<sup>-5</sup>. <br><br>$$\therefore$$ T<sub>11</sub> = $${}^{10}{C_{10}}$$ = 1
mcq
jee-main-2017-online-9th-april-morning-slot
SVFbx781jSVe3AbPjftul
maths
binomial-theorem
general-term
The total number of irrational terms in the binomial expansion of (7<sup>1/5</sup> – 3<sup>1/10</sup>)<sup>60</sup> is :
[{"identifier": "A", "content": "54 "}, {"identifier": "B", "content": "55"}, {"identifier": "C", "content": "49"}, {"identifier": "D", "content": "48"}]
["A"]
null
General term T<sub>r+1</sub> = <sup>60</sup><sup></sup>C<sub>r</sub>, $${7^{{{60 - r} \over 5}}}{3^{{r \over {10}}}}$$ <br><br>$$ \therefore $$&nbsp;&nbsp;for rational term, r = 0, 10, 20, 30, 40, 50, 60 <br><br>$$ \Rightarrow $$&nbsp;&nbsp;no of rational terms = 7 <br><br>$$ \therefore $$&nbsp;&nbsp;number of irrational terms = 54
mcq
jee-main-2019-online-12th-january-evening-slot
toC7gwkJsULkHFwpDn3rsa0w2w9jxb4rh40
maths
binomial-theorem
general-term
The term independent of x in the expansion of <br/>$$\left( {{1 \over {60}} - {{{x^8}} \over {81}}} \right).{\left( {2{x^2} - {3 \over {{x^2}}}} \right)^6}$$ is equal to :
[{"identifier": "A", "content": "36"}, {"identifier": "B", "content": "- 108"}, {"identifier": "C", "content": "- 36"}, {"identifier": "D", "content": "- 72"}]
["C"]
null
Given expression = $$\left( {{1 \over {60}} - {{{x^8}} \over {81}}} \right).{\left( {2{x^2} - {3 \over {{x^2}}}} \right)^6}$$ <br><br>= $${1 \over {60}}{\left( {2{x^3} - {3 \over {{x^2}}}} \right)^6} - {{{x^8}} \over {81}}{\left( {2{x^2} - {3 \over {{x^2}}}} \right)^6}$$ <br><br>So its general term is <br><br>T<sub>r + 1</sub> = $${1 \over {60}}{}^6{C_r}{\left( {2{x^2}} \right)^{6 - r}}{\left( { - {3 \over {{x^2}}}} \right)^r} - {{{x^8}} \over {81}}{}^6{C_r}{\left( {2{x^2}} \right)^{6 - r}}{\left( { - {3 \over {{x^2}}}} \right)^r}$$ <br><br>= $${1 \over {60}}{}^6{C_r}{\left( 2 \right)^{6 - r}}{\left( { - 3} \right)^r}{x^{12 - 4r}} - {1 \over {81}}{}^6{C_r}{\left( 2 \right)^{6 - r}}{\left( { - 3} \right)^r}{x^{20 - 4r}}$$ .....(i) <br><br>For this term to be independent of x, put r = 3 in 1<sup>st</sup> part and r = 5 in 2<sup>nd</sup> part. <br><br>So from (i) the term independent of<br> x = $${1 \over {60}} \times {2^3} \times {\left( { - 3} \right)^3} \times {}^6{C_3} + \left( { - {1 \over {81}}} \right)(2){( - 3)^5} \times {}^6{C_5}$$<br> = -72 + 36 = <b>-36</b>
mcq
jee-main-2019-online-12th-april-evening-slot
PTfHNLUxmzZnbpCIRr3rsa0w2w9jx5ztehd
maths
binomial-theorem
general-term
The coefficient of x<sup>18</sup> in the product <br/>(1 + x) (1 – x)<sup>10</sup> (1 + x + x<sup>2</sup>)<sup>9</sup> is :
[{"identifier": "A", "content": "126"}, {"identifier": "B", "content": "- 84"}, {"identifier": "C", "content": "- 126"}, {"identifier": "D", "content": "84"}]
["D"]
null
Coefficient of x<sup>18</sup> in (1 + x) (1 - x)<sup>10</sup> (1 + x + x<sup>2</sup>)<sup>9</sup><br><br> $$ \Rightarrow $$ Coefficient of x<sup>18</sup> in {(1 - x) (1 - x<sup>2</sup>) (1 + x + x<sup>2</sup>)}<sup>9</sup><br><br> $$ \Rightarrow $$ Coefficient of x<sup>18</sup> in (1 - x<sup>2</sup>) (1 - x<sup>3</sup>)<sup>9</sup><br><br> $$ \Rightarrow $$ <sup>9</sup>C<sub>6</sub> - 0 = 84
mcq
jee-main-2019-online-12th-april-morning-slot
yO8G2rHmbJfQTsDYPk3rsa0w2w9jx23emrp
maths
binomial-theorem
general-term
The smallest natural number n, such that the coefficient of x in the expansion of $${\left( {{x^2} + {1 \over {{x^3}}}} \right)^n}$$ is <sup>n</sup>C<sub>23</sub>, is :
[{"identifier": "A", "content": "23"}, {"identifier": "B", "content": "58"}, {"identifier": "C", "content": "38"}, {"identifier": "D", "content": "35"}]
["C"]
null
General term<br><br> $${T_{r + 1}} = {}^n{C_r}{x^{2n - 2r}}.{x^{ - 3r}}$$<br><br> $$ \therefore $$ $$2n - 5r = 1 \Rightarrow 2n = 5r + 1$$<br><br> $$ \therefore $$ $$r = {{2n - 1} \over 5}$$<br><br> $$ \Rightarrow $$ Coefficient of x = $${}^n{C_{\left( {{{2n - 1} \over 5}} \right)}} = {}^n{C_{23}}$$<br><br> $$ \Rightarrow $$ $${{2n - 1} \over 5} = 23\,\,or\,\,n - \left( {{{2n - 1} \over 5}} \right) = 23$$<br><br> $$ \Rightarrow $$ 2n - 1 = 115 $$ \Rightarrow $$ n = 58<br><br> and n = 38<br><br> $$ \therefore $$ smallest n = 38
mcq
jee-main-2019-online-10th-april-evening-slot
3TQ0nlDrlHmOpomuWHpzD
maths
binomial-theorem
general-term
If the fourth term in the binomial expansion of $${\left( {{2 \over x} + {x^{{{\log }_8}x}}} \right)^6}$$ (x &gt; 0) is 20 × 8<sup>7</sup>, then a value of x is :
[{"identifier": "A", "content": "8<sup>\u20132</sup>"}, {"identifier": "B", "content": "8<sup>2</sup>"}, {"identifier": "C", "content": "8<sup>3</sup>"}, {"identifier": "D", "content": "8"}]
["B"]
null
$${\left( {{2 \over x} + {x^{{{\log }_8}x}}} \right)^6}$$ <br><br>Given T<sub>4</sub> = 20 × 8<sup>7</sup> <br><br>$$ \Rightarrow $$ $${}^6{C_3}{\left( {{2 \over x}} \right)^3}{\left( {{x^{{{\log }_8}x}}} \right)^3}$$ = 20 × 8<sup>7</sup> <br><br>$$ \Rightarrow $$ 20$$ \times $$$${8 \over {{x^3}}} \times {x^{3{{\log }_8}x}}$$ = 20 × 8<sup>7</sup> <br><br>$$ \Rightarrow $$ $${x^{3{{\log }_8}x - 3}}$$ = 8<sup>6</sup> <br><br>Taking $${{{\log }_8}}$$ both side <br><br>$$ \Rightarrow $$ ($${3{{\log }_8}x - 3}$$) $$ \times $$ $${{{\log }_8}x}$$ = 6 <br><br>$$ \Rightarrow $$ $$3{\left( {{{\log }_8}x} \right)^2}$$ - 3$${{{\log }_8}x}$$ = 6 <br><br>$$ \Rightarrow $$ $${\left( {{{\log }_8}x} \right)^2}$$ - $${{{\log }_8}x}$$ = 2 <br><br>$$ \Rightarrow $$ ($${{{\log }_8}x}$$ - 2)($${{{\log }_8}x}$$ + 1) = 0 <br><br>$$ \Rightarrow $$ $${{{\log }_8}x}$$ = 2 or $${{{\log }_8}x}$$ = -1 <br><br>$$ \Rightarrow $$ x = 8<sup>2</sup> or x = $${1 \over 8}$$
mcq
jee-main-2019-online-9th-april-morning-slot
en2LblqYlH2raE9M7kcBX
maths
binomial-theorem
general-term
If the fourth term in the binomial expansion of<br/> $${\left( {\sqrt {{x^{\left( {{1 \over {1 + {{\log }_{10}}x}}} \right)}}} + {x^{{1 \over {12}}}}} \right)^6}$$ is equal to 200, and x &gt; 1, then the value of x is :
[{"identifier": "A", "content": "100"}, {"identifier": "B", "content": "10<sup>3</sup>"}, {"identifier": "C", "content": "10"}, {"identifier": "D", "content": "10<sup>4</sup>"}]
["C"]
null
Fourth term (T<sub>4</sub>) <br><br>= $${}^6{C_3}{\left( {\sqrt {{x^{\left( {{1 \over {1 + {{\log }_{10}}x}}} \right)}}} } \right)^3}{\left( {{x^{{1 \over {12}}}}} \right)^3}$$ <br><br>= $$20{\left( {{x^{\left( {{1 \over {1 + {{\log }_{10}}x}}} \right)}}} \right)^{{3 \over 2}}}\left( {{x^{{1 \over 4}}}} \right)$$ <br><br>= $$20 \times {x^{\left( {{1 \over {1 + {{\log }_{10}}x}}} \right){3 \over 2}}} \times {x^{{1 \over 4}}}$$ <br><br>= $$20 \times {x^{\left( {{3 \over {2\left( {1 + {{\log }_{10}}x} \right)}} + {1 \over 4}} \right)}}$$ <br><br>Given, T<sub>4</sub> = 200 <br><br>$$ \therefore $$ $$20 \times {x^{\left( {{3 \over {2\left( {1 + {{\log }_{10}}x} \right)}} + {1 \over 4}} \right)}}$$ = 200 <br><br>$$ \Rightarrow $$ $${x^{\left( {{3 \over {2\left( {1 + {{\log }_{10}}x} \right)}} + {1 \over 4}} \right)}}$$ = 10 <br><br>Taking log<sub>10</sub> on both sides <br><br>$$\left( {{3 \over {2\left( {1 + {{\log }_{10}}x} \right)}} + {1 \over 4}} \right){\log _{10}}x$$ = 1 <br><br>put log<sub>10</sub> x = t <br><br>$$\left( {{3 \over {2\left( {1 + t} \right)}} + {1 \over 4}} \right)t$$ = 1 <br><br>$$ \Rightarrow $$ $$\left( {{{\left( {1 + t} \right) + 6} \over {4\left( {1 + t} \right)}}} \right) \times t$$ = 1 <br><br>$$ \Rightarrow $$ t<sup>2</sup> + 7t = 4 + 4t <br><br>$$ \Rightarrow $$ t<sup>2</sup> + 3t - 4 = 0 <br><br>$$ \Rightarrow $$ (t + 4)(t - 1) = 0 <br><br>$$ \Rightarrow $$ t = 1 or t = - 4 <br><br>$$ \therefore $$ log<sub>10</sub> x = 1 <br><br>$$ \Rightarrow $$ x = 10 <br><br>or log<sub>10</sub> x = - 4 <br><br>$$ \Rightarrow $$ x = 10<sup>-4</sup> <br><br>But as x &gt; 1 so x $$ \ne $$ 10<sup>-4</sup> <br><br>$$ \therefore $$ x = 10
mcq
jee-main-2019-online-8th-april-evening-slot
8ItKCdunQp0EBnpdGh1Tw
maths
binomial-theorem
general-term
A ratio of the 5th term from the beginning to the 5th term from the end in the binomial expansion of $${\left( {{2^{1/3}} + {1 \over {2{{\left( 3 \right)}^{1/3}}}}} \right)^{10}}$$ is :
[{"identifier": "A", "content": "1 : 2(6)<sup>1/3</sup>"}, {"identifier": "B", "content": "1 : 4(6)<sup>1/3</sup>"}, {"identifier": "C", "content": "2(36)<sup>1/3</sup> : 1"}, {"identifier": "D", "content": "4(36)<sup>1/3</sup> : 1"}]
["D"]
null
$${{{T_5}} \over {T_5^1}} = {{{}^{10}{C_4}{{\left( {{2^{1/3}}} \right)}^{10 - 4}}{{\left( {{1 \over {2{{\left( 3 \right)}^{1/3}}}}} \right)}^4}} \over {{}^{10}{C_4}{{\left( {{1 \over {2\left( {{3^{1/3}}} \right)}}} \right)}^{10 - 4}}{{\left( {{2^{1/3}}} \right)}^4}}} = 4.{\left( {36} \right)^{1/3}}$$
mcq
jee-main-2019-online-12th-january-morning-slot
xJn72qJEiHbMt3IWxBsj5
maths
binomial-theorem
general-term
The positive value of $$\lambda $$ for which the co-efficient of x<sup>2</sup> in the expression x<sup>2</sup> $${\left( {\sqrt x + {\lambda \over {{x^2}}}} \right)^{10}}$$ is 720, is -
[{"identifier": "A", "content": "4"}, {"identifier": "B", "content": "$$2\\sqrt 2 $$"}, {"identifier": "C", "content": "3"}, {"identifier": "D", "content": "$$\\sqrt 5 $$"}]
["A"]
null
The general term in the expansion of the binomial expression $(a+b)^n$ is <br/><br/>$$ T_{r+1}={ }^n C_r a^{n-r} b^r $$ <br/><br/>Therefore, the general term in the expansion of the binomial expression <br/><br/>$x^2\left(\sqrt{x}+\frac{\lambda}{x^2}\right)^{10}$ is <br/><br/>$$ \begin{aligned} T_{r+1} & =x^2\left({ }^{10} C_r(\sqrt{x})^{10-r}\left(\frac{\lambda}{x^2}\right)^r\right) \\\\ & ={ }^{10} C_r x^2 \cdot x^{\frac{10-r}{2}} \lambda^r x^{-2 r} \\\\ & ={ }^{10} C_r \lambda^r x^{2+\frac{10-r}{2}-2 r} \end{aligned} $$ <br/><br/>Now, for the coefficient of $x^2$, <br/><br/>$$ \begin{aligned} 2+\frac{10-r}{2}-2 r =2 \\\\ \Rightarrow \frac{10-r}{2}-2 r =0 \\\\ \Rightarrow 10-r =4 r \Rightarrow r=2 \end{aligned} $$ <br/><br/>So, the coefficient of $x^2$ is ${ }^{10} C_2 \lambda^2=720$ <br/><br/>$$ \begin{aligned} \Rightarrow & \frac{10 !}{2 ! 8 !} \lambda^2 =720 \\\\ \Rightarrow & \frac{10 \cdot 9 \cdot 8 !}{2 \cdot 8 !} \lambda^2 =720 \\\\ \Rightarrow & 45 \lambda^2 =720 \\\\ \Rightarrow & \lambda^2 =16 \\\\ \Rightarrow & \lambda = \pm 4 \end{aligned} $$ <br/><br/>Given the problem asks for the positive value of $\lambda$, $\lambda = 4$. <br/><br/>So, the correct option is (A) 4.
mcq
jee-main-2019-online-10th-january-evening-slot
p3tVtM7wc6QwB2WNUeyvG
maths
binomial-theorem
general-term
If the third term in the binomial expansion <br/>of $${\left( {1 + {x^{{{\log }_2}x}}} \right)^5}$$ equals 2560, then a possible value of x is -
[{"identifier": "A", "content": "$$2\\sqrt 2 $$"}, {"identifier": "B", "content": "$$4\\sqrt 2 $$"}, {"identifier": "C", "content": "$${1 \\over 8}$$"}, {"identifier": "D", "content": "$${1 \\over 4}$$"}]
["D"]
null
$${\left( {1 + {x^{{{\log }_2}x}}} \right)^5}$$ <br><br>$${T_3} = {}^5{C_2}.{\left( {{x^{{{\log }_2}x}}} \right)^2} = 2560$$ <br><br>$$ \Rightarrow \,\,10.{x^{2{{\log }_2}x}} = 2560$$ <br><br>$$ \Rightarrow \,\,{x^{2\log 2x}} = 256$$ <br><br>$$ \Rightarrow \,\,2{({\log _2}x)^2} = {\log _2}256$$ <br><br>$$ \Rightarrow 2{({\log _2}x)^2} = 8$$ <br><br>$$ \Rightarrow \,\,{({\log _2}x)^2} = 4$$ <br><br>$$ \Rightarrow \,\,{\log _2}x = 2$$&nbsp;&nbsp;or&nbsp;&nbsp;$$-$$ 2 <br><br>$$x = 4$$ &nbsp;&nbsp;or&nbsp;&nbsp;$${1 \over 4}$$
mcq
jee-main-2019-online-10th-january-morning-slot
n2K8x8uBYrxmQfciha7k9k2k5itwjym
maths
binomial-theorem
general-term
The coefficient of x<sup>4</sup> is the expansion of (1 + x + x<sup>2</sup>)<sup>10</sup> is _____.
[]
null
615
(1 + x + x<sup>2</sup>)<sup>10</sup> <br><br>= <sup>10</sup>C<sub>0</sub>(1 + x)<sup>10</sup> + <sup>10</sup>C<sub>1</sub>(1 + x)<sup>9</sup>.x<sup>2</sup> + <sup>10</sup>C<sub>2</sub>(1 + x)<sup>8</sup>.x<sup>4</sup>+ ..... <br><br>Coefficient of x<sup>4</sup> <br><br>= <sup>10</sup>C<sub>0</sub>.<sup>10</sup>C<sub>4</sub> + <sup>10</sup>C<sub>1</sub>.<sup>9</sup>C<sub>2</sub> + <sup>10</sup>C<sub>2</sub>.<sup>8</sup>C<sub>0</sub> <br><br>= 210 + 360 + 45 <br><br>= 615
integer
jee-main-2020-online-9th-january-morning-slot
mfa9gcoLNQtl4I0BUejgy2xukg0d0dyo
maths
binomial-theorem
general-term
If the constant term in the binomial expansion of <br/>$${\left( {\sqrt x - {k \over {{x^2}}}} \right)^{10}}$$ is 405, then |k| equals :
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "2"}]
["A"]
null
$${\left( {\sqrt x - {k \over {{x^2}}}} \right)^{10}}$$ <br><br>r<sup>th</sup> term of the expansion, <br><br>T<sub>r+1</sub> = <sup>10</sup>C<sub>r</sub>$${\left( {\sqrt x } \right)^{10 - r}}{\left( {{{ - k} \over {{x^2}}}} \right)^r}$$ <br><br>= <sup>10</sup>C<sub>r</sub>.$${x^{{{10 - r} \over 2}}}.{\left( { - k} \right)^r}.{x^{ - 2r}}$$ <br><br>= <sup>10</sup>C<sub>r</sub>.$${x^{{{10 - 5r} \over 2}}}.{\left( { - k} \right)^r}$$ <br><br>If it is constant term then <br>$${{{10 - 5r} \over 2}}$$ = 0 <br>$$ \Rightarrow $$ r = 2 <br><br>T<sub>3</sub> = <sup>10</sup>C<sub>2</sub>.(-k)<sup>2</sup> = 405 <br><br>$$ \Rightarrow $$ k<sup>2</sup> = $${{405} \over {45}}$$ = 9 <br><br>$$ \Rightarrow $$ k = $$ \pm $$ 3 <br><br>$$ \Rightarrow $$ |k| = 3
mcq
jee-main-2020-online-6th-september-evening-slot
57I50P6FMvU7vioAmejgy2xukfjjs70u
maths
binomial-theorem
general-term
The natural number m, for which the coefficient of x in the binomial expansion of<br/><br/> $${\left( {{x^m} + {1 \over {{x^2}}}} \right)^{22}}$$ is 1540, is .............
[]
null
13
General term, <br><br>$${T_{r + 1}} = {}^{22}{C_r}{({x^m})^{22 - r}}{\left( {{1 \over {{x^2}}}} \right)^r} = {}^{22}{C_r}{x^{22m - mr - 2r}}$$<br><br>$$ \because $$ $${}^{22}{C_3} = {}^{22}{C_{19}} = 1540$$<br><br>$$ \therefore $$ $$r = 3\,or\,19$$<br><br>$$22m - mr - 2r = 1$$<br><br>$$m = {{2r + 1} \over {22 - 5}}$$<br><br>When $$r = 3$$, $$m = {7 \over {19}} \notin N$$<br><br>When $$r = 19$$, $$m = {{38 + 1} \over {22 - 19}} = {{39} \over 3} = 13$$<br><br>$$ \therefore $$ $$m = 13$$
integer
jee-main-2020-online-5th-september-morning-slot
9JtYhkWW4qfFVXr41hjgy2xukf443l60
maths
binomial-theorem
general-term
If the term independent of x in the expansion of <br/>$${\left( {{3 \over 2}{x^2} - {1 \over {3x}}} \right)^9}$$ is k, then 18 k is equal to :
[{"identifier": "A", "content": "5"}, {"identifier": "B", "content": "9"}, {"identifier": "C", "content": "7"}, {"identifier": "D", "content": "11"}]
["C"]
null
General term, <br><br>$${T_{r + 1}} = {}^9{C_r}{\left[ {{3 \over 2}{x^2}} \right]^{9 - r}}{\left( { - {1 \over {3x}}} \right)^r}$$<br><br>$${T_{r + 1}} = {}^9{C_r}{\left[ {{3 \over 2}} \right]^{9 - r}}{\left( { - {1 \over 3}} \right)^r}{x^{18 - 3r}}$$<br><br>For independent of x <br><br>18 $$ - $$ 3r = 0 $$ \Rightarrow $$ r = 6<br><br>$$ \therefore $$ $${T_7} = {}^9{C_6}{\left( {{3 \over 2}} \right)^3}{\left( { - {1 \over 3}} \right)^6} = {{21} \over {54}} = k$$<br><br>$$ \therefore $$ $$18k = {{21} \over {54}} \times 18 = 7$$
mcq
jee-main-2020-online-3rd-september-evening-slot
dPu5jf9EUPJ9Gi2nwLjgy2xukf0wsoo1
maths
binomial-theorem
general-term
If the number of integral terms in the expansion <br/>of (3<sup>1/2</sup> + 5<sup>1/8</sup>)<sup>n</sup> is exactly 33, then the least value of n is :
[{"identifier": "A", "content": "264"}, {"identifier": "B", "content": "256"}, {"identifier": "C", "content": "128"}, {"identifier": "D", "content": "248"}]
["B"]
null
General term of the expression,<br><br>$${T_{r + 1}} = {}^n{C_r}{\left( {{3^{{1 \over 2}}}} \right)^{n - r}}{\left( {{5^{{1 \over 8}}}} \right)^r}$$<br><br>$$ = {}^n{C_r}{\left( 3 \right)^{{{n - r} \over 2}}}{\left( 5 \right)^{{r \over 8}}}$$<br><br>We will get integral term when $${{n - r} \over 2}$$ and $${r \over 8}$$ are integer<br><br>$$ \therefore $$ <b>(1)</b> n $$-$$ r is multiple of 2<br><br>$$ \Rightarrow $$ n $$-$$ r = 0, 2, 4, ......<br><br><b>(2)</b> r is multiple of 8<br><br>$$ \Rightarrow $$ r = 0, 8, 16, .......<br><br>From this two conditions common values are = 0, 8, 16, ....... which will becomes integral terms.<br><br>Given that there are 33 integral terms.<br><br>Here first integral term at 0<sup>th</sup> position.<br><br>Second integral term at 8<sup>th</sup> position.<br><br>$$ \therefore $$ 33<sup>th</sup> integral term will be at = 0 + (33 $$-$$ 1)8 = 256<br><br>So, there should be at least 256 terms.
mcq
jee-main-2020-online-3rd-september-morning-slot
teMqBnHZQ2oEeeo2dBjgy2xukewmb3vi
maths
binomial-theorem
general-term
Let $$\alpha $$ &gt; 0, $$\beta $$ &gt; 0 be such that <br/>$$\alpha $$<sup>3</sup> + $$\beta $$<sup>2</sup> = 4. If the maximum value of the term independent of x in <br/>the binomial expansion of $${\left( {\alpha {x^{{1 \over 9}}} + \beta {x^{ - {1 \over 6}}}} \right)^{10}}$$ is 10k, <br/>then k is equal to :
[{"identifier": "A", "content": "176"}, {"identifier": "B", "content": "336"}, {"identifier": "C", "content": "352"}, {"identifier": "D", "content": "84"}]
["B"]
null
General term <br><br>T<sub>r + 1</sub> = <sup>10</sup>C<sub>r</sub>$${\alpha ^{10 - r}}.{\left( x \right)^{{{10 - r} \over 9}}}.{\beta ^r}{\left( x \right)^{ - {r \over 6}}}$$ <br><br>= <sup>10</sup>C<sub>r</sub>$${\alpha ^{10 - r}}{\beta ^r}.{\left( x \right)^{{{10 - r} \over 9} - {r \over 6}}}$$ <br><br>If T<sub>r + 1</sub> is independent of x <br><br>$$ \therefore $$ $${{{10 - r} \over 9} - {r \over 6}}$$ = 0 <br><br>$$ \Rightarrow $$ r = 4 <br><br>$$ \therefore $$ T<sub>5</sub> = <sup>10</sup>C<sub>4</sub> $${\alpha ^6}{\beta ^4}$$ <br><br>Also given, $$\alpha $$<sup>3</sup> + $$\beta $$<sup>2</sup> = 4 <br><br>By AM-GM inequality <br><br>$${{{\alpha ^3} + {\beta ^2}} \over 2} \ge {\left( {{\alpha ^3}{\beta ^2}} \right)^{{1 \over 2}}}$$ <br><br>$$ \Rightarrow $$ (2)<sup>2</sup> $$ \ge $$ $${{\alpha ^3}{\beta ^2}}$$ <br><br>$$ \Rightarrow $$ $${\alpha ^6}{\beta ^4}$$ $$ \le $$ 16 <br><br>$$ \therefore $$ 10k = <sup>10</sup>C<sub>4</sub> (16) <br><br>$$ \Rightarrow $$ k = 336
mcq
jee-main-2020-online-2nd-september-morning-slot
ClPz4ye6HjzLfomsWE7k9k2k5khuqun
maths
binomial-theorem
general-term
In the expansion of $${\left( {{x \over {\cos \theta }} + {1 \over {x\sin \theta }}} \right)^{16}}$$, if $${\ell _1}$$ is the least value of the term independent of x when $${\pi \over 8} \le \theta \le {\pi \over 4}$$ and $${\ell _2}$$ is the least value of the term independent of x when $${\pi \over {16}} \le \theta \le {\pi \over 8}$$, then the ratio $${\ell _2}$$ : $${\ell _1}$$ is equal to :
[{"identifier": "A", "content": "8 : 1"}, {"identifier": "B", "content": "16 : 1"}, {"identifier": "C", "content": "1 : 8"}, {"identifier": "D", "content": "1 : 16"}]
["B"]
null
T<sub>r + 1</sub> = <sup>16</sup>C<sub>r</sub>$${\left( {{x \over {\cos \theta }}} \right)^{16 - r}}{\left( {{1 \over {x\sin \theta }}} \right)^r}$$ <br><br>= <sup>16</sup>C<sub>r</sub>$${\left( x \right)^{16 - 2r}} \times {1 \over {{{\left( {\cos \theta } \right)}^{16 - r}}{{\left( {\sin \theta } \right)}^r}}}$$ <br><br>term is independent of x when <br><br>$$ \therefore $$ 16 – 2r = 0 <br><br>$$ \Rightarrow $$ r = 8 <br><br>T<sub>9</sub> = <sup>16</sup>C<sub>8</sub> $$ \times $$ $${1 \over {{{\cos }^8}\theta {{\sin }^8}\theta }}$$ <br><br>= <sup>16</sup>C<sub>8</sub> $$ \times $$ $${{{2^8}} \over {{{\left( {\sin 2\theta } \right)}^8}}}$$ <br><br>If $$\theta \in \left[ {{\pi \over 8},{\pi \over 4}} \right]$$ then $$2\theta \in \left[ {{\pi \over 4},{\pi \over 2}} \right]$$ <br><br>In the range $$\left[ {{\pi \over 4},{\pi \over 2}} \right]$$, sin 2$$\theta $$ is increasing. <br><br>And value of T<sub>9</sub> is least when sin 2$$\theta $$ is maximum. <br><br>And sin 2$$\theta $$ is maximum in the range $$\left[ {{\pi \over 4},{\pi \over 2}} \right]$$ <br>when 2$$\theta $$ = $${{\pi \over 2}}$$ <br><br>$$ \therefore $$ $${l_1}$$ = <sup>16</sup>C<sub>8</sub> $$ \times $$ 2<sup>8</sup> <br><br>AgainIf $$\theta \in \left[ {{\pi \over {16}},{\pi \over 8}} \right]$$ then $$2\theta \in \left[ {{\pi \over 8},{\pi \over 4}} \right]$$ <br><br>In the range $$\left[ {{\pi \over 8},{\pi \over 4}} \right]$$, sin 2$$\theta $$ is increasing. <br><br>And value of T<sub>9</sub> is least when sin 2$$\theta $$ is maximum. <br><br>And sin 2$$\theta $$ is maximum in the range $$\left[ {{\pi \over 8},{\pi \over 4}} \right]$$ <br>when 2$$\theta $$ = $${{\pi \over 4}}$$ <br><br>$$ \therefore $$ $${l_2}$$ = <sup>16</sup>C<sub>8</sub> $$ \times $$ $${{{2^8}} \over {{{\left( {{1 \over {\sqrt 2 }}} \right)}^8}}}$$ <br><br> = <sup>16</sup>C<sub>8</sub> $$ \times $$ $${{2^8}{2^4}}$$ <br><br>$$ \therefore $$ $${{{l_2}} \over {{l_1}}}$$ = $${{{2^4}} \over 1}$$ = $${{16} \over 1}$$
mcq
jee-main-2020-online-9th-january-evening-slot
whKykbRukRrJZDlsAZ7k9k2k5hjr4v7
maths
binomial-theorem
general-term
If $$\alpha $$ and $$\beta $$ be the coefficients of x<sup>4</sup> and x<sup>2</sup> respectively in the expansion of<br/> $${\left( {x + \sqrt {{x^2} - 1} } \right)^6} + {\left( {x - \sqrt {{x^2} - 1} } \right)^6}$$, then
[{"identifier": "A", "content": "$$\\alpha + \\beta = 60$$"}, {"identifier": "B", "content": "$$\\alpha - \\beta = 60$$"}, {"identifier": "C", "content": "$$\\alpha + \\beta = -30$$"}, {"identifier": "D", "content": "$$\\alpha - \\beta = -132$$"}]
["D"]
null
(x+a)<sup>n </sup>+ (x – a)<sup>n</sup> = 2(T<sub>1</sub> + T<sub>3</sub> + T<sub>5</sub> +.....) <br><br>$${\left( {x + \sqrt {{x^2} - 1} } \right)^6} + {\left( {x - \sqrt {{x^2} - 1} } \right)^6}$$ <br><br>= 2[T<sub>1</sub> + T<sub>3</sub> + T<sub>5</sub> + T<sub>7</sub> ] <br><br>= 2[<sup>6</sup>C<sub>0</sub> x<sup>6</sup> + <sup>6</sup>C<sub>2 </sub> x<sup>4</sup>(x<sup>2</sup> – 1) + <sup>6</sup>C<sub>4</sub> x<sup>2</sup>(x<sup>2</sup> –1)<sup>2</sup> + <sup>6</sup>C<sub>6</sub> x<sup>0</sup>(x<sup>2</sup>–1)<sup>3</sup>] <br><br>= 2[x<sup>6</sup>+ 15(x<sup>6</sup> – x<sup>4</sup>) + 15x<sup>2</sup> (x<sup>4</sup> + 1 –2x<sup>2</sup>) + (x<sup>6</sup> – 3x<sup>4</sup> +3x<sup>2</sup> –1)] <br><br>= 2[x<sup>6</sup>(2 + 15 + 15 + 1) + x<sup>4</sup>(–15 – 30 –3) + x<sup>2</sup>(15 + 3)] <br><br>Coefficient of x<sup>4</sup> = $$\alpha $$ = -96 <br><br>And coefficient of x<sup>2</sup> = $$\beta $$ = 36 <br><br>$$ \therefore $$ $$\alpha - \beta = - 96 - 36 = -132$$
mcq
jee-main-2020-online-8th-january-evening-slot
Qc54t3Qr25N0Yctsjd7k9k2k5fiux85
maths
binomial-theorem
general-term
The coefficient of x<sup>7</sup> in the expression <br/>(1 + x)<sup>10</sup> + x(1 + x)<sup>9</sup> + x<sup>2</sup>(1 + x)<sup>8</sup> + ......+ x<sup>10</sup> is:
[{"identifier": "A", "content": "120"}, {"identifier": "B", "content": "330"}, {"identifier": "C", "content": "420"}, {"identifier": "D", "content": "210"}]
["B"]
null
(1 + x)<sup>10</sup> + x(1 + x)<sup>9</sup> + x<sup>2</sup>(1 + x)<sup>8</sup> + ......+ x<sup>10</sup> <br><br>This is a G.P where <br><br>First term, a = (1 + x)<sup>10</sup> <br><br>common ratio, r = $${x \over {1 + x}}$$ <br><br>Number of terms = 11 <br><br>Sum of G.P <br><br>= $${{{{\left( {1 + x} \right)}^{10}}\left( {1 - {{\left( {{x \over {1 + x}}} \right)}^{11}}} \right)} \over {1 - {x \over {1 + x}}}}$$ <br><br>= (1 + x)<sup>11</sup> – x<sup>11</sup> <br><br>So Coefficient of x<sup>7</sup> is <sup>11</sup>C<sub>7</sub> = 330
mcq
jee-main-2020-online-7th-january-evening-slot
7j0Ea0CxBrRDVTtcVm1klug2yrr
maths
binomial-theorem
general-term
The maximum value of the term independent of 't' in the expansion <br/>of $${\left( {t{x^{{1 \over 5}}} + {{{{(1 - x)}^{{1 \over {10}}}}} \over t}} \right)^{10}}$$ where x$$\in$$(0, 1) is :
[{"identifier": "A", "content": "$${{10!} \\over {\\sqrt 3 {{(5!)}^2}}}$$"}, {"identifier": "B", "content": "$${{2.10!} \\over {3\\sqrt 3 {{(5!)}^2}}}$$"}, {"identifier": "C", "content": "$${{10!} \\over {3{{(5!)}^2}}}$$"}, {"identifier": "D", "content": "$${{2.10!} \\over {3{{(5!)}^2}}}$$"}]
["B"]
null
$${T_{r + 1}} = {}^{10}{C_r}{(t{x^{1/5}})^{10 - r}}{\left[ {{{{{(1 - x)}^{1/10}}} \over t}} \right]^r}$$<br><br>$$ = {}^{10}{C_r}{t^{(10 - 2r)}} \times {x^{{{10 - r} \over 5}}} \times {(1 - x)^{{r \over {10}}}}$$<br><br>$$ \Rightarrow 10 - 2r = 0 \Rightarrow r = 5$$ <br><br>$$ \therefore $$ $${T_6} = {}^{10}{C_5} \times x\sqrt {1 - x} $$<br><br>At maximum, $${{d{T_6}} \over {dx}} = {}^{10}{C_5}\left[ {\sqrt {1 - x} - {x \over {2\sqrt {1 - x} }}} \right] = 0$$<br><br>$$ \Rightarrow $$ $$ 1 - x = x/2 \Rightarrow 3x = 2 \Rightarrow x = 2/3$$<br><br>$${T_6}{|_{\max }} = {{10!} \over {5!5!}} \times {2 \over {3\sqrt 3 }}$$ = $${{2.10!} \over {3\sqrt 3 {{(5!)}^2}}}$$
mcq
jee-main-2021-online-26th-february-morning-slot
jHrylvcW7IqT8Wci3y1kmhx5zo4
maths
binomial-theorem
general-term
If n is the number of irrational terms in the <br/>expansion of $${\left( {{3^{1/4}} + {5^{1/8}}} \right)^{60}}$$, then (n $$-$$ 1) is divisible by :
[{"identifier": "A", "content": "30"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "7"}, {"identifier": "D", "content": "26"}]
["D"]
null
$${T_{r + 1}} = {}^{60}{C_r}{\left( {{3^{1/4}}} \right)^{60 - r}}{\left( {{5^{1/8}}} \right)^r}$$<br><br>rational if $${{60 - r} \over 4},{r \over 8}$$, both are whole numbers, $$r \in \{ 0,1,2,......60\} $$<br><br>$${{60 - r} \over 4} \in W \Rightarrow r \in \{ 0,4,8,....60\} $$<br><br>and $${r \over 8} \in W \Rightarrow r \in \{ 0,8,16,.....56\} $$<br><br>$$ \therefore $$ Common terms $$r \in \{ 0,8,16,.....56\} $$<br><br>So, 8 terms are rational<br><br>Then Irrational terms = $$61 - 8 = 53 = n$$<br><br>$$ \therefore $$ $$n - 1 = 52 = 13 \times {2^2}$$<br><br>Factors 1, 2, 4, 13, 26, 52
mcq
jee-main-2021-online-16th-march-morning-shift
H3IeTt4KAIUgRCZ0P31kmjb2rhf
maths
binomial-theorem
general-term
If the fourth term in the expansion of $${(x + {x^{{{\log }_2}x}})^7}$$ is 4480, then the value of x where x$$\in$$N is equal to :
[{"identifier": "A", "content": "3"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "4"}, {"identifier": "D", "content": "2"}]
["D"]
null
T<sub>4</sub> = $${}^7{C_3}{x^4}{({x^{{{\log }_2}x}})^3} = 4480$$<br><br>$$ \Rightarrow 35{x^4}{({x^{{{\log }_2}x}})^3} = 4480$$<br><br>$$ \Rightarrow {x^4}{({x^{{{\log }_2}x}})^3} = 128$$<br><br>take log w.r.t. base 2 we get, <br><br>$$4{\log _2}x + 3{\log _2}({x^{{{\log }_2}x}}) = {\log _2}128$$<br><br>Let $${\log _2}x = y$$<br><br>$$4y + 3{y^2} = 7$$<br><br>$$ \Rightarrow y = 1,{{ - 7} \over 3}$$<br><br>$$ \Rightarrow {\log _2}x = 1,{{ - 7} \over 3}$$<br><br>$$ \Rightarrow $$ $$x = 2,x = {2^{ - 7/3}}$$
mcq
jee-main-2021-online-17th-march-morning-shift
3EvGB4JDbb7CRrEJIt1kmknn38u
maths
binomial-theorem
general-term
Let the coefficients of third, fourth and fifth terms in the expansion of $${\left( {x + {a \over {{x^2}}}} \right)^n},x \ne 0$$, be in the ratio 12 : 8 : 3. Then the term independent of x in the expansion, is equal to ___________.
[]
null
4
$${T_{r + 1}} = {n_{C_r}}{x^{n - r}}.{\left( {{a \over {{x^2}}}} \right)^r}$$<br><br>$$ = {}^n{C_r}{a^r}{x^{n - 3r}}$$<br><br>$${T_3} = {}^n{C_2}{a^2}{x^{n - 6}}$$, $${T_4} = {}^n{C_3}{a^3}{x^{n - 9}}$$, $${T_5} = {}^n{C_4}{a^4}{x^{n - 12}}$$<br><br>Now, $${{coefficient\,of\,{T_3}} \over {coefficient\,of\,{T_4}}} = {{{}^n{C_4}.{a^2}} \over {{}^n{C_3}.{a^3}}} = {3 \over {a(n - 2)}} = {3 \over 2}$$<br><br>$$ \Rightarrow a(n - 2) = 2$$ .......... (i)<br><br>and $${{coefficient\,of\,{T_4}} \over {coefficient\,of\,{T_5}}} = {{{}^n{C_3}.{a^3}} \over {{}^n{C_4}.{a^4}}} = {4 \over {a(n - 3)}} = {8 \over 3}$$<br><br>$$ \Rightarrow a(n - 3) = {3 \over 2}$$ ........ (ii)<br><br>by (i) and (ii) $$n = 6,\,a = {1 \over 2}$$<br><br>for term independent of 'x'<br><br>$$n - 3r = 0 \Rightarrow r = {n \over 3} \Rightarrow r = {6 \over 3} = 2$$<br><br>$${T_3} = {}^6{C_2}{\left( {{1 \over 2}} \right)^2}{x^0} = {{15} \over 4} = 3.75 \approx 4$$
integer
jee-main-2021-online-17th-march-evening-shift
YzDnj4t7QGMWPSQlHa1kmm40p2r
maths
binomial-theorem
general-term
The term independent of x in the expansion of <br/><br/>$${\left[ {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right]^{10}}$$, x $$\ne$$ 1, is equal to ____________.
[]
null
210
$${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$ <br><br>= $${\left( {{{{{\left( {{x^{1/3}}} \right)}^3} + {{\left( {{1^{1/3}}} \right)}^3}} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{{{\left( {\sqrt x } \right)}^2} - {{\left( 1 \right)}^2}} \over {x - {x^{1/2}}}}} \right)^{10}}$$ <br><br>= $${\left( {{{\left( {{x^{1/3}} + 1} \right)\left( {{x^{2/3}} - {x^{1/3}} + 1} \right)} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}$$ <br><br>= $${\left( {\left( {{x^{1/3}} + 1} \right) - {{\left( {\sqrt x + 1} \right)} \over {\sqrt x }}} \right)^{10}}$$ <br><br>= $${\left( {\left( {{x^{1/3}} + 1} \right) - \left( {1 + {1 \over {\sqrt x }}} \right)} \right)^{10}}$$ <br><br>= $${\left( {{x^{1/3}} - {1 \over {{x^{1/2}}}}} \right)^{10}}$$ <br><br>$${T_{r + 1}} = {}^{10}{C_r}{\left( {{x^{{1 \over 3}}}} \right)^{(10 - r)}}{\left( {{x^{ - {1 \over 2}}}} \right)^r}$$<br><br>For being independent of $$x:{{10 - r} \over 3} - {r \over 2} = 0 \Rightarrow r = 4$$<br><br>Term independent of $$x = {}^{10}{C_4} = 210$$
integer
jee-main-2021-online-18th-march-evening-shift
1krq0nwdb
maths
binomial-theorem
general-term
The number of rational terms in the binomial expansion of $${\left( {{4^{{1 \over 4}}} + {5^{{1 \over 6}}}} \right)^{120}}$$ is _______________.
[]
null
21
$${\left( {{4^{{1 \over 4}}} + {5^{{1 \over 6}}}} \right)^{120}}$$<br><br>$${T_{r + 1}} = {}^{120}{C_r}{({2^{1/2}})^{120 - r}}{(5)^{r/6}}$$<br><br>for rational terms r = 6$$\lambda$$ <br><br>0 $$\le$$ r $$\le$$ 120<br><br>So total no of terms are 21.
integer
jee-main-2021-online-20th-july-morning-shift
1krubh7ej
maths
binomial-theorem
general-term
If the constant term, in binomial expansion of $${\left( {2{x^r} + {1 \over {{x^2}}}} \right)^{10}}$$ is 180, then r is equal to __________________.
[]
null
8
$${\left( {2{x^r} + {1 \over {{x^2}}}} \right)^{10}}$$<br><br>General term $$ = {}^{10}{C_R}{(2{x^2})^{10 - R}}{x^{ - 2R}}$$<br><br>$$ \Rightarrow {2^{10 - R}}{}^{10}{C_R} = 180$$ ....... (1)<br><br>&amp; (10 $$-$$ R)r $$-$$ 2R = 0<br><br>$$r = {{2R} \over {10 - R}}$$<br><br>$$r = {{2(R - 10)} \over {10 - R}} + {{20} \over {10 - R}}$$<br><br>$$ \Rightarrow r = - 2 + {{20} \over {10 - R}}$$ ....... (2)<br><br>R = 8 or 5 reject equation (1) not satisfied<br><br>At R = 8<br><br>$$ \Rightarrow {2^{10 - R}}\times{}^{10}{C_R} = 180 \Rightarrow r = 8$$
integer
jee-main-2021-online-22th-july-evening-shift
1krw3ge50
maths
binomial-theorem
general-term
The term independent of 'x' in the expansion of <br/>$${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$, where x $$\ne$$ 0, 1 is equal to ______________.
[]
null
210
$${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$ <br><br>= $${\left( {{{{{\left( {{x^{1/3}}} \right)}^3} + {{\left( {{1^{1/3}}} \right)}^3}} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{{{\left( {\sqrt x } \right)}^2} - {{\left( 1 \right)}^2}} \over {x - {x^{1/2}}}}} \right)^{10}}$$ <br><br>= $${\left( {{{\left( {{x^{1/3}} + 1} \right)\left( {{x^{2/3}} - {x^{1/3}} + 1} \right)} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}$$ <br><br>= $${\left( {\left( {{x^{1/3}} + 1} \right) - {{\left( {\sqrt x + 1} \right)} \over {\sqrt x }}} \right)^{10}}$$ <br><br>= $${\left( {\left( {{x^{1/3}} + 1} \right) - \left( {1 + {1 \over {\sqrt x }}} \right)} \right)^{10}}$$ <br><br>= $${\left( {{x^{1/3}} - {1 \over {{x^{1/2}}}}} \right)^{10}}$$ <br><br>[<b>Note:</b> <br><br>For $${\left( {{x^\alpha } \pm {1 \over {{x^\beta }}}} \right)^n}$$ the $$\left( {r + 1} \right)$$<sup>th</sup> term with power m of x is <br><br>$$r = {{n\alpha - m} \over {\alpha + \beta }}$$] <br><br>Here $$\alpha = {1 \over 3}$$, $$\beta = {1 \over 2}$$ and m = 0 <br><br>then $$r = {{10 \times {1 \over 3} - 0} \over {{1 \over 3} + {1 \over 2}}}$$ = $${{10} \over 3} \times {6 \over 5}$$ = 4 <br><br>$$\therefore$$ T<sub>5</sub> is the term independent of x. <br><br>$$\therefore$$ T<sub>5</sub> = $${}^{10}{C_4}$$ = 210
integer
jee-main-2021-online-25th-july-morning-shift
1krxgk2ja
maths
binomial-theorem
general-term
A possible value of 'x', for which the ninth term in the expansion of $${\left\{ {{3^{{{\log }_3}\sqrt {{{25}^{x - 1}} + 7} }} + {3^{\left( { - {1 \over 8}} \right){{\log }_3}({5^{x - 1}} + 1)}}} \right\}^{10}}$$ in the increasing powers of $${3^{\left( { - {1 \over 8}} \right){{\log }_3}({5^{x - 1}} + 1)}}$$ is equal to 180, is :
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "$$-$$1"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "1"}]
["D"]
null
$${}^{10}{C_8}({25^{(x - 1)}} + 7) \times {({5^{(x - 1)}} + 1)^{ - 1}} = 180$$<br><br>$$ \Rightarrow {{{{25}^{x - 1}} + 7} \over {{5^{(x - 1)}} + 1}} = 4$$<br><br>$$ \Rightarrow {{{t^2} + 7} \over {t + 1}} = 4$$;<br><br>$$\Rightarrow$$ t = 1, 3 = 5<sup>x $$-$$ 1</sup><br><br>$$\Rightarrow$$ x $$-$$ 1 = 0 (one of the possible value).<br><br>$$\Rightarrow$$ x = 1
mcq
jee-main-2021-online-27th-july-evening-shift
1krz59pdx
maths
binomial-theorem
general-term
The sum of all those terms which are rational numbers in the <br/><br/>expansion of (2<sup>1/3</sup> + 3<sup>1/4</sup>)<sup>12</sup> is :
[{"identifier": "A", "content": "89"}, {"identifier": "B", "content": "27"}, {"identifier": "C", "content": "35"}, {"identifier": "D", "content": "43"}]
["D"]
null
$${T_{r + 1}} = {}^{12}{C_r}{\left( {{2^{1/3}}} \right)^r}.{\left( {{3^{1/4}}} \right)^{12 - 4}}$$<br><br>T<sub>r + 1</sub> will be rational number when r = 0, 3, 6, 9, 12 &amp; r = 0, 4, 8, 12<br><br>$$\Rightarrow$$ r = 0, 12<br><br>T<sub>1</sub> + T<sub>13</sub> = 1 $$\times$$ 3<sup>3</sup> + 1 $$\times$$ 2<sup>4</sup> $$\times$$ 1<br><br>= 24 + 16 = 43
mcq
jee-main-2021-online-25th-july-evening-shift
1krzlrpjk
maths
binomial-theorem
general-term
If the greatest value of the term independent of 'x' in the <br/><br/>expansion of $${\left( {x\sin \alpha + a{{\cos \alpha } \over x}} \right)^{10}}$$ is $${{10!} \over {{{(5!)}^2}}}$$, then the value of 'a' is equal to :
[{"identifier": "A", "content": "$$-$$1"}, {"identifier": "B", "content": "1"}, {"identifier": "C", "content": "$$-$$2"}, {"identifier": "D", "content": "2"}]
["D"]
null
$${T_{r + 1}} = {}^{10}{C_r}{(x\sin \alpha )^{10 - r}}{\left( {{{a\cos \alpha } \over x}} \right)^r}$$<br><br>r = 0, 1, 2, ......., 10<br><br>T<sub>r + 1</sub> will be independent of x when 10 $$-$$ 2r = 0 $$\Rightarrow$$ r = 5<br><br>$${T_6} = {}^{10}{C_5}{(x\sin \alpha )^5} \times {\left( {{{a\cos \alpha } \over x}} \right)^5}$$<br><br>$$ = {}^{10}{C_5} \times {a^5} \times {1 \over {{2^5}}}{(\sin 2\alpha )^5}$$<br><br>will be greatest when sin2$$\alpha$$ = 1<br><br>$$ \Rightarrow {}^{10}{C_5}{{{a^5}} \over {{2^5}}} = {}^{10}{C_5} \Rightarrow a = 2$$
mcq
jee-main-2021-online-25th-july-evening-shift
1krzrliu5
maths
binomial-theorem
general-term
If the co-efficient of x<sup>7</sup> and x<sup>8</sup> in the expansion of $${\left( {2 + {x \over 3}} \right)^n}$$ are equal, then the value of n is equal to _____________.
[]
null
55
$${}^n{C_7}{2^{n - 7}}{1 \over {{3^7}}} = {}^n{C_8}{2^{n - 8}}{1 \over {{3^8}}}$$<br><br>$$\Rightarrow$$ n $$-$$ 7 = 48 $$\Rightarrow$$ n = 55
integer
jee-main-2021-online-25th-july-evening-shift
1ks07cgn0
maths
binomial-theorem
general-term
If the coefficients of x<sup>7</sup> in $${\left( {{x^2} + {1 \over {bx}}} \right)^{11}}$$ and x<sup>$$-$$7</sup> in $${\left( {{x} - {1 \over {bx^2}}} \right)^{11}}$$, b $$\ne$$ 0, are equal, then the value of b is equal to :
[{"identifier": "A", "content": "2"}, {"identifier": "B", "content": "$$-$$1"}, {"identifier": "C", "content": "1"}, {"identifier": "D", "content": "$$-$$2"}]
["C"]
null
Coefficient of x<sup>7</sup> in $${\left( {{x^2} + {1 \over {bx}}} \right)^{11}}$$ :<br><br>General Term = $${}^{11}{C_r}{({x^2})^{11 - r}}.{\left( {{1 \over {bx}}} \right)^r}$$<br><br>= $${}^{11}{C_r}{x^{22 - 3r}}.{1 \over {{b^r}}}$$<br><br>$$22 - 3r = 7$$<br><br>$$r = 5$$<br><br>$$\therefore$$ Required Term = $${}^{11}{C_5}.{1 \over {{b^5}}}.{x^7}$$<br><br>Coefficient of x<sup>$$-$$7</sup> in $${\left( {x - {1 \over {b{x^2}}}} \right)^{11}}$$ :<br><br>General Term = $${}^{11}{C_r}{(x)^{11 - r}}.{\left( { - {1 \over {b{x^2}}}} \right)^r}$$<br><br>= $${}^{11}{C_r}{x^{11 - 3r}}.{{{{( - 1)}^r}} \over {{b^r}}}$$<br><br>$$11 - 3r = - 7$$ $$\therefore$$ $$r = 6$$<br><br>$$ \therefore $$ Required Term = $${}^{11}{C_6}.{1 \over {{b^6}}}{x^{ - 7}}$$ <br><br>According to the question, <br><br>$${}^{11}{C_5}.{1 \over {{b^5}}} = {}^{11}{C_6}.{1 \over {{b^6}}}$$<br><br>Since, b $$\ne$$ 0 $$\therefore$$ b = 1
mcq
jee-main-2021-online-27th-july-morning-shift
1ktisyc5x
maths
binomial-theorem
general-term
If $$\left( {{{{3^6}} \over {{4^4}}}} \right)k$$ is the term, independent of x, in the binomial expansion of $${\left( {{x \over 4} - {{12} \over {{x^2}}}} \right)^{12}}$$, then k is equal to ___________.
[]
null
55
$${\left( {{x \over 4} - {{12} \over {{x^2}}}} \right)^{12}}$$<br><br>$${T_{r + 1}} = {( - 1)^r}\,.\,{}^{12}{C_r}{\left( {{x \over 4}} \right)^{12 - r}}{\left( {{{12} \over {{x^2}}}} \right)^r}$$<br><br>$${T_{r + 1}} = {( - 1)^r}\,.\,{}^{12}{C_r}{\left( {{1 \over 4}} \right)^{12 - r}}{\left( {12} \right)^r}\,.\,{(x)^{12 - 3r}}$$<br><br>Term independent of x $$\Rightarrow$$ 12 $$-$$ 3r = 0 $$\Rightarrow$$ r = 4<br><br>$${T_5} = {( - 1)^r}\,.\,{}^{12}{C_r}{\left( {{1 \over 4}} \right)^8}{\left( {12} \right)^4} = {{{3^6}} \over {{4^4}}}.\,k$$<br><br>$$\Rightarrow$$ k = 55
integer
jee-main-2021-online-31st-august-morning-shift
1l54uczwv
maths
binomial-theorem
general-term
<p>Let the coefficients of x<sup>$$-$$1</sup> and x<sup>$$-$$3</sup> in the expansion of $${\left( {2{x^{{1 \over 5}}} - {1 \over {{x^{{1 \over 5}}}}}} \right)^{15}},x &gt; 0$$, be m and n respectively. If r is a positive integer such that $$m{n^2} = {}^{15}{C_r}\,.\,{2^r}$$, then the value of r is equal to __________.</p>
[]
null
5
<p>Given, Binomial expansion</p> <p>$${\left( {2{x^{{1 \over 5}}} - {1 \over {{x^{{1 \over 5}}}}}} \right)^{15}}$$</p> <p>$$\therefore$$ General Term</p> <p>$${T_{r + 1}} = {}^{15}{C_r}\,.\,{\left( {2{x^{{1 \over 5}}}} \right)^{15 - r}}\,.\,{\left( { - {1 \over {{x^{{1 \over 5}}}}}} \right)^r}$$</p> <p>$$ = {}^{15}{C_r}\,.\,{2^{15 - r}}\,.\,{x^{{1 \over 5}(15 - r - r)}}\,.\,{( - 1)^r}$$</p> <p>For $${x^{ - 1}}$$ term;</p> <p>$${1 \over 5}(15 - 2r) = - 1$$</p> <p>$$ \Rightarrow 15 - 2r = - 5$$</p> <p>$$ \Rightarrow 2r = 20$$</p> <p>$$ \Rightarrow r = 10$$</p> <p>m is the coefficient of $${x^{ - 1}}$$ term,</p> <p>$$\therefore$$ $$m = {}^{15}{C_{10}}\,.\,{2^{15 - 10}}\,.\,{( - 1)^{10}}$$</p> <p>$$ = {}^{15}{C_{10}}\,.\,{2^5}$$</p> <p>For $${x^{ - 3}}$$ term;</p> <p>$${1 \over 5}(15 - 2r) = - 3$$</p> <p>$$ \Rightarrow 15 - 2r = - 15$$</p> <p>$$ \Rightarrow 2r = 30$$</p> <p>$$ \Rightarrow r = 15$$</p> <p>n is the coefficient of $${x^{ - 3}}$$ term,</p> <p>$$\therefore$$ $$n = {}^{15}{C_{15}}\,.\,{2^{15 - 15}}\,.\,{( - 1)^{15}}$$</p> <p>$$ = 1\,.\,1\,.\, - 1$$</p> <p>$$ = - 1$$</p> <p>Given,</p> <p>$$m{n^2} = {}^{15}{C_r}\,.\,{2^r}$$</p> <p>$$ \Rightarrow {}^{15}{C_{10}}\,.\,{2^5}\,.\,{(1)^2} = {}^{15}{C_r}\,.\,{2^r}$$ [putting value of m and n]</p> <p>$$ \Rightarrow {}^{15}{C_{15 - 10}}\,.\,{2^5} = {}^{15}{C_r}\,.\,{2^r}$$</p> <p>$$ \Rightarrow {}^{15}{C_5}\,.\,{2^5} = {}^{15}{C_r}.\,{2^r}$$</p> <p>Comparing both side, we get</p> <p>$$r = 5$$.</p>
integer
jee-main-2022-online-29th-june-evening-shift
1l55h6lp9
maths
binomial-theorem
general-term
<p>The term independent of x in the expansion of <br/><br/>$$(1 - {x^2} + 3{x^3}){\left( {{5 \over 2}{x^3} - {1 \over {5{x^2}}}} \right)^{11}},\,x \ne 0$$ is :</p>
[{"identifier": "A", "content": "$${7 \\over {40}}$$"}, {"identifier": "B", "content": "$${33 \\over {200}}$$"}, {"identifier": "C", "content": "$${39 \\over {200}}$$"}, {"identifier": "D", "content": "$${11 \\over {50}}$$"}]
["B"]
null
<p>General term of Binomial expansion $${\left( {{5 \over 2}{x^3} - {1 \over {5{x^2}}}} \right)^{11}}$$ is</p> <p>$${T_{r + 1}} = {}^{11}{C_r}\,.\,{\left( {{5 \over 2}{x^3}} \right)^{11 - r}}\,.\,{\left( { - {1 \over {5{x^2}}}} \right)^r}$$</p> <p>$$ = {}^{11}{C_r}\,.\,{\left( {{5 \over 2}} \right)^{11 - r}}\,.\,{\left( { - {1 \over 5}} \right)^r}\,.\,{x^{33 - 5r}}$$</p> <p>In the term,</p> <p>$$\left( {1 - {x^2} + 3{x^3}} \right){\left( {{5 \over 2}{x^3} - {1 \over {5{x^2}}}} \right)^{11}}$$</p> <p>Term independent of x is when</p> <p>(1) $$33 - 5r = 0$$</p> <p>$$ \Rightarrow r = {{33} \over 5}\,\, \notin $$ integer</p> <p>(2) $$33 - 5r = -2$$</p> <p>$$ \Rightarrow 5r = 35$$</p> <p>$$ \Rightarrow r = 7\,\, \in $$ integer</p> <p>(3) $$33 - 5r = - 3$$</p> <p>$$ \Rightarrow 5r = 36$$</p> <p>$$ \Rightarrow r = {{36} \over 5}\,\, \notin $$ integer</p> <p>$$\therefore$$ Only for r = 7 independent of x term possible.</p> <p>$$\therefore$$ Independent of x term</p> <p>$$ = - \left( {{}^{11}{C_7}{{\left( {{5 \over 2}} \right)}^4}\,.\,{{\left( { - {1 \over 5}} \right)}^7}} \right)$$</p> <p>$$ = - \left( {{{11\,.\,10\,.\,9\,.\,8} \over {4\,.\,3\,.\,2\,.\,1}}\,.\,{{{5^4}} \over {{2^4}}}\,.\, - {1 \over {{5^7}}}} \right)$$</p> <p>$$ = {{11\,.\,10\,.\,3} \over {{2^4}\,.\,{5^3}}}$$</p> <p>$$ = {{11\,.\,3} \over {{2^3}\,.\,{5^2}}}$$</p> <p>$$ = {{33} \over {200}}$$</p>
mcq
jee-main-2022-online-28th-june-evening-shift
1l567u2dw
maths
binomial-theorem
general-term
<p>The number of positive integers k such that the constant term in the binomial expansion of $${\left( {2{x^3} + {3 \over {{x^k}}}} \right)^{12}}$$, x $$\ne$$ 0 is 2<sup>8</sup> . l, where l is an odd integer, is ______________.</p>
[]
null
2
<p>Given Binomial expression is</p> <p>$${\left( {2{x^3} + {3 \over {{x^k}}}} \right)^{12}}$$</p> <p>General term,</p> <p>$${T_{r + 1}} = {}^{12}{C_r}{(2{x^3})^r}\,.\,{\left( {{3 \over {{x^k}}}} \right)^{12 - r}}$$</p> <p>$$ = \left( {{}^{12}{C_r}\,.\,{2^r}\,.\,{3^{12 - r}}} \right)\,.\,{x^{3r - 12k + kr}}$$</p> <p>For constant term,</p> <p>$$3r - 12k + kr = 0$$</p> <p>$$ \Rightarrow k(12 - r) = 3r$$</p> <p>$$ \Rightarrow k = {{3r} \over {12 - r}}$$</p> <p>For r = 1, $$k = {3 \over {11}}$$ (not integer)</p> <p>For r = 2, $$k = {6 \over {10}}$$ (not integer)</p> <p>For r = 3, $$k = {9 \over {9}}=1$$ (integer)</p> <p>For r = 6, $$k = {18 \over {6}}=3$$ (integer)</p> <p>For r = 8, $$k = {24 \over {4}}=6$$ (integer)</p> <p>For r = 9, $$k = {27 \over {3}}=9$$ (integer)</p> <p>For r = 10, $$k = {30 \over {2}}=15$$ (integer)</p> <p>For r = 11, $$k = {33 \over {1}}=33$$ (integer)</p> <p>So, for r = 3, 6, 8, 9, 10 and 11 k is positive integer.</p> <p>When k = 1 then r = 3 and constant term is</p> <p>$$ = {}^{12}{C_3}\,.\,{2^3}\,.\,{3^9}$$</p> <p>$$ = {{12\,.\,11\,.\,10} \over {3\,.\,2\,.\,1}}\,.\,{2^3}\,.\,{3^9}$$</p> <p>$$ = 2\,.\,11\,.\,2\,.\,5\,.\,{2^3}\,.\,{3^9}$$</p> <p>$$ = 11\,.\,5\,.\,{2^5}\,.\,{3^9}$$</p> <p>$$ = {2^5}\,.\,(55\,.\,{3^9})$$</p> <p>$$ = {2^5}(l)$$</p> <p>$$ \ne {2^8}\,.\,l$$</p> <p>When x = 3 then r = 6 and constant term</p> <p>$$ = {}^{12}{C_6}\,.\,{2^6}\,.\,{3^6}$$</p> <p>$$ = {{12\,.\,11\,.\,10\,.\,9\,.\,8\,.\,7} \over {6\,.\,5\,.\,4\,.\,3\,.\,2\,.\,1}}\,.\,{2^6}\,.\,{3^6}$$</p> <p>$$ = {2^8}\,.\,231\,.\,{3^6}$$</p> <p>$$ = {2^8}(l)$$</p> <p>When k = 6 then r = 8 and constant term</p> <p>$$ = {}^{12}{C_8}\,.\,{2^8}\,.\,{3^4}$$</p> <p>$$ = {{12\,.\,11\,.\,10\,.\,9} \over {4\,.\,3\,.\,2\,.\,1}}\,.\,{2^8}\,.\,{3^4}$$</p> <p>$$ = {2^8}\,.\,55\,.\,{3^6}$$</p> <p>$$ = {2^8}(l)$$</p> <p>When x = 9 then r = 9 and constant term</p> <p>$$ = {}^{12}{C_9}\,.\,{2^9}\,.\,{3^3}$$</p> <p>$$ = {{12\,.\,11\,.\,10} \over {3\,.\,2\,.\,1}}\,.\,{2^9}\,.\,{3^3}$$</p> <p>$$ = {2^{11}}\,.\,55\,.\,{3^3}$$</p> <p>Here power of 2 is 11 which is greater than 8. So, k = 9 is not possible.</p> <p>Similarly for k = 15 and k = 33, $${2^8}\,.\,l$$ form is not possible.</p> <p>$$\therefore$$ k = 3 and k = 6 is accepted.</p> <p>$$\therefore$$ For 2 positive integer value of k, $${2^8}\,.\,l$$ form of constant term possible.</p>
integer
jee-main-2022-online-28th-june-morning-shift
1l57p2f15
maths
binomial-theorem
general-term
<p>If the coefficient of x<sup>10</sup> in the binomial expansion of $${\left( {{{\sqrt x } \over {{5^{{1 \over 4}}}}} + {{\sqrt 5 } \over {{x^{{1 \over 3}}}}}} \right)^{60}}$$ is $${5^k}\,.\,l$$, where l, k $$\in$$ N and l is co-prime to 5, then k is equal to _____________.</p>
[]
null
5
<p>Given Binomial Expansion</p> <p>$$ = {\left( {{{\sqrt x } \over {{5^{{1 \over 4}}}}} + {{\sqrt x } \over {{5^{{1 \over 3}}}}}} \right)^{60}}$$</p> <p>$$\therefore$$ General term</p> <p>$${T_{r + 1}} = {}^{60}{C_r}\,.\,{\left( {{{{x^{1/2}}} \over {{5^{1/4}}}}} \right)^{60 - r}}\,.\,{\left( {{{{5^{1/2}}} \over {{x^{1/3}}}}} \right)^r}$$</p> <p>$$ = {}^{60}{C_r}\,.\,{5^{\left( {{r \over 4} - 15 + {r \over 2}} \right)}}\,.\,{x^{\left( {30 - {r \over 2} - {r \over 3}} \right)}}$$</p> <p>$$ = {}^{60}{C_r}\,.\,{5^{\left( {{{3r - 60} \over 4}} \right)}}\,.\,{x^{\left( {{{180 - 5r} \over 6}} \right)}}$$</p> <p>For x<sup>10</sup> term,</p> <p>$${{180 - 5r} \over 6} = 10$$</p> <p>$$ \Rightarrow 5r = 120$$</p> <p>$$ \Rightarrow r = 24$$</p> <p>$$\therefore$$ Coefficient of $${x^{10}} = {}^{60}{C_{24}}\,.\,{5^{\left( {{{3 \times 24 - 60} \over 4}} \right)}}$$</p> <p>$$ = {}^{60}{C_{24}}\,.\,{5^3}$$</p> <p>$$ = {{60!} \over {24!\,\,36!}}\,.\,{5^3}$$</p> <p>It is given that,</p> <p>$${{60!} \over {24!\,\,36!}}\,.\,{5^3} = {5^k}\,.\,l$$ ...... (1)</p> <p>Also given that, l is coprime to 5 means l can't be multiple of 5. So we have to find all the factors of 5 in 60!, 24! and 36!</p> <p>[Note : Formula for exponent or degree of prime number in n!.</p> <p>Exponent of p in $$n! = \left\lceil {{n \over p}} \right\rceil + \left\lceil {{n \over {{p^2}}}} \right\rceil + \left\lceil {{n \over {{p^3}}}} \right\rceil + $$ ..... until 0 comes</p> <p>here p is a prime number. ]</p> <p>$$\therefore$$ Exponent of 5 in 60!</p> <p>$$= \left\lceil {{{60} \over 5}} \right\rceil + \left\lceil {{{60} \over {{5^2}}}} \right\rceil + \left\lceil {{{60} \over {{5^3}}}} \right\rceil + $$ .....</p> <p>$$ = 12 + 2 + 0 + $$ .....</p> <p>$$ = 14$$</p> <p>Exponent of 5 in 24!</p> <p>$$ = \left\lceil {{{24} \over 5}} \right\rceil + \left\lceil {{{24} \over {{5^2}}}} \right\rceil + \left\lceil {{{24} \over {{5^3}}}} \right\rceil + $$ ......</p> <p>$$ = 4 + 0 + 0$$ ......</p> <p>$$ = 4$$</p> <p>Exponent of 5 in 36!</p> <p>$$ = \left\lceil {{{36} \over 5}} \right\rceil + \left\lceil {{{36} \over {{5^2}}}} \right\rceil + \left\lceil {{{36} \over {{5^3}}}} \right\rceil + $$ .......</p> <p>$$ = 7 + 1 + 0$$ ......</p> <p>$$ = 8$$</p> <p>$$\therefore$$ From equation (1), exponent of 5 overall</p> <p>$${{{5^{14}}} \over {{5^4}\,.\,{5^8}}}\,.\,{5^3} = {5^k}$$</p> <p>$$ \Rightarrow {5^5} = {5^k}$$</p> <p>$$ \Rightarrow k = 5$$</p>
integer
jee-main-2022-online-27th-june-morning-shift
1l59jwnfk
maths
binomial-theorem
general-term
<p>The coefficient of x<sup>101</sup> in the expression $${(5 + x)^{500}} + x{(5 + x)^{499}} + {x^2}{(5 + x)^{498}} + \,\,.....\,\, + \,\,{x^{500}}$$, x &gt; 0, is</p>
[{"identifier": "A", "content": "<sup>501</sup>C<sub>101</sub> (5)<sup>399</sup>"}, {"identifier": "B", "content": "<sup>501</sup>C<sub>101</sub> (5)<sup>400</sup>"}, {"identifier": "C", "content": "<sup>501</sup>C<sub>100</sub> (5)<sup>400</sup>"}, {"identifier": "D", "content": "<sup>500</sup>C<sub>101</sub> (5)<sup>399</sup>"}]
["A"]
null
<p>Given,</p> <p>$${(5 + x)^{500}} + x{(5 + x)^{499}} + {x^2}{(5 + x)^{498}}\,\, + $$ ...... $${x^{500}}$$</p> <p>This is a G.P. with first term $${(5 + x)^{500}}$$</p> <p>Common ratio $$ = {{x{{(5 + x)}^{499}}} \over {{{(5 + x)}^{500}}}} = {x \over {5 + x}}$$ and 501 terms present.</p> <p>$$\therefore$$ Sum $$ = {{{{(5 + x)}^{500}}\left( {{{\left( {{x \over {5 + x}}} \right)}^{501}} - 1} \right)} \over {{x \over {5 + x}} - 1}}$$</p> <p>$$ = {{{{(5 + x)}^{500}}\left( {{{{x^{501}} - {{(5 + x)}^{501}}} \over {{{(5 + x)}^{501}}}}} \right)} \over {{{x - 5 - x} \over {5 + x}}}}$$</p> <p>$$ = {{{{{x^{501}} - {{(5 + x)}^{501}}} \over {5 + x}}} \over {{{ - 5} \over {5 + x}}}}$$</p> <p>$$ = {1 \over 5}\left( {{{\left( {5 + x} \right)}^{501}} - {x^{501}}} \right)$$</p> <p>Coefficient of x<sup>101</sup> in $${(5 + x)^{501}}$$ is $$ = {}^{501}{C_{101}}\,.\,{5^{400}}$$</p> <p>$$\therefore$$ In $${1 \over 5}\left( {{{(5 + x)}^{500}} - {x^{501}}} \right)$$ coefficient of x<sup>101</sup> is $$ = {1 \over 5}\,.\,{}^{501}{C_{101}}\,.\,{5^{400}}$$</p> <p>$$ = {}^{501}{C_{101}}\,.\,{5^{399}}$$</p>
mcq
jee-main-2022-online-25th-june-evening-shift
1l59l7q3l
maths
binomial-theorem
general-term
<p>If the sum of the co-efficient of all the positive even powers of x in the binomial expansion of $${\left( {2{x^3} + {3 \over x}} \right)^{10}}$$ is $${5^{10}} - \beta \,.\,{3^9}$$, then $$\beta$$ is equal to ____________.</p>
[]
null
83
<p>Given, Binomial Expansion</p> <p>$${\left( {2{x^3} + {3 \over x}} \right)^{10}}$$</p> <P>General term</p> <p>$${T_{r + 1}} = {}^{10}{C_r}\,.\,{(2{x^3})^{10 - r}}\,.\,{\left( {{3 \over x}} \right)^r}$$</p> <p>$$ = {}^{10}{C_r}\,.\,{2^{10 - r}}\,.\,{3^r}\,.\,{x^{30 - 3r}}\,.\,{x^{ - r}}$$</p> <p>$$ = {}^{10}{C_r}\,.\,{2^{10 - r}}\,.\,{3^r}\,.\,{x^{30 - 4r}}$$</p> <p>For positive even power of x, 30 $$-$$ 4r should be even and positive.</p> <p>For r = 0, 30 $$-$$ 4 $$\times$$ 0 = 30 (even and positive)</p> <p>For r = 1, 30 $$-$$ 4 $$\times$$ 1 = 26 (even and positive)</p> <p>For r = 2, 30 $$-$$ 4 $$\times$$ 2 = 22 (even and positive)</p> <p>For r = 3, 30 $$-$$ 4 $$\times$$ 3 = 18 (even and positive)</p> <p>For r = 4, 30 $$-$$ 4 $$\times$$ 4 = 14 (even and positive)</p> <p>For r = 5, 30 $$-$$ 4 $$\times$$ 5 = 10 (even and positive)</p> <p>For r = 6, 30 $$-$$ 4 $$\times$$ 6 = 6 (even and positive)</p> <p>For r = 7, 30 $$-$$ 4 $$\times$$ 7 = 2 (even and positive)</p> <p>For r = 8, 30 $$-$$ 4 $$\times$$ 8 = $$-$$2 (even but not positive)</p> <p>So, for r = 1, 2, 3, 4, 5, 6 and 7 we can get positive even power of x.</p> <p>$$\therefore$$ Sum of coefficient for positive even power of x</p> <p>$$ = {}^{10}{C_0}\,.\,{2^{10}}\,.\,{3^0} + {}^{10}{C_1}\,.\,{2^9}\,.\,{3^1} + {}^{10}{C_2}\,.\,{2^8}\,.\,{3^2} + {}^{10}{C_3}\,.\,{2^7}\,.\,{3^3} + {}^{10}{C_4}\,.\,{2^6}\,.\,{3^4} + {}^{10}{C_5}\,.\,{2^5}\,.\,{3^5} + {}^{10}{C_6}\,.\,{2^4}\,.\,{3^6} + {}^{10}{C_7}\,.\,{2^3}\,.\,{3^7}$$</p> <p>$$ = {}^{10}{C_{10}}\,.\,{2^{10}}\,.\,{3^0} + {}^{10}{C_1}\,.\,{2^9}\,.\,{3^1}\,\, + \,\,.....\,\, + \,\,{}^{10}{C_{10}}\,.\,{2^0}\,.\,{3^{10}} - \left[ {{}^{10}{C_8}\,.\,{2^2}\,.\,{3^8} + {}^{10}{C_9}\,.\,2\,.\,{3^9} + {}^{10}{C_{10}}\,.\,{2^0}\,.\,{3^{10}}} \right]$$</p> <p>$$ = {(2 + 3)^{10}} - \left[ {45\,.\,4\,.\,{3^8} + 10\,.\,2\,.\,{3^9} + 1\,.\,1\,.\,{3^{10}}} \right]$$</p> <p>$$ = {5^{10}} - \left[ {60 \times {3^9} + 20\,.\,{3^9} + 3\,.\,{3^9}} \right]$$</p> <p>$$ = {5^{10}} - \left( {60 + 20 + 3} \right){3^9}$$</p> <p>$$ = {5^{10}} - 83\,.\,{3^9}$$</p> <p>$$\therefore$$ $$\beta = 83$$</p>
integer
jee-main-2022-online-25th-june-evening-shift
1l5vzfdaf
maths
binomial-theorem
general-term
<p>For two positive real numbers a and b such that $${1 \over {{a^2}}} + {1 \over {{b^3}}} = 4$$, then minimum value of the constant term in the expansion of $${\left( {a{x^{{1 \over 8}}} + b{x^{ - {1 \over {12}}}}} \right)^{10}}$$ is :</p>
[{"identifier": "A", "content": "$${{105} \\over 2}$$"}, {"identifier": "B", "content": "$${{105} \\over 4}$$"}, {"identifier": "C", "content": "$${{105} \\over 8}$$"}, {"identifier": "D", "content": "$${{105} \\over 16}$$"}]
["C"]
null
<p>Given, Binomial expansion,</p> <p>$${\left( {a{x^{{1 \over 8}}} + b{x^{ - {1 \over {12}}}}} \right)^{10}}$$</p> <p>General term,</p> <p>$${T_{r + 1}} = {}^{10}{C_r}\,.\,{\left( {a{x^{{1 \over 8}}}} \right)^{10 - r}}\,.\,{\left( {b{x^{ - {1 \over {12}}}}} \right)^r}$$</p> <p>$$ = {}^{10}{C_r}\,.\,{a^{10 - r}}\,.\,{b^r}\,.\,{x^{{{10 - r} \over 8}}}\,.\,{x^{ - {r \over {12}}}}$$</p> <p>$$ = {}^{10}{C_r}\,.\,{a^{10 - r}}\,.\,{b^r}\,.\,{x^{\left( {{{10 - r} \over 8} - {r \over {12}}} \right)}}$$</p> <p>$$ = {}^{10}{C_r}\,.\,{a^{10 - r}}\,.\,{b^r}\,.\,{x^{{{30 - 3r - 2r} \over {24}}}}$$</p> <p>$$ = {}^{10}{C_r}\,.\,{a^{10 - r}}\,.\,{b^r}\,.\,{x^{{{30 - 5r} \over {24}}}}$$</p> <p>For constant term,</p> <p>$${{30 - 5r} \over {24}} = 0$$</p> <p>$$ \Rightarrow r = 6$$</p> <p>$$\therefore$$ Constant term,</p> <p>$${T_{r + 1}} = {T_{6 + 1}} = {}^{10}{C_6}\,.\,{a^4}\,.\,{b^6}$$</p> <p>$$ = {{10!} \over {6!\,4!}}{a^4}\,.\,{b^6}$$</p> <p>$$ = {{10 \times 9 \times 8 \times 7} \over {4 \times 3 \times 2 \times 1}}\,.\,{a^4}\,.\,{b^6}$$</p> <p>$$ = 210{a^4}{b^6}$$</p> <p>We know, $$GM \ge HM$$</p> <p>For terms a<sup>2</sup> and b<sup>3</sup>,</p> <p>$$\sqrt {{a^2}{b^3}} \ge {2 \over {{1 \over {{a^2}}} + {1 \over {{b^3}}}}}$$</p> <p>$$ \Rightarrow \sqrt {{a^2}{b^3}} \ge {2 \over 4}$$</p> <p>$$ \Rightarrow {a^2}{b^3} \ge {1 \over 4}$$</p> <p>$$ \Rightarrow {({a^2}{b^3})^2} \ge {1 \over {16}}$$</p> <p>$$\therefore$$ $${a^4}{b^6} \ge {1 \over {16}}$$</p> <p>$$\therefore$$ Minimum value of $${a^4}{b^6} = {1 \over {16}}$$</p> <p>$$\therefore$$ Minimum value of constant term</p> <p>$${T_7} = 210 \times {a^4}{b^6}$$</p> <p>$$ = 210 \times {1 \over {16}}$$</p> <p>$$ = {{105} \over 8}$$</p>
mcq
jee-main-2022-online-30th-june-morning-shift
1l6dx5rjl
maths
binomial-theorem
general-term
<p>If the maximum value of the term independent of $$t$$ in the expansion of $$\left(\mathrm{t}^{2} x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{\mathrm{t}}\right)^{15}, x \geqslant 0$$, is $$\mathrm{K}$$, then $$8 \mathrm{~K}$$ is equal to ____________.</p>
[]
null
6006
<p>General term of $${\left( {{t^2}{x^{{1 \over 5}}} + {{{{(1 - x)}^{{1 \over {10}}}}} \over t}} \right)^{15}}$$ is</p> <p>$${T_{r + 1}} = {}^{15}{C_r}\,.\,{\left( {{t^2}{x^{{1 \over 5}}}} \right)^{15 - r}}\,.\,{\left( {{{{{(1 - x)}^{{1 \over {10}}}}} \over t}} \right)^r}$$</p> <p>$$ = {}^{15}{C_r}\,.\,{t^{30 - 2r}}\,.\,{x^{{{15 - r} \over 5}}}\,.\,{\left( {1 - x} \right)^{{r \over {10}}}}\,.\,{t^{ - r}}$$</p> <p>$$ = {}^{15}{C_r}\,.\,{t^{30 - 3r}}\,.\,{x^{{{15 - r} \over 5}}}\,.\,{\left( {1 - x} \right)^{{r \over {10}}}}$$</p> <p>Term will be independent of $$\mathrm{t}$$ when $$30 - 3r = 0 \Rightarrow r = 10$$</p> <p>$$\therefore$$ $${T_{10 + 1}} = {T_{11}}$$ will be independent of $$\mathrm{t}$$</p> <p>$$\therefore$$ $${T_{11}} = {}^{15}{C_{10}}\,.\,{x^{{{15 - 10} \over 5}}}\,.\,{\left( {1 - x} \right)^{{{10} \over {10}}}}$$</p> <p>$$ = {}^{15}{C_{10}}\,.\,{x^1}\,.\,{\left( {1 - x} \right)^1}$$</p> <p>$$\mathrm{T_{11}}$$ will be maximum when $$x(1 - x)$$ is maximum.</p> <p>Let $$f(x) = x(1 - x) = x - {x^2}$$</p> <p>$$f(x)$$ is maximum or minimum when $$f'(x) = 0$$</p> <p>$$\therefore$$ $$f'(x) = 1 - 2x$$</p> <p>For maximum/minimum $$f'(x) = 0$$</p> <p>$$\therefore$$ $$1 - 2x = 0$$</p> <p>$$ \Rightarrow x = {1 \over 2}$$</p> <p>Now, $$f''(x) = - 2 < 0$$</p> <p>$$\therefore$$ At $$ x = {1 \over 2}$$, $$f(x)$$ maximum</p> <p>$$\therefore$$ Maximum value of $$\mathrm{T_{11}}$$ is</p> <p>$$ = {}^{15}{C_{10}}\,.\,{1 \over 2}\left( {1 - {1 \over 2}} \right)$$</p> <p>$$ = {}^{15}{C_{10}}\,.\,{1 \over 4}$$</p> <p>Given $$K = {}^{15}{C_{10}}\,.\,{1 \over 4}$$</p> <p>Now, $$8K = 2\left( {{}^{15}{C_{10}}} \right)$$</p> <p>$$ = 6006$$</p>
integer
jee-main-2022-online-25th-july-morning-shift
1l6klfrzl
maths
binomial-theorem
general-term
<p>Let for the $$9^{\text {th }}$$ term in the binomial expansion of $$(3+6 x)^{\mathrm{n}}$$, in the increasing powers of $$6 x$$, to be the greatest for $$x=\frac{3}{2}$$, the least value of $$\mathrm{n}$$ is $$\mathrm{n}_{0}$$. If $$\mathrm{k}$$ is the ratio of the coefficient of $$x^{6}$$ to the coefficient of $$x^{3}$$, then $$\mathrm{k}+\mathrm{n}_{0}$$ is equal to :</p>
[]
null
24
<p>$${(3 + 6x)^n} = {3^n}{(1 + 2x)^n}$$</p> <p>If T<sub>9</sub> is numerically greatest term</p> <p>$$\therefore$$ $${T_8} \le {T_9} \le {T_{10}}$$</p> <p>$${}^n{C_7}{3^{n - 7}}{(6x)^7} \le {}^n{C_8}{3^{n - 8}}{(6x)^8} \ge {}^n{C_9}{3^{n - 9}}{(6x)^9}$$</p> <p>$$ \Rightarrow {{n!} \over {(n - 7)!7!}}9 \le {{n!} \over {(n - 8)!8!}}3\,.\,(6x) \ge {{n!} \over {(n - 9)!9!}}{(6x)^2}$$</p> <p>$$ \Rightarrow \underbrace {{9 \over {(n - 7)(n - 8)}}}_{} \le \underbrace {{{18\left( {{3 \over 2}} \right)} \over {(n - 8)8}} \ge {{36} \over {9.8}}{9 \over 4}}_{}$$</p> <p>$$72 \le 27(n - 7)$$ and $$27 \ge 9(n - 8)$$</p> <p>$${{29} \over 3} \le n$$and $$n \le 11$$</p> <p>$$\therefore$$ $${n_0} = 10$$</p> <p>For $${(3 + 6x)^{10}}$$</p> <p>$${T_{r + 1}} = {}^{10}{C_r}$$</p> <p>$${3^{10 - r}}{(6x)^r}$$</p> <p>For coeff. of x<sup>6</sup></p> <p>$$r = 6 \Rightarrow {}^{10}{C_6}{3^4}{.6^6}$$</p> <p>For coeff. of x<sup>3</sup></p> <p>$$r = 3 \Rightarrow {}^{10}{C_3}{3^7}{.6^3}$$</p> <p>$$\therefore$$ $$k = {{{}^{10}{C_6}} \over {{}^{10}{C_3}}}.{{{3^4}{{.6}^6}} \over {{3^7}{{.6}^3}}} = {{10!7!3!} \over {6!4!10!}}.8$$</p> <p>$$ \Rightarrow k = 14$$</p> <p>$$\therefore$$ $$k + {n_0} = 24$$</p>
integer
jee-main-2022-online-27th-july-evening-shift
1l6p3efud
maths
binomial-theorem
general-term
<p>Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of $$\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$$, in the increasing powers of $$\frac{1}{\sqrt[4]{3}}$$ be $$\sqrt[4]{6}: 1$$. If the sixth term from the beginning is $$\frac{\alpha}{\sqrt[4]{3}}$$, then $$\alpha$$ is equal to _________.</p>
[]
null
84
<p>Fifth term from beginning $$ = {}^n{C_4}{\left( {{2^{{1 \over 4}}}} \right)^{n - 4}}{\left( {{3^{{{ - 1} \over 4}}}} \right)^4}$$</p> <p>Fifth term from end $$ = {(n - 5 + 1)^{th}}$$ term from begin $$ = {}^n{C_{n - 4}}{\left( {{2^{{1 \over 4}}}} \right)^3}{\left( {{3^{{{ - 1} \over 4}}}} \right)^{n - 4}}$$</p> <p>Given $${{{}^n{C_4}{2^{{{n - 4} \over 4}}}\,.\,{3^{ - 1}}} \over {{}^n{C_{n - 3}}{2^{{4 \over 4}}}\,.\,{3^{ - \left( {{{n - 4} \over 4}} \right)}}}} = {6^{{1 \over 4}}}$$</p> <p>$$ \Rightarrow {6^{{{n - 8} \over 4}}} = {6^{{1 \over 4}}}$$</p> <p>$$ \Rightarrow {{n - 8} \over 4} = {1 \over 4} \Rightarrow n = 9$$</p> <p>$${T_6} = {T_{5 + 1}} = {}^9{C_5}{\left( {{2^{{1 \over 4}}}} \right)^4}{\left( {{3^{{{ - 1} \over 4}}}} \right)^5}$$</p> <p>$$ = {{{}^9{C_5}\,.\,2} \over {{3^{{1 \over 4}}}\,.\,3}} = {{84} \over {{3^{{1 \over 4}}}}} = {\alpha \over {{3^{{1 \over 4}}}}}$$</p> <p>$$ \Rightarrow \alpha = 84.$$</p>
integer
jee-main-2022-online-29th-july-morning-shift
1ldo784qa
maths
binomial-theorem
general-term
<p>Let the sixth term in the binomial expansion of $${\left( {\sqrt {{2^{{{\log }_2}\left( {10 - {3^x}} \right)}}} + \root 5 \of {{2^{(x - 2){{\log }_2}3}}} } \right)^m}$$ in the increasing powers of $$2^{(x-2) \log _{2} 3}$$, be 21 . If the binomial coefficients of the second, third and fourth terms in the expansion are respectively the first, third and fifth terms of an A.P., then the sum of the squares of all possible values of $$x$$ is __________.</p>
[]
null
4
${ }^m C_1,{ }^m C_2,{ }^m C_3$ are first, third and fifth term of $A P$ <br/><br/>$$ \begin{aligned} \therefore \quad & a={ }^m C_1 \\\\ & a+2 d={ }^m C_2 \\\\ & a+4 d={ }^m C_3 \\\\ \therefore \quad & 2{ }^m C_2-{ }^m C_3=m \\\\ \Rightarrow & m=7 \text { or } m=2 \\\\ \because & m=2 \text { is not possible } \\\\ \therefore & m=7 \end{aligned} $$ <br/><br/>$\mathrm{T}_6={ }^{\mathrm{m}} \mathrm{C}_5\left(10-3^{\mathrm{x}}\right)^{\frac{\mathrm{m}-5}{2}} \cdot\left(3^{\mathrm{x}-2}\right)=21$ <br/><br/>Putting value of m = 7, we get <br/><br/>$\begin{aligned} & T_{5+1}={ }^7 C_5\left(10-3^x\right)^{\frac{7-5}{2}} 3^{x-2}=21 \\\\ & \Rightarrow \frac{10.3^x-\left(3^x\right)^2}{3^2}=1\end{aligned}$ <br/><br/>$$ \begin{aligned} & \Rightarrow \left(3^x\right)^2-10 \cdot 3^x+9=0 \\\\ & \Rightarrow 3^x=9,1 \\\\ & \Rightarrow x=0,2 \end{aligned} $$ <br/><br/>Sum of squares of values of x = 0<sup>2</sup> + 2<sup>2</sup> = 4
integer
jee-main-2023-online-1st-february-evening-shift
1ldo7goz9
maths
binomial-theorem
general-term
<p>If the term without $$x$$ in the expansion of $$\left(x^{\frac{2}{3}}+\frac{\alpha}{x^{3}}\right)^{22}$$ is 7315 , then $$|\alpha|$$ is equal to ___________.</p>
[]
null
1
Given expansion $\left(x^{\frac{2}{3}}+\frac{\alpha}{x^3}\right)^{22}$ <br/><br/>$$ T_{r+1}={ }^{22} C_r\left(x^{\frac{2}{3}}\right)^{22-r}\left(\frac{\alpha}{x^3}\right)^r $$ <br/><br/>For constant term <br/><br/>$$ \begin{aligned} & \frac{44-2 r}{3}-3 r=0 \\\\ & \Rightarrow r=4 \end{aligned} $$ <br/><br/>Now ${ }^{22} \mathrm{C}_4 \alpha^4=7315$ <br/><br/>$$ \begin{aligned} & \frac{22 \times 21 \times 20 \times 19}{4 \times 3 \times 2 \times 1} \alpha^4=7315 \\\\ & \therefore \alpha^4=1 \\\\ & \therefore |\alpha|=1 \end{aligned} $$
integer
jee-main-2023-online-1st-february-evening-shift
ldoaj02i
maths
binomial-theorem
general-term
The coefficient of $x^{-6}$, in the <br/><br/>expansion of $\left(\frac{4 x}{5}+\frac{5}{2 x^{2}}\right)^{9}$, is
[]
null
5040
Coeff of $x^{-6}$ in $\left(\frac{4 x}{5}+\frac{5}{2 x^{2}}\right)^{9}$ <br/><br/>$$ \begin{aligned} T_{r+1} & ={ }^{9} C_{r}\left(\frac{4 x}{5}\right)^{9-r}\left(\frac{5}{2 x^{2}}\right)^{r} \\\\ 9-3 r & =-6 \\\\ r & =5 \end{aligned} $$ <br/><br/>Coeff of $x^{-6}={ }^{9} C_{5}\left(\frac{4}{5}\right)^{4}\left(\frac{5}{2}\right)^{5}$ $$ =5040 $$
integer
jee-main-2023-online-31st-january-evening-shift
ldoavd66
maths
binomial-theorem
general-term
If the constant term in the binomial expansion of $\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^{l}}\right)^{9}$ is $-84$ and the coefficient of $x^{-3 l}$ is $2^{\alpha} \beta$, where $\beta&lt;0$ is an odd number, then $|\alpha l-\beta|$ is equal to ________.
[]
null
98
Given binomial expansion of $\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^{l}}\right)^{9}$ <br/><br/>$$ \begin{aligned} T_{r+1} & ={ }^{9} C_{r}\left(\frac{x^{\frac{5}{2}}}{2}\right)^{9-r}\left(\frac{-4}{x^{l}}\right)^{r} \\ & ={ }^{9} C_{r} x^{\frac{45-5 r}{2}-lr} \cdot 2^{r-9} \cdot 4^{r} \cdot(-1)^{r} \end{aligned} $$ <br/><br/>For constant term, power of x is zero. <br/><br/>So, $\frac{45-5 r}{2}=l r \Rightarrow 2 l r+5 r=45$ <br/><br/>Now constant term $=-84$ <br/><br/>and ${ }^{9} C_{r} \cdot 2^{3 r-9}(-1)^{r}=-84$ <br/><br/>So, $r=3$ and $l=5$ <br/><br/>Now for $x^{-15}, \frac{45-5 r}{2}-5 r=-15$ <br/><br/>$$ \Rightarrow $$ $$ 45-15 r=-30 $$ <br/><br/>$$ \Rightarrow $$ $$ r=5 $$ <br/><br/>$\therefore $ Coefficient $=-{ }^{9} C_{5} 2^{6}=-63.2^{7}$ <br/><br/>$\therefore \alpha=7, \beta=-63$ <br/><br/>and $|\alpha l-\beta|=|7 \times 5+63|=98$
integer
jee-main-2023-online-31st-january-evening-shift
1ldptjmpy
maths
binomial-theorem
general-term
<p>Let $$\alpha&gt;0$$, be the smallest number such that the expansion of $$\left(x^{\frac{2}{3}}+\frac{2}{x^{3}}\right)^{30}$$ has a term $$\beta x^{-\alpha}, \beta \in \mathbb{N}$$. Then $$\alpha$$ is equal to ___________.</p>
[]
null
2
$\mathrm{T}_{\mathrm{r}+1}={ }^{30} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{2 / 3}\right)^{30-\mathrm{r}}\left(\frac{2}{\mathrm{x}^{3}}\right)^{\mathrm{r}}$ <br/><br/>$={ }^{30} \mathrm{C}_{\mathrm{r}} \cdot 2^{\mathrm{r}} \cdot \mathrm{x}^{\frac{60-11 \mathrm{r}}{3}}$ <br/><br/>$\frac{60-11 \mathrm{r}}{3}<0 $ <br/><br/>$\Rightarrow 11 \mathrm{r}>60 $ <br/><br/>$\Rightarrow \mathrm{r}>\frac{60}{11} $ <br/><br/>$\Rightarrow \mathrm{r}=6$ <br/><br/>$\mathrm{T}_{7}={ }^{30} \mathrm{C}_{6} \cdot 2^{6} \mathrm{x}^{-2}$ <br/><br/>We have also observed $\beta={ }^{30} \mathrm{C}_{6}(2)^{6}$ is a natural number. <br/><br/>$\therefore \alpha=2$
integer
jee-main-2023-online-31st-january-morning-shift
1ldr72ghg
maths
binomial-theorem
general-term
<p>If the coefficient of $$x^{15}$$ in the expansion of $$\left(\mathrm{a} x^{3}+\frac{1}{\mathrm{~b} x^{1 / 3}}\right)^{15}$$ is equal to the coefficient of $$x^{-15}$$ in the expansion of $$\left(a x^{1 / 3}-\frac{1}{b x^{3}}\right)^{15}$$, where $$a$$ and $$b$$ are positive real numbers, then for each such ordered pair $$(\mathrm{a}, \mathrm{b})$$ :</p>
[{"identifier": "A", "content": "a = 3b"}, {"identifier": "B", "content": "ab = 1"}, {"identifier": "C", "content": "ab = 3"}, {"identifier": "D", "content": "a = b"}]
["B"]
null
<p>For $$\left( {a{x^3} + {1 \over {b{x^{{1 \over 3}}}}}} \right)$$</p> <p>$${T_{r + 1}} = {}^{15}{C_r}{(a{x^3})^{15 - r}}{\left( {{1 \over {b{x^{{1 \over 3}}}}}} \right)^1}$$</p> <p>$$\therefore$$ $${x^{15}} \to 3(15 - r) - {r \over 3} = 15$$</p> <p>$$ \Rightarrow 30 = {{10r} \over 3} \Rightarrow r = 9$$</p> <p>Similarly, for $${\left( {a{x^{{1 \over 3}}} - {1 \over {b{x^3}}}} \right)^{15}}$$</p> <p>$${T_{r + 1}} = {}^{15}{C_r}{\left( {a{x^{{1 \over 3}}}} \right)^{15 - r}}{\left( { - {1 \over {b{x^3}}}} \right)^2}$$</p> <p>$$\therefore$$ For $${x^{ - 15}} \to {{15 - r} \over 3} - 3r = - 15 \Rightarrow r = 6$$</p> <p>$$\therefore$$ $${}^{15}{C_9}{{{a^6}} \over {{b^9}}} = {}^{15}{C_6}{{{a^9}} \over {{b^6}}} \Rightarrow ab = 1$$</p>
mcq
jee-main-2023-online-30th-january-morning-shift
1ldswq8el
maths
binomial-theorem
general-term
<p>Let the coefficients of three consecutive terms in the binomial expansion of $$(1+2x)^n$$ be in the ratio 2 : 5 : 8. Then the coefficient of the term, which is in the middle of those three terms, is __________.</p>
[]
null
1120
$\mathrm{t}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}(2 \mathrm{x})^{\mathrm{r}}$ <br/><br/> $$ \begin{aligned} & \Rightarrow \frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}(2)^{\mathrm{r}-1}}{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}(2)^{\mathrm{r}}}=\frac{2}{5} \\\\ & \Rightarrow \frac{\frac{n !}{(r-1) !(n-r+1) !}}{\frac{n !(2)}{r !(n-r) !}}=\frac{2}{5} \\\\ & \Rightarrow \frac{\mathrm{r}}{\mathrm{n}-\mathrm{r}+1}=\frac{4}{5} \Rightarrow 5 \mathrm{r}=4 \mathrm{n}-4 \mathrm{r}+4 \\\\ & \Rightarrow 9 \mathrm{r}=4(\mathrm{n}+1) \quad\quad...(1)\\\\ & \Rightarrow \frac{{ }^{n} C_{r}(2)^{\mathrm{r}}}{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}(2)^{\mathrm{r}+1}}=\frac{5}{8} \\\\ & \Rightarrow \frac{\frac{n !}{r !(n-r) !}}{\frac{n !}{(r+1) !(n-r-1) !}}=\frac{5}{4} \Rightarrow \frac{r+1}{n-r}=\frac{5}{4} \\\\ & \Rightarrow 4 \mathrm{r}+4=5 \mathrm{n}-5 \mathrm{r} \Rightarrow 5 \mathrm{n}-4=9 \mathrm{r} \quad\quad...(2) \end{aligned} $$ <br/><br/> From (1) and (2) <br/><br/> $$ \Rightarrow 4 \mathrm{n}+4=5 \mathrm{n}-4 \Rightarrow \mathrm{n}=8 $$ <br/><br/> $(1) \Rightarrow r=4$ <br/><br/> so, coefficient of middle term is <br/><br/> $$ { }^{8} \mathrm{C}_{4} 2^{4}=16 \times \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}=16 \times 70=1120 $$
integer
jee-main-2023-online-29th-january-morning-shift
1ldswsczz
maths
binomial-theorem
general-term
<p>If the co-efficient of $$x^9$$ in $${\left( {\alpha {x^3} + {1 \over {\beta x}}} \right)^{11}}$$ and the co-efficient of $$x^{-9}$$ in $${\left( {\alpha x - {1 \over {\beta {x^3}}}} \right)^{11}}$$ are equal, then $$(\alpha\beta)^2$$ is equal to ___________.</p>
[]
null
1
Coefficient of $\mathrm{x}^{9}$ in $\left(\alpha x^{3}+\frac{1}{\beta x}\right)={ }^{11} C_{6} \cdot \frac{\alpha^{5}}{\beta^{6}}$ <br/><br/> $\because$ Both are equal <br/><br/> $\therefore \frac{11}{C_{6}} \cdot \frac{\alpha^{5}}{\beta^{6}}=-\frac{11}{C_{5}} \cdot \frac{\alpha^{6}}{\beta^{5}}$ <br/><br/> $\Rightarrow \frac{1}{\beta}=-\alpha$ <br/><br/> $\Rightarrow \alpha \beta=-1$ <br/><br/> $\Rightarrow(\alpha \beta)^{2}=1$
integer
jee-main-2023-online-29th-january-morning-shift
1ldv2styk
maths
binomial-theorem
general-term
<p>The constant term in the expansion of $${\left( {2x + {1 \over {{x^7}}} + 3{x^2}} \right)^5}$$ is ___________.</p>
[]
null
1080
Constant term in the expansion of <br/><br/> $$ \begin{aligned} & \left(2 x+\frac{1}{x^{7}}+3 x^{2}\right)^{5} \\\\ & \frac{1}{x^{35}}\left(2 x^{8}+1+3 x^{9}\right)^{5} \\\\ & \frac{1}{x^{35}}\left(1+x^{8}(3 x+2)\right)^{5} \end{aligned} $$ <br/><br/> Term independent of $x=$ coefficient of $x^{35}$ in <br/><br/> $$ \begin{aligned} & ^{5} C_{4}\left(x^{8}(3 x+2)\right)^{4} \\\\ = & { }^{5} C_{4} \text { coefficient of } x^{3} \text { in }(2+3 x)^{4} \\\\ = & { }^{5} C_{4} \times{ }^{4} C_{3}(2)^{1}(3)^{3} \\\\ = & 5 \times 4 \times 2 \times 27 \\\\ = & 1080 \end{aligned} $$
integer
jee-main-2023-online-25th-january-morning-shift
1ldwxmgwd
maths
binomial-theorem
general-term
<p>Let the sum of the coefficients of the first three terms in the expansion of $${\left( {x - {3 \over {{x^2}}}} \right)^n},x \ne 0.~n \in \mathbb{N}$$, be 376. Then the coefficient of $$x^4$$ is __________.</p>
[]
null
405
$S=1-3 n+\frac{9 n(n-1)}{2}=376$ <br/><br/> $$ \begin{aligned} & 3 n^{2}-5 n-250=0 \\\\ & n=10, \frac{-25}{3} \text { (Rejected) } \\\\ & T_{r+1}={ }^{n} C_{r} \cdot x^{n-r}\left(\frac{-3}{x^{2}}\right)^{r} \\\\ & ={ }^{n} C_{r} x x^{n-3 r}(-3)^{r} \\\\ & ={ }^{10} C_{r} x^{10-3 r}(-3)^{r} \end{aligned} $$ <br/><br/> Here $r=2$ <br/><br/> $$ \begin{aligned} \text {Required coefficient } & ={ }^{10} \mathrm{C}_{2}(-3)^{2} \\\\ & =45 \times 9 \\\\ & =405 \end{aligned} $$
integer
jee-main-2023-online-24th-january-evening-shift
1lgowbuor
maths
binomial-theorem
general-term
<p>The coefficient of $$x^{5}$$ in the expansion of $$\left(2 x^{3}-\frac{1}{3 x^{2}}\right)^{5}$$ is :</p>
[{"identifier": "A", "content": "$$\\frac{26}{3}$$"}, {"identifier": "B", "content": "$$\\frac{80}{9}$$"}, {"identifier": "C", "content": "9"}, {"identifier": "D", "content": "8"}]
["B"]
null
Given, $$\left(2 x^{3}-\frac{1}{3 x^{2}}\right)^{5}$$ <br/><br/>General term, <br/><br/>$$ \begin{aligned} & T_{r+1}={ }^5 C_r\left(2 x^3\right)^{5-r}\left(\frac{-1}{3 x^2}\right)^r={ }^5 C_r \frac{(2)^{5-r}}{(-3)^r}(x)^{15-5 r} \\\\ & \therefore 15-5 \mathrm{r}=5 \\\\ & \therefore \mathrm{r}=2 \\\\ & T_3=10\left(\frac{8}{9}\right) x^5 \end{aligned} $$ <br/><br/>So, coefficient is $\frac{80}{9}$.
mcq
jee-main-2023-online-13th-april-evening-shift
1lgq11k4d
maths
binomial-theorem
general-term
<p>Let $$\alpha$$ be the constant term in the binomial expansion of $$\left(\sqrt{x}-\frac{6}{x^{\frac{3}{2}}}\right)^{n}, n \leq 15$$. If the sum of the coefficients of the remaining terms in the expansion is 649 and the coefficient of $$x^{-n}$$ is $$\lambda \alpha$$, then $$\lambda$$ is equal to _____________.</p>
[]
null
36
Given expression $(\sqrt{x}-\frac{6}{x^{3/2}})^n$. Here, $a = \sqrt{x}$ and $b = -\frac{6}{x^{3/2}}$. <br/><br/>The $r$-th term of the binomial expansion of $(a+b)^n$ is given by <br/><br/>$T_{r} = {}^n{C_r}a^{n-r}b^{r}$. <br/><br/>Substitute $a$ and $b$ in this formula, we get: <br/><br/>$T_{r} = {}^n{C_r}(\sqrt{x})^{n-r}\left(-\frac{6}{x^{3/2}}\right)^r = {}^n{C_r}(-6)^r x^{\frac{n-4r}{2}}$. <br/><br/>The constant term in the binomial expansion is obtained when the power of $x$ in the terms equals zero. <br/><br/>This happens when $\frac{n-4r}{2} = 0$, which gives $n = 4r$. <br/><br/>$$ \begin{aligned} & { }^n C_{\frac{n}{4}}(-6)^{\frac{n}{4}}=\alpha \\\\ & (-5)^n-{ }^n C_{\frac{n}{4}}(-6)^{n / 4}=649 \\\\ & \text { By observation (625 + 24 = 649) , we get n = 4 } \\\\ & \therefore \alpha=-24 \end{aligned} $$ <br/><br/>Now, for coefficient of $x^{-4}$ <br/><br/>$$ \begin{aligned} & \frac{n-4 r}{2}=-4 \\\\ & n=4 r-8 \Rightarrow r=3 \\\\ & \lambda(-24)=(-6)^3 \cdot{ }^4 C_3 \\\\ & \Rightarrow \lambda=36 \end{aligned} $$
integer
jee-main-2023-online-13th-april-morning-shift
1lgsubacw
maths
binomial-theorem
general-term
<p>The sum of the coefficients of three consecutive terms in the binomial expansion of $$(1+\mathrm{x})^{\mathrm{n}+2}$$, which are in the ratio $$1: 3: 5$$, is equal to :</p>
[{"identifier": "A", "content": "63"}, {"identifier": "B", "content": "92"}, {"identifier": "C", "content": "25"}, {"identifier": "D", "content": "41"}]
["A"]
null
The problem asks for the sum of the coefficients of three consecutive terms in the binomial expansion of $(1+x)^{n+2}$, which are in the ratio 1 : 3 : 5. <br/><br/>Given that the ratios of the coefficients are 1:3:5, we let the terms be $T_r$, $T_{r+1}$, and $T_{r+2}$. The coefficients of these terms are ${ }^{n+2} C_{r-1}$, ${ }^{n+2} C_{r}$, and ${ }^{n+2} C_{r+1}$, respectively. <br/><br/> $$ \begin{aligned} & \frac{T_{r+1}}{T_r}=\frac{{ }^{n+2} C_r}{{ }^{n+2} C_{r-1}}=\frac{n+2-r+1}{r}=\frac{n+3-r}{r}=3 \\\\ & n-4 r+3=0 ......(1) \\\\ & \frac{T_{r+2}}{T_{r+1}}=\frac{{ }^{n+2} C_{r+1}}{{ }^{n+2} C_r}=\frac{(n+2)-(r+1)+1}{r+1}=\frac{n-r+2}{r+1}=\frac{5}{3} \\\\ & 3 n-8 r+1=0 ......(2) \end{aligned} $$ <br/><br/>By solving (1) and (2), we get <br/><br/>$\Rightarrow n=5, r=2$ <br/><br/>$$ \begin{aligned} T_r+T_{r+1}+T_{r+2} & ={ }^7 C_1+{ }^7 C_2+{ }^7 C_3 \\\\ & =7+21+35=63 \end{aligned} $$
mcq
jee-main-2023-online-11th-april-evening-shift
1lgsvbm4o
maths
binomial-theorem
general-term
<p>If the $$1011^{\text {th }}$$ term from the end in the binominal expansion of $$\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{2022}$$ is 1024 times $$1011^{\text {th }}$$R term from the beginning, then $$|x|$$ is equal to</p>
[{"identifier": "A", "content": "$$\n\\frac{5}{16}\n$$"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "12"}, {"identifier": "D", "content": "15"}]
["A"]
null
$\mathrm{T}_{1011}$ from beginning $=\mathrm{T}_{1010+1}$ <br/><br/>$$ ={ }^{2022} \mathrm{C}_{1010}\left(\frac{4 \mathrm{x}}{5}\right)^{1012}\left(\frac{-5}{2 \mathrm{x}}\right)^{1010} $$ <br/><br/>$\mathrm{T}_{1011}$ from end <br/><br/>$$ ={ }^{2022} \mathrm{C}_{1010}\left(\frac{-5}{2 \mathrm{x}}\right)^{1012}\left(\frac{4 \mathrm{x}}{5}\right)^{1010} $$ <br/><br/>$$ \begin{aligned} & \text { Given : }{ }^{2022} \mathrm{C}_{1010}\left(\frac{-5}{2 \mathrm{x}}\right)^{1012}\left(\frac{4 \mathrm{x}}{5}\right)^{1010} \\\\ & =2^{10} \cdot{ }^{2022} \mathrm{C}_{1010}\left(\frac{-5}{2 \mathrm{x}}\right)^{1010}\left(\frac{4 \mathrm{x}}{5}\right)^{1012} \end{aligned} $$ <br/><br/>$$ \begin{aligned} &\Rightarrow \left(\frac{-5}{2 x}\right)^2=2^{10}\left(\frac{4 x}{5}\right)^2 \\\\ &\Rightarrow x^4=\frac{5^4}{2^{16}} \\\\ & \Rightarrow |x|=\frac{5}{16} \end{aligned} $$
mcq
jee-main-2023-online-11th-april-evening-shift
1lguwxkf8
maths
binomial-theorem
general-term
<p>The mean of the coefficients of $$x, x^{2}, \ldots, x^{7}$$ in the binomial expansion of $$(2+x)^{9}$$ is ___________.</p>
[]
null
2736
We have, binomial coefficient, $(2+x)^9$ <br/><br/>$$ T_{r+1}={ }^n C_r 2^{n-r} \times x^r $$ <br/><br/>Coefficient of $x\left(T_1\right)={ }^9 C_1 \times 2^8$ <br/><br/>Coefficient of $x^2\left(T_2\right)={ }^9 C_2 \times 2^7$ <br/><br/>Coefficient of $x^3\left(T_3\right)={ }^9 C_3 \times 2^6$ <br/>              .                    . <br/>              .                    . <br/>              .                    . <br/><br/>Coefficient of $x^7\left(T_7\right)={ }^9 C_7 \times 2^2$ <br/><br/>$$ \text { Mean }=\frac{{ }^9 C_1 \times 2^8+{ }^9 C_2 \times 2^7+{ }^9 C_3 \times 2^6+\ldots+{ }^9 C_7 \times 2^2}{7} $$ <br/><br/>$$ \begin{aligned} & { }^9 C_0 \times 2^9+{ }^9 C_1 \times 2^8+{ }^9 C_2 \times 2^7+{ }^9 C_3 \times 2^6+\ldots .+{ }^9 C_7 \times 2^2 \\ & =\frac{+{ }^9 C_8 \times 2^1+{ }^9 C_9 \times 2^0-{ }^9 C_0 \times 2^9-{ }^9 C_8 \times 2^1-{ }^9 C_9 \times 2^0}{7} \end{aligned} $$ <br/><br/>$$ =\frac{(1+2)^9-2^9-18-1}{7}=\frac{19152}{7}=2736 $$
integer
jee-main-2023-online-11th-april-morning-shift
1lguwzu1x
maths
binomial-theorem
general-term
<p>The number of integral terms in the expansion of $$\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680}$$ is equal to ___________.</p>
[]
null
171
$$ \begin{aligned} & \text { General term of the expansion }\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680} \\\\ & \qquad={ }^{680} C_r\left(3^{1 / 2}\right)^{680-r}\left(5^{1 / 4}\right)^r={ }^{680} C_r \times 3^{\frac{680-r}{2}} \times 5^{\frac{r}{4}} \end{aligned} $$ <br/><br/>The term will be integral if $r$ is a multiple of 4 . <br/><br/>$$ \begin{gathered} \therefore r=0,4,8,12, \ldots, 680(\text { which is an } \mathrm{AP}) \\\\ 680=0+(n-1) 4 \\\\ n=\frac{680}{4}+1=171 \end{gathered} $$
integer
jee-main-2023-online-11th-april-morning-shift
1lgvpl71w
maths
binomial-theorem
general-term
<p>If the coefficients of $$x$$ and $$x^{2}$$ in $$(1+x)^{\mathrm{p}}(1-x)^{\mathrm{q}}$$ are 4 and $$-$$5 respectively, then $$2 p+3 q$$ is equal to :</p>
[{"identifier": "A", "content": "66"}, {"identifier": "B", "content": "60"}, {"identifier": "C", "content": "69"}, {"identifier": "D", "content": "63"}]
["D"]
null
We have, coefficient of $x$ in $(1+x)^p(1-x)^q=4$ and <br/><br/>coefficient of $x^2$ in $(1+x)^p(1-x)^q=-5$ <br/><br/>$$ \begin{aligned} & (1+x)^p(1-x)^q \\\\ & =\left(1+p x+\frac{p(p-1)}{2} x^2+\ldots\right)\left(1-q x+\frac{q(q-1)}{2} x^2+\ldots\right) \\\\ & =1+(p-q) x+\left(\frac{p(p-1)}{2}+\frac{q(q-1)}{2}-p q\right) x^2+\ldots \ldots \end{aligned} $$ <br/><br/>Coefficient of $x$ in $(1+x)^p(1-x)^q=-q+p$ <br/><br/>$\Rightarrow p-q=4$ ...........(i) <br/><br/>$$ \text { Coefficient of } x^2 \text { in }(1+x)^p(1-x)^q=\frac{q(q-1)}{2}-p q+\frac{p(p-1)}{2} $$ <br/><br/>$$ \begin{aligned} & \Rightarrow \frac{q^2-q-2 p q+p^2-p}{2} =-5 \\\\ & \Rightarrow \frac{p^2+q^2-2 p q-(p+q)}{2} =-5 \\\\ & \Rightarrow (p-q)^2-(p+q) =-10 \\\\ & \Rightarrow (4)^2-(p+q) =-10 \quad[\because \text { From Eq. (i) }] \\\\ & \Rightarrow p+q =26 ...........(ii) \end{aligned} $$ <br/><br/>Form Eqs. (i) and (ii), we get $p=15, q=11$ <br/><br/>$\therefore 2 p+3 q=2 \times 15+3 \times 11=30+33=63$
mcq
jee-main-2023-online-10th-april-evening-shift
1lgxt15ef
maths
binomial-theorem
general-term
<p>If the coefficient of $${x^7}$$ in $${\left( {ax - {1 \over {b{x^2}}}} \right)^{13}}$$ and the coefficient of $${x^{ - 5}}$$ in $${\left( {ax + {1 \over {b{x^2}}}} \right)^{13}}$$ are equal, then $${a^4}{b^4}$$ is equal to :</p>
[{"identifier": "A", "content": "22"}, {"identifier": "B", "content": "33"}, {"identifier": "C", "content": "44"}, {"identifier": "D", "content": "11"}]
["A"]
null
The given expression is $\left(a x-\frac{1}{b x^2}\right)^{13}$ <br/><br/>So, <br/><br/>$$ \begin{aligned} T_{r+1} & ={ }^{13} C_r(a x)^{13-r}\left(-\frac{1}{b x^2}\right)^r \\\\ & ={ }^{13} C_r(a)^{13-r} x^{13-r-2 r}(-1 / b)^r \\\\ & ={ }^{13} C_r(a)^{13-r}\left(-\frac{1}{b}\right)^r x^{13-3 r} \end{aligned} $$ <br/><br/>For coefficient of $x^7$ in $\left(a x-\frac{1}{b x^2}\right)^{13}$ <br/><br/>$$ \begin{aligned} & \quad 13-3 r=7 \\\\ & \Rightarrow 3 r=6 \Rightarrow r=2 \\\\ & \therefore \text { Coefficient of } x^7={ }^{13} C_2 \cdot(a)^{11} \cdot \frac{1}{b^2} \end{aligned} $$ <br/><br/>Again, the another expression is $\left(a x+\frac{1}{b x^2}\right)^{13}$ <br/><br/>So, $T_{n+1}={ }^{13} C_r(a x)^{13-r}\left(\frac{1}{b x^2}\right)^r={ }^{13} C_r(a)^{13-r}\left(\frac{1}{b}\right)^r x^{13-3 r}$ <br/><br/>For coefficient $x^{-5}$ in $\left(a x+\frac{1}{b x^2}\right)^{13}$ <br/><br/>$$ \begin{aligned} &13-3 r =-5 \\\\ &\Rightarrow r =6 \end{aligned} $$ <br/><br/>So, coefficient of $x^{-5}={ }^{13} C_6(a)^7 \frac{1}{b^6}$ <br/><br/>Now, according to the question, <br/><br/>${ }^{13} C_2(a)^{11} \frac{1}{b^2}={ }^{13} C_6(a)^7 \frac{1}{b^6}$ <br/><br/>$$ \begin{aligned} & \Rightarrow a^4 b^4=\frac{{ }^{13} C_6}{{ }^{13} C_2} \\\\ & \therefore a^4 b^4=22 \end{aligned} $$
mcq
jee-main-2023-online-10th-april-morning-shift
1lgyliytd
maths
binomial-theorem
general-term
<p>The absolute difference of the coefficients of $$x^{10}$$ and $$x^{7}$$ in the expansion of $$\left(2 x^{2}+\frac{1}{2 x}\right)^{11}$$ is equal to :</p>
[{"identifier": "A", "content": "$$11^{3}-11$$"}, {"identifier": "B", "content": "$$13^{3}-13$$"}, {"identifier": "C", "content": "$$12^{3}-12$$"}, {"identifier": "D", "content": "$$10^{3}-10$$"}]
["C"]
null
General term of $\left(2 x^2+\frac{1}{2 x}\right)^{11}$ is : <br/><br/>$$ \begin{aligned} & \mathrm{T}_{\mathrm{r}+1}={ }^{11} \mathrm{C}_r\left(2 x^2\right){ }^{11-r}\left(\frac{1}{2 x}\right)^r \\\\ & ={ }^{11} \mathrm{C}_r 2^{11-r} x^{22-2 r} 2^{-r} x^{-r} \\\\ & ={ }^{11} \mathrm{C}_r 2^{11-r} x^{22-3 r} \end{aligned} $$ <br/><br/>Now, $22-2 r=10$ and $22-3 r=7$ <br/><br/>$$ \begin{array}{ll} \Rightarrow 3 r=12 &&& \Rightarrow 3 r=15 \\\\ \Rightarrow r=4 &&& \Rightarrow r=5 \end{array} $$ <br/><br/>$\therefore$ Coeff. of $x^{10}={ }^{11} \mathrm{C}_4 \cdot 2^{11-8}={ }^{11} \mathrm{C}_4 \times 8$ <br/><br/>Coeff. of $x^7={ }^{11} C_5 \cdot 2^{11-10}={ }^{11} C_4 \times 2$ <br/><br/>Now, required difference <br/><br/>$$ \begin{aligned} & ={ }^{11} \mathrm{C}_4 \times 8-{ }^{11} \mathrm{C}_5 \times 2 \\\\ & =\frac{11 \times 10 \times 9 \times 8 \times 7 !}{4 ! \times 7 !} \times 8-\frac{11 \times 10 \times 9 \times 8 \times 7 \times 6 ! \times 2}{5 ! 6 !} \end{aligned} $$ <br/><br/>$$ \begin{aligned} & =\frac{11 \times 10 \times 9 \times 8 \times 8}{24}-\frac{11 \times 10 \times 9 \times 8 \times 7 \times 2}{120} \\\\ & =11 \times 10 \times 8 \times 3-11 \times 3 \times 4 \times 7 \\\\ & =11 \times 3 \times 4[20-7] \\\\ & =11 \times 12 \times 13=(12-1) \times 12 \times(12+1) \\\\ & =12\left(12^2-1\right)=12^3-12 \end{aligned} $$
mcq
jee-main-2023-online-8th-april-evening-shift
1lh00ko4t
maths
binomial-theorem
general-term
<p>Let $$[t]$$ denote the greatest integer $$\leq t$$. If the constant term in the expansion of $$\left(3 x^{2}-\frac{1}{2 x^{5}}\right)^{7}$$ is $$\alpha$$, then $$[\alpha]$$ is equal to ___________.</p>
[]
null
1275
Let $\mathrm{T}_{r+1}$ be the constant term. <br/><br/>$$ \mathrm{T}_{r+1}={ }^7 \mathrm{C}_r\left(3 x^2\right)^{7-r}\left(\frac{-1}{2 x^5}\right)^r $$ <br/><br/>For constant term, power of $x$ should be zero. <br/><br/>$$ \begin{aligned} & \text { i.e., } 14-2 r-5 r=0 \\\\ & \Rightarrow 14=7 r \Rightarrow r=2 \end{aligned} $$ <br/><br/>Now, constant term $=\alpha$ <br/><br/>$$ \begin{aligned} & \Rightarrow{ }^7 C_2(3)^5\left(\frac{-1}{2}\right)^2=\alpha \\\\ & \Rightarrow 21 \times 243 \times \frac{1}{4}=\alpha \\\\ & \Rightarrow[\alpha]=[1275.75]=1275 \end{aligned} $$
integer
jee-main-2023-online-8th-april-morning-shift
1lh23fm6b
maths
binomial-theorem
general-term
<p>If the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $$\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$$ is $$\sqrt{6}: 1$$, then the third term from the beginning is :</p>
[{"identifier": "A", "content": "$$30 \\sqrt{2}$$"}, {"identifier": "B", "content": "$$60 \\sqrt{3}$$"}, {"identifier": "C", "content": "$$60 \\sqrt{2}$$"}, {"identifier": "D", "content": "$$30 \\sqrt{3}$$"}]
["B"]
null
$$ \mathrm{T}_{r+1}={ }^n \mathrm{C}_r x^{n-r} a^r $$ <br/><br/>$$ \frac{T_5}{T_5^{\prime}}=\frac{{ }^n C_4 \times\left((2)^{\frac{1}{4}}\right)^{n-4}\left(\frac{1}{3^{1 / 4}}\right)^4}{{ }^n C_4\left(\frac{1}{3^{1 / 4}}\right)^{n-4}\left(2^{1 / 4}\right)^4}=\sqrt{6} $$ <br/><br/>$\left[\because r\right.$th term from end in the expansion of $(x+y)^n=r$th term from beginning in the expansion of $\left.(y+x)^n\right]$ <br/><br/>$$ \Rightarrow \frac{{ }^n C_4(2)^{\frac{n-4}{4}}\left(\frac{1}{3}\right)^{4 / 4}}{{ }^n C_4\left(\frac{1}{3}\right)^{\frac{n-4}{4}}(2)^{4 / 4}}=\frac{\sqrt{6}}{1} $$ <br/><br/>$$ \begin{aligned} &\Rightarrow (2)^{\frac{n-8}{4}}(3)^{\frac{n-8}{4}} =6^{1 / 2} \\\\ &\Rightarrow 6^{\frac{n-8}{4}} =6^{1 / 2} \\\\ &\Rightarrow \frac{n-8}{4} =\frac{1}{2} \\\\ &\Rightarrow n-8=2 \Rightarrow n =10 \end{aligned} $$ <br/><br/>$$ \therefore T_3={ }^{10} C_2(\sqrt[4]{2})^8\left(\frac{1}{\sqrt[4]{3}}\right)^2=45(2)^{\frac{8}{4}} \frac{1}{3^{1 / 2}} $$ <br/><br/>$$ =45(4) \times \frac{\sqrt{3}}{3}=60 \sqrt{3} $$
mcq
jee-main-2023-online-6th-april-morning-shift
1lh2xsi9y
maths
binomial-theorem
general-term
<p>If the coefficient of $${x^7}$$ in $${\left( {a{x^2} + {1 \over {2bx}}} \right)^{11}}$$ and $${x^{ - 7}}$$ in $${\left( {ax - {1 \over {3b{x^2}}}} \right)^{11}}$$ are equal, then :</p>
[{"identifier": "A", "content": "$$243ab = 64$$"}, {"identifier": "B", "content": "$$32ab = 729$$"}, {"identifier": "C", "content": "$$64ab = 243$$"}, {"identifier": "D", "content": "$$729ab = 32$$"}]
["D"]
null
General term of $\left(a x^2+\frac{1}{2 b x}\right)^{11}$ is <br/><br/>$$ T_{r+1}={ }^{11} C_r\left(a x^2\right)^{11-r}\left(\frac{1}{2 b x}\right)^r={ }^{11} C_r(a)^{11-r}\left(\frac{1}{2 b}\right)^r x^{22-3 r} $$ <br/><br/>$$ \begin{array}{rlrl} &\text { Now, } 22-3 r =7 \\\\ &\Rightarrow 15 =3 r \\\\ &\Rightarrow r =5 \end{array} $$ <br/><br/>and general term of $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ is <br/><br/>$$ \begin{aligned} T_{r+1} & ={ }^{11} C_r(a x)^{11-r}\left(-\frac{1}{3 b x^2}\right)^r \\\\ & ={ }^{11} C_r a^{11-r}\left(-\frac{1}{3 b}\right)^r x^{11-3 r} \end{aligned} $$ <br/><br/>Now, $11-3 r=-7$ <br/><br/>$$ \Rightarrow 18=3 r \Rightarrow r=6 $$ <br/><br/>$\begin{aligned} & \text { Since, coefficient of } x^7 \text { in }\left(a x^2+\frac{1}{2 b x}\right)^{11} \\\\ & =\text { Coefficient of } x^{-7} \text { in }\left(a x-\frac{1}{3 b x^2}\right)^{11} \\\\ & \Rightarrow{ }^{11} C_5(a)^6\left(\frac{1}{2 b}\right)^5={ }^{11} C_6(a)^5\left(-\frac{1}{3 b}\right)^6 \\\\ & \Rightarrow \frac{a}{32 b^5}=\frac{1}{729 b^6} \Rightarrow 729 a b=32\end{aligned}$
mcq
jee-main-2023-online-6th-april-evening-shift
jaoe38c1lscoeie7
maths
binomial-theorem
general-term
<p>The coefficient of $$x^{2012}$$ in the expansion of $$(1-x)^{2008}\left(1+x+x^2\right)^{2007}$$ is equal to _________.</p>
[]
null
0
<p>$$\begin{aligned} & (1-x)(1-x)^{2007}\left(1+x+x^2\right)^{2007} \\ & (1-x)\left(1-x^3\right)^{2007} \\ & (1-x)\left({ }^{2007} C_0-{ }^{2007} C_1\left(x^3\right)+\ldots \ldots .\right) \end{aligned}$$</p> <p>General term</p> <p>$$\begin{aligned} & (1-x)\left((-1)^r{ }^{2007} C_r x^{3 r}\right) \\ & (-1)^{r 2007} C_r x^{3 r}-(-1)^{r 2007} C_r x^{3 r+1} \\ & 3 r=2012 \\ & r \neq \frac{2012}{3} \\ & 3 r+1=2012 \\ & 3 r=2011 \\ & r \neq \frac{2011}{3} \end{aligned}$$</p> <p>Hence there is no term containing $$\mathrm{x}^{2012}$$.</p> <p>So coefficient of $$\mathrm{x}^{2012}=0$$</p>
integer
jee-main-2024-online-27th-january-evening-shift
lv3vef7y
maths
binomial-theorem
general-term
<p>If the term independent of $$x$$ in the expansion of $$\left(\sqrt{\mathrm{a}} x^2+\frac{1}{2 x^3}\right)^{10}$$ is 105 , then $$\mathrm{a}^2$$ is equal to :</p>
[{"identifier": "A", "content": "6"}, {"identifier": "B", "content": "4"}, {"identifier": "C", "content": "2"}, {"identifier": "D", "content": "9"}]
["B"]
null
<p>$$\begin{aligned} & \left(\sqrt{a} x^2+\frac{1}{2 x^3}\right)^{10} \\ & T_{r+1}={ }^{10} C_r\left(\sqrt{a} x^2\right)^{10-r}\left(\frac{1}{2 x^3}\right)^r \end{aligned}$$</p> <p>Independent of $$x \Rightarrow 20-2 r-3 r=0$$</p> <p>$$r=4$$</p> <p>Independent of $$x$$ is $${ }^{10} C_4(\sqrt{a})^6\left(\frac{1}{2}\right)^4=105$$</p> <p>$$\begin{gathered} \frac{210}{2 \times 8} a^3=105 \\ \Rightarrow \quad a=2 \\ a^2=4 \end{gathered}$$</p>
mcq
jee-main-2024-online-8th-april-evening-shift
lv7v47v9
maths
binomial-theorem
general-term
<p>If the constant term in the expansion of $$\left(1+2 x-3 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$$ is $$\mathrm{p}$$, then $$108 \mathrm{p}$$ is equal to ________.</p>
[]
null
54
<p>$$\text { General term of }\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$$</p> <p>$$T_{r+1}={ }^9 C_r\left(\frac{3}{2} x^2\right)^{9-r}\left(-\frac{1}{3 x}\right)^r={ }^9 C_r(-1)^r 3^{9-2 r} 2^{r-9} x^{18-35}$$</p> <p>Constant term in expansion of $$\left(1+2 x-3 x^3\right)$$</p> <p>$$\begin{aligned} & \left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9 \\ & =T_7-3 T_8={ }^9 C_6 3^{-3} \cdot 2^{-3}+3{ }^9 C_7 \cdot 3^{-5} \cdot 2^{-2} \\ & =\frac{3 \times 4 \times 7}{3^3 \cdot 2^3}+\frac{3 \times 9 \times 4}{3^5 \times 2^2}= \\ & p=\frac{42+12}{108}=\frac{54}{108} \\ & 108 p=54 \end{aligned}$$</p>
integer
jee-main-2024-online-5th-april-morning-shift
lv9s1zz5
maths
binomial-theorem
general-term
<p>If the constant term in the expansion of $$\left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[3]{5}}\right)^{12}, x \neq 0$$, is $$\alpha \times 2^8 \times \sqrt[5]{3}$$, then $$25 \alpha$$ is equal to :</p>
[{"identifier": "A", "content": "724"}, {"identifier": "B", "content": "742"}, {"identifier": "C", "content": "693"}, {"identifier": "D", "content": "639"}]
["C"]
null
<p>$$\begin{aligned} & \left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[5]{3}}\right)^{12} \\ & T_{r+1}={ }^{12} C r\left(\frac{\sqrt[5]{3}}{x}\right)^{12-r}\left(\frac{2 x}{\sqrt[3]{5}}\right)^r \end{aligned}$$</p> <p>For constant term $$-12+r+r=0$$</p> <p>$$\begin{aligned} & \Rightarrow \quad r=6 \\ & \therefore \quad \text { Constant term }={ }^{12} C_6 \frac{(3)^{\frac{6}{5}}}{(5)^{\frac{6}{3}}}(2)^6 \end{aligned}$$</p> <p>$$\begin{aligned} & ={ }^{12} C_6 \times \frac{2^6}{25} \times 3.3^{\frac{1}{5}} \\ & =\frac{231}{25} \times 2^8 \cdot 3^{\frac{1}{5}} \cdot 3 \\ & =\frac{693}{25} \cdot 2^8 \sqrt[5]{3} \\ & \therefore \quad \alpha=\frac{693}{25} \\ & 25 \alpha=693 \end{aligned}$$</p>
mcq
jee-main-2024-online-5th-april-evening-shift
lvc57np0
maths
binomial-theorem
general-term
<p>If the second, third and fourth terms in the expansion of $$(x+y)^n$$ are 135, 30 and $$\frac{10}{3}$$, respectively, then $$6\left(n^3+x^2+y\right)$$ is equal to __________.</p>
[]
null
806
<p>$$\begin{aligned} & T_2={ }^n C_1 y^1 \cdot x^{n-1}=135 \\ & T_3={ }^n C_2 y^2 \cdot x^{n-2}=30 \\ & T_4={ }^n C_3 y^3 x^{n-3}=\frac{10}{3} \end{aligned}$$</p> <p>$$\begin{aligned} \Rightarrow \frac{135}{30} & =\left(\frac{x}{y}\right) \frac{n \cdot 2}{n(n-1)}=\left(\frac{2}{n-1}\right)\left(\frac{x}{y}\right) \quad \text{... (i)}\\ \frac{30}{\frac{10}{3}} & =\frac{n(n-1)}{2} \frac{3!}{n(n-1)(n-2)}\left(\frac{x}{y}\right) \\ 9 & =\left(\frac{3}{n-2}\right)\left(\frac{x}{y}\right) \end{aligned}$$</p> <p>$$\begin{aligned} \Rightarrow & 3(n-2)=\frac{135}{60}(n-1) \Rightarrow n=5 \\ \Rightarrow & x=9 y \quad \text{.... (i)}\\ & y \cdot x^4=27 \Rightarrow \frac{x}{9} \cdot x^4=3^3 \\ \Rightarrow & x^5=3^5 \Rightarrow x=3 y=\frac{1}{3} \\ \Rightarrow & 6\left(5^3+3^2+\frac{1}{3}\right)=6\left(125+9+\frac{1}{3}\right) \end{aligned}$$</p> <p>$$=6(134)+2=806$$</p>
integer
jee-main-2024-online-6th-april-morning-shift
MdI6myzXplT0kKOP
maths
binomial-theorem
integral-and-fractional-part-of-a-number
If $$n$$ is a positive integer, then $${\left( {\sqrt 3 + 1} \right)^{2n}} - {\left( {\sqrt 3 - 1} \right)^{2n}}$$ is :
[{"identifier": "A", "content": "an irrational number "}, {"identifier": "B", "content": "an odd positive integer "}, {"identifier": "C", "content": "an even positive integer "}, {"identifier": "D", "content": "a rational number other than positive integers "}]
["A"]
null
Let $${\left( {a + x} \right)^n}$$ = Odd trems(A) + Even terms(B) <br><br>So $${\left( {a - x} \right)^n}$$ = Odd terms(A) - Even terms(B) <br><br>$$\therefore$$ $${\left( {a + x} \right)^n} - {\left( {a - x} \right)^n}$$ <br><br>= (A + B) - (A - B) <br><br>= 2B <br><br>= 2[even terms] <br><br>= 2[ T<sub>2</sub> + T<sub>4</sub> + T<sub>6</sub> + ....... ] <br><br>So in case of $${\left( {\sqrt 3 + 1} \right)^{2n}} - {\left( {\sqrt 3 - 1} \right)^{2n}}$$ <br><br>= 2[ T<sub>2</sub> + T<sub>4</sub> + T<sub>6</sub> + ....... ] <br><br>= 2[ $${}^{2n}{C_1}.{\left( {\sqrt 3 } \right)^{2n - 1}} + {}^{2n}{C_3}.{\left( {\sqrt 3 } \right)^{2n - 3}} + ...$$ <br><br>Here in $${\left( {\sqrt 3 } \right)^{2n - 1}}$$, 2n - 1 is odd number. So there will be always $${\sqrt 3 }$$ in $${\left( {\sqrt 3 } \right)^{2n - 1}}$$. <br><br>So $${\left( {\sqrt 3 + 1} \right)^{2n}} - {\left( {\sqrt 3 - 1} \right)^{2n}}$$ will be always irrational number.
mcq
aieee-2012
hSlHFjRByfCzOzj87g1j0
maths
binomial-theorem
integral-and-fractional-part-of-a-number
If the fractional part of the number $$\left\{ {{{{2^{403}}} \over {15}}} \right\} is \, {k \over {15}}$$, then k is equal to :
[{"identifier": "A", "content": "8"}, {"identifier": "B", "content": "14"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "1"}]
["A"]
null
$${{{2^{403}}} \over {15}}$$ <br><br>$$ = {{{2^3}\, \cdot \,{2^{400}}} \over {15}}$$ <br><br>$$ = {8 \over {15}}{\left( {16} \right)^{100}}$$ <br><br>$$ = {8 \over {15}}{\left( {15 + 1} \right)^{100}}$$ <br><br>$$ = {8 \over {15}}\left( {{}^{100}{C_0} + {}^{100}{C_1}\,15 + {}^{100}{C_2}{{\left( {15} \right)}^2} + .....{{\left( {15} \right)}^{100}}} \right)$$ <br><br>$$ = {8 \over {15}} + 8\left( {{}^{100}{C_1} + {}^{100}{C_2}\,\left( {15} \right) + ..... + {{\left( {15} \right)}^{99}}} \right)$$ <br><br>$$ = {8 \over {15}} + 8$$ (integer) <br><br>$$ \therefore $$&nbsp;&nbsp;Fractional part $$ = {8 \over {15}}$$ <br><br>According to the question, <br><br>$${k \over {15}} = {8 \over {15}}$$ <br><br>$$ \Rightarrow $$&nbsp;&nbsp; K $$=$$ 8
mcq
jee-main-2019-online-9th-january-morning-slot
cYkeSxybbUbNNx1ExBjgy2xukfuvxjpi
maths
binomial-theorem
integral-and-fractional-part-of-a-number
If {p} denotes the fractional part of the number p, then <br/>$$\left\{ {{{{3^{200}}} \over 8}} \right\}$$, is equal to :
[{"identifier": "A", "content": "$${5 \\over 8}$$"}, {"identifier": "B", "content": "$${7 \\over 8}$$"}, {"identifier": "C", "content": "$${1 \\over 8}$$"}, {"identifier": "D", "content": "$${3 \\over 8}$$"}]
["C"]
null
$$\left\{ {{{{3^{200}}} \over 8}} \right\}$$ <br><br>= $$\left\{ {{{{{\left( {{3^2}} \right)}^{100}}} \over 8}} \right\}$$ <br><br>= $$\left\{ {{{{{\left( {1 + 8} \right)}^{100}}} \over 8}} \right\}$$ <br><br>= $$\left\{ {{{1 + {}^{100}{C_1}.8 + {}^{100}{C_2}{{.8}^2} + .... + {}^{100}{C_{100}}{{.8}^{100}}} \over 8}} \right\}$$ <br><br>= $$\left\{ {{{1 + 8K} \over 8}} \right\}$$ <br><br>= $$\left\{ {{1 \over 8} + K} \right\}$$ where K $$ \in $$ Integer <br><br>$$ \therefore $$ Fractional part = $${{1 \over 8}}$$
mcq
jee-main-2020-online-6th-september-morning-slot
ldqy761e
maths
binomial-theorem
integral-and-fractional-part-of-a-number
Let $x=(8 \sqrt{3}+13)^{13}$ and $y=(7 \sqrt{2}+9)^9$. If $[t]$ denotes the greatest integer $\leq t$, then :
[{"identifier": "A", "content": "$[x]$ is odd but $[y]$ is even"}, {"identifier": "B", "content": "$[x]$ and $[y]$ are both odd"}, {"identifier": "C", "content": "$[x]+[y]$ is even"}, {"identifier": "D", "content": "$[x]$ is even but $[y]$ is odd"}]
["C"]
null
<p>If $${I_1} + f = {(8\sqrt 3 + 13)^{13}},f' = {(8\sqrt 3 - 13)^{13}}$$</p> <p>$${I_1} + f - f'=$$ Even</p> <p>$${I_1} = $$ Even</p> <p>$${I_2} + f - f' = {(7\sqrt 2 + 9)^9} + {(7\sqrt 2 - 9)^9}$$</p> <p>= Even</p> <p>$${I_2} = $$ Even</p>
mcq
jee-main-2023-online-30th-january-evening-shift
SwstiO1vnflVEJ5e
maths
binomial-theorem
middle-term
The coefficient of the middle term in the binomial expansion in powers of $$x$$ of $${\left( {1 + \alpha x} \right)^4}$$ and $${\left( {1 - \alpha x} \right)^6}$$ is the same if $$\alpha $$ equals
[{"identifier": "A", "content": "$${3 \\over 5}$$ "}, {"identifier": "B", "content": "$${10 \\over 3}$$"}, {"identifier": "C", "content": "$${{ - 3} \\over {10}}$$ "}, {"identifier": "D", "content": "$${{ - 5} \\over {3}}$$"}]
["C"]
null
For $${\left( {1 + \alpha x} \right)^4}$$ the middle term $${T_{{4 \over 2} + 1}}$$ = $${}^4{C_2}.{\alpha ^2}{x^2}$$ <br><br>$$\therefore$$ Coefficient of middle term = $${}^4{C_2}.{\alpha ^2}$$ <br><br>For $${\left( {1 - \alpha x} \right)^6}$$ the middle term $${T_{{6 \over 2} + 1}}$$ = $${}^6{C_3}.-{\alpha ^3}{x^3}$$ <br><br>$$\therefore$$ Coefficient of middle term = $${}^6{C_3}.{-\alpha ^3}$$ <br><br>$$\therefore$$ According to question, <br><br>$${}^4{C_2}.{\alpha ^2}$$ = $${}^6{C_3}.{-\alpha ^3}$$ <br><br>$$ \Rightarrow 6 = 20 \times - \alpha $$ <br><br>$$ \Rightarrow \alpha = - {3 \over {10}}$$
mcq
aieee-2004
AcHYxPg1DlPdQGa51uedV
maths
binomial-theorem
middle-term
The sum of the real values of x for which the middle term in the binomial expansion of $${\left( {{{{x^3}} \over 3} + {3 \over x}} \right)^8}$$ equals 5670 is :
[{"identifier": "A", "content": "0"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "4"}]
["A"]
null
$${T_5} = {}^8{C_4}{{{x^{12}}} \over {81}} \times {{81} \over {{x^4}}} = 5670$$ <br><br>$$ \Rightarrow 70{x^8} = 5670$$ <br><br>$$ \Rightarrow x = \pm \sqrt 3 $$
mcq
jee-main-2019-online-11th-january-morning-slot
1krw2nhf2
maths
binomial-theorem
middle-term
The ratio of the coefficient of the middle term in the expansion of (1 + x)<sup>20</sup> and the sum of the coefficients of two middle terms in expansion of (1 + x)<sup>19</sup> is _____________.
[]
null
1
Coeff. of middle term in (1 + x)<sup>20</sup> = $${}^{20}{C_{10}}$$ &amp; Sum of coeff. of two middle terms in (1 + x)<sup>19</sup> = $${}^{19}{C_{9}}$$ + $${}^{19}{C_{10}}$$<br><br>So required ratio = $${{{}^{20}{C_{10}}} \over {^{19}{C_9}{ + ^{19}}{C_{10}}}} = {{^{20}{C_{10}}} \over {^{20}{C_{10}}}} = 1$$
integer
jee-main-2021-online-25th-july-morning-shift
1l6novn6c
maths
binomial-theorem
middle-term
<p>Let the coefficients of the middle terms in the expansion of $$\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$$ and $$\left(1-\frac{\beta}{2} x\right)^{6}, \beta&gt;0$$, respectively form the first three terms of an A.P. If d is the common difference of this A.P. , then $$50-\frac{2 d}{\beta^{2}}$$ is equal to __________.</p>
[]
null
57
<p>Coefficients of middle terms of given expansions are $${}^4{C_2}{1 \over 6}{\beta ^2},\,{}^2{C_1}( - 3\beta ),\,{}^6{C_3}{\left( {{{ - \beta } \over 2}} \right)^3}$$ form an A.P.</p> <p>$$\therefore$$ $$2.2( - 3\beta ) = {\beta ^2} - {{5{\beta ^3}} \over 2}$$</p> <p>$$ \Rightarrow - 24 = 2\beta - 5{\beta ^2}$$</p> <p>$$ \Rightarrow 5{\beta ^2} - 2\beta - 24 = 0$$</p> <p>$$ \Rightarrow 5{\beta ^2} - 12\beta + 10\beta - 24 = 0$$</p> <p>$$ \Rightarrow \beta (5\beta - 12) + 2(5\beta - 12) = 0$$</p> <p>$$\beta = {{12} \over 5}$$</p> <p>$$d = - 6\beta - {\beta ^2}$$</p> <p>$$\therefore$$ $$50 - {{2d} \over {{\beta ^2}}} = 50 - 2{{( - 6\beta - {\beta ^2})} \over {{\beta ^2}}} = 50 + {{12} \over \beta } + 2 = 57$$</p>
integer
jee-main-2022-online-28th-july-evening-shift
1ldsfiyxc
maths
binomial-theorem
middle-term
<p>Let K be the sum of the coefficients of the odd powers of $$x$$ in the expansion of $$(1+x)^{99}$$. Let $$a$$ be the middle term in the expansion of $${\left( {2 + {1 \over {\sqrt 2 }}} \right)^{200}}$$. If $${{{}^{200}{C_{99}}K} \over a} = {{{2^l}m} \over n}$$, where m and n are odd numbers, then the ordered pair $$(l,\mathrm{n})$$ is equal to</p>
[{"identifier": "A", "content": "(50, 101)"}, {"identifier": "B", "content": "(50, 51)"}, {"identifier": "C", "content": "(51, 101)"}, {"identifier": "D", "content": "(51, 99)"}]
["A"]
null
<p>$$K = {2^{98}}$$</p> <p>$$a = {}^{200}{C_{100}}\,{2^{50}}$$</p> <p>$$\therefore$$ $${{{}^{200}{C_{99}}\,.\,{2^{98}}} \over {{}^{200}{C_{100}}\,.\,{2^{50}}}} = {{{2^l}m} \over n}$$</p> <p>$$ \Rightarrow {{100} \over {101}}\,.\,{2^{48}} = {{{2^l}m} \over n}$$</p> <p>$$ \Rightarrow {{25} \over {101}}\,.\,{2^{50}} = {{{2^l}m} \over n}$$</p> <p>$$\therefore$$ $$l = 50,m = 25,n = 101$$</p>
mcq
jee-main-2023-online-29th-january-evening-shift
mSr47psylDpWgZwl9xjgy2xukf8zzatb
maths
binomial-theorem
multinomial-theorem
Let $${\left( {2{x^2} + 3x + 4} \right)^{10}} = \sum\limits_{r = 0}^{20} {{a_r}{x^r}} $$<br/><br/> Then $${{{a_7}} \over {{a_{13}}}}$$ is equal to ______.
[]
null
8
<b>Note : </b> <b>Multinomial Theorem : </b> <br><br>The general term of $${\left( {{x_1} + {x_2} + ... + {x_n}} \right)^n}$$ the expansion is <br><br>$${{n!} \over {{n_1}!{n_2}!...{n_n}!}}x_1^{{n_1}}x_2^{{n_2}}...x_n^{{n_n}}$$ <br><br>where n<sub>1</sub> + n<sub>2</sub> + ..... + n<sub>n</sub> = n <br><br>Here, in $${(2{x^2} + 3x + 4)^{10}}$$ general term is <br><br>$$ = {{10!} \over {{n_1}!{n_2}!{n_3}!}}{(2{x^2})^{{n_1}}}{(3x)^{{n_2}}}{(4)^{{n_3}}}$$<br><br>$$ = {{10!} \over {{n_1}!{n_2}!{n_3}!}}{.2^{{n_1}}}{.3^{{n_2}}}{.4^{{n_3}}}.{x^{2{n_1} + {n_2}}}$$<br><br>$$ \therefore $$ Coefficient of $$ {x^{2{n_1} + {n_2}}}$$ is <br><br>$${{10!} \over {{n_1}!{n_2}!{n_3}!}}{.2^{{n_1}}}{.3^{{n_2}}}{.4^{{n_3}}}$$<br><br>where $${n_1} + {n_2} + {n_3} = 10$$<br><br> For, Coefficient of x<sup>7</sup> : <br>2n<sub>1</sub> + n<sub>2</sub> = 7<br><br>Possible values of n<sub>1</sub>, n<sub>2</sub> and n<sub>3</sub> are <br><br><table> <thead> <tr> <th>$${n_1}$$</th> <th>$${n_2}$$</th> <th>$${n_3}$$</th> </tr> </thead> <tbody> <tr> <td>3</td> <td>1</td> <td>6</td> </tr> <tr> <td>2</td> <td>3</td> <td>5</td> </tr> <tr> <td>1</td> <td>5</td> <td>4</td> </tr> <tr> <td>0</td> <td>7</td> <td>3</td> </tr> </tbody> </table><br><br>$$ \therefore $$ Coefficient of x<sup>7</sup><br><br>$$ = {{10!} \over {3!1!6!}}{(2)^3}{(3)^1}{(4)^6} + {{10!} \over {3!1!6!}}{(2)^2}{(3)^3}{(4)^5} + {{10!} \over {1!5!4!}}{(2)^1}{(3)^5}{(4)^4} + {{10!} \over {0!7!3!}}{(2)^0}{(3)^7}{(4)^3}$$<br><br>Coefficient of x<sup>13</sup> = a<sub>13</sub><br><br>Here 2n<sub>1</sub> + n<sub>2</sub> = 13<br><br><br>possible values of n<sub>1</sub>, n<sub>2</sub> and n<sub>3</sub> are<br><br><table> <thead> <tr> <th>$${n_1}$$</th> <th>$${n_2}$$</th> <th>$${n_3}$$</th> </tr> </thead> <tbody> <tr> <td>6</td> <td>1</td> <td>3</td> </tr> <tr> <td>5</td> <td>3</td> <td>2</td> </tr> <tr> <td>4</td> <td>5</td> <td>1</td> </tr> <tr> <td>3</td> <td>7</td> <td>0</td> </tr> </tbody> </table><br><br>$$ \therefore $$ Coefficient of x<sup>13</sup><br><br>$$ = {{10!} \over {6!1!3!}}{(2)^6}{(3)^1}{(4)^3} + {{10!} \over {5!3!2!}}{(2)^5}{(3)^3}{(4)^2} + {{10!} \over {4!5!1!}}{(2)^4}{(3)^5}{(4)^1} + {{10!} \over {3!7!0!}}{(2)^3}{(3)^7}{(4)^0}$$<br><br>$$ \therefore $$ $${{{a_7}} \over {{a_{13}}}} = 8$$
integer
jee-main-2020-online-4th-september-morning-slot
1ktkde0y0
maths
binomial-theorem
multinomial-theorem
If the coefficient of a<sup>7</sup>b<sup>8</sup> in the expansion of (a + 2b + 4ab)<sup>10</sup> is K.2<sup>16</sup>, then K is equal to _____________.
[]
null
315
$${{10!} \over {\alpha !\beta !\gamma !}}{a^\alpha }{(2b)^\beta }.{(4ab)^\gamma }$$<br><br>$${{10!} \over {\alpha !\beta !\gamma !}}{a^{\alpha + \gamma }}.\,{b^{\beta + \gamma }}\,.\,{2^\beta }\,.\,{4^\gamma }$$<br><br>$$\alpha + \beta + \gamma = 10$$ ..... (1)<br><br>$$\alpha + \gamma = 7$$ .... (2)<br><br>$$\beta + \gamma = 8$$ ..... (3)<br><br>$$(2) + (3) - (1) \Rightarrow \gamma = 5$$<br><br>$$\alpha = 2$$<br><br>$$\beta = 3$$<br><br>so coefficients = $${{10!} \over {2!3!5!}}{2^3}{.2^{10}}$$<br><br>$$ = {{10 \times 9 \times 8 \times 7 \times 6 \times 5} \over {2 \times 3 \times 2 \times 5!}} \times {2^{13}}$$<br><br>$$ = 315 \times {2^{16}} \Rightarrow k = 315$$
integer
jee-main-2021-online-31st-august-evening-shift
1l545j8gt
maths
binomial-theorem
multinomial-theorem
<p>If the constant term in the expansion of <br/><br/>$${\left( {3{x^3} - 2{x^2} + {5 \over {{x^5}}}} \right)^{10}}$$ is 2<sup>k</sup>.l, where l is an odd integer, then the value of k is equal to:</p>
[{"identifier": "A", "content": "6"}, {"identifier": "B", "content": "7"}, {"identifier": "C", "content": "8"}, {"identifier": "D", "content": "9"}]
["D"]
null
<b>Note : </b> <b>Multinomial Theorem : </b> <br><br>The general term of $${\left( {{x_1} + {x_2} + ... + {x_n}} \right)^n}$$ the expansion is <br><br>$${{n!} \over {{n_1}!{n_2}!...{n_n}!}}x_1^{{n_1}}x_2^{{n_2}}...x_n^{{n_n}}$$ <br><br>where n<sub>1</sub> + n<sub>2</sub> + ..... + n<sub>n</sub> = n <br/><br/><p>Given,</p> <p>$${\left( {3{x^2} - 2{x^2} + {5 \over {{x^5}}}} \right)^{10}}$$</p> <p>$$ = {{{{(3{x^8} - 2{x^7} + 5)}^{10}}} \over {{x^{50}}}}$$</p> <p>Now constant term in $${\left( {3{x^3} - 2{x^2} + {5 \over {{x^5}}}} \right)^{10}} = {x^{50}}$$ term in $${(3{x^8} - 2{x^7} + 5)^{10}}$$</p> <p>General term in $${(3{x^8} - 2{x^7} + 5)^{10}}$$ is</p> <p>$$ = {{10!} \over {{n_1}!\,{n_2}!\,{n_3}!}}{(3{x^8})^{{n_1}}}{( - 2{x^7})^{{n_2}}}{(5)^{{n_3}}}$$</p> <p>$$ = {{10!} \over {{n_1}!\,{n_2}!\,{n_3}!}}{(3)^{{n^1}}}{( - 2)^{{n_2}}}{(5)^{{n^3}}}\,.\,{x^{8{n_1} + 7{n_2}}}$$</p> <p>$$\therefore$$ Coefficient of $${x^{8{n_1} + 7{n_2}}}$$ is</p> <p>$$ = {{10!} \over {{n_1}!\,{n_2}!\,{n_3}!}}{(3)^{{n_1}}}{( - 2)^{{n_2}}}{(5)^{{n_3}}}$$</p> <p>where $${n_1} + {n_2} + {n_3} = 0$$</p> <p>For coefficient of x<sup>50</sup> :</p> <p>$$8{n_1} + 7{n_2} = 50$$</p> <p>$$\therefore$$ Possible values of n<sub>1</sub>, n<sub>2</sub> and n<sub>3</sub> are</p> <p><style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-baqh{text-align:center;vertical-align:top} </style> <table class="tg" style="undefined;table-layout: fixed; width: 253px"> <colgroup> <col style="width: 75px"> <col style="width: 85px"> <col style="width: 93px"> </colgroup> <thead> <tr> <th class="tg-baqh">n$$_1$$</th> <th class="tg-baqh">n$$_2$$</th> <th class="tg-baqh">n$$_3$$</th> </tr> </thead> <tbody> <tr> <td class="tg-baqh">1</td> <td class="tg-baqh">6</td> <td class="tg-baqh">3</td> </tr> </tbody> </table></p> <p>$$\therefore$$ Coefficient of x<sup>50</sup></p> <p>$$ = {{10!} \over {1!\,6!\,3!}}{(3)^1}{( - 2)^6}{(5)^3}$$</p> <p>$$ = {{10 \times 9 \times 8 \times 7} \over 6} \times 3 \times {5^3} \times {2^6}$$</p> <p>$$ = 5 \times 3 \times 8 \times 7 \times 3 \times {5^3} \times {2^6}$$</p> <p>$$ = 7 \times {5^4} \times {3^2} \times {2^9}$$</p> <p>$$ = {2^k}\,.\,l$$</p> <p>$$\therefore$$ $$l = 7 \times {5^4} \times {3^2}$$ = An odd integer</p> <p>and $${2^k} = {2^9}$$</p> <p>$$ \Rightarrow k = 9$$</p>
mcq
jee-main-2022-online-29th-june-morning-shift
lgnxjgya
maths
binomial-theorem
multinomial-theorem
Let $\left(a+b x+c x^{2}\right)^{10}=\sum\limits_{i=0}^{20} p_{i} x^{i}, a, b, c \in \mathbb{N}$.<br/><br/> If $p_{1}=20$ and $p_{2}=210$, then $2(a+b+c)$ is equal to :
[{"identifier": "A", "content": "15"}, {"identifier": "B", "content": "8"}, {"identifier": "C", "content": "6"}, {"identifier": "D", "content": "12"}]
["D"]
null
<p>We are given that $\left(a+bx+cx^2\right)^{10} = \sum_{i=0}^{20} p_i x^i$, and we are given that $p_1 = 20$ and $p_2 = 210$.<br/><br/> We need to find the value of $2(a+b+c)$.</p> Using the multinomial theorem, we can express the expansion of $(a + bx + cx^2)^{10}$ as follows: <br/><br/>$$ \sum\limits_{k_1+k_2+k_3=10} {{10!} \over {{k_1}!{k_2}!{k_3}!}} a^{k_1} (bx)^{k_2} (cx^2)^{k_3} $$ <br/><br/>Now we need to find the coefficients of $x^1$ and $x^2$ in the expansion: <br/><br/>For $x^1$ term, we have: <br/><br/>$$ k_2 = 1, k_1 = 9, k_3 = 0 $$ <br/><br/>So, <br/><br/>$$ p_1 = {{10!} \over {9!1!0!}} a^9 b^1 = 10a^9 b $$ <br/><br/>For $x^2$ term, there are two possibilities: <br/><br/>$$ k_2 = 2, k_1 = 8, k_3 = 0 \quad \text{and} \quad k_2 = 0, k_1 = 9, k_3 = 1 $$ <br/><br/>So, <br/><br/>$$ p_2 = {{10!} \over {8!2!0!}} a^8 b^2 + {{10!} \over {9!0!1!}} a^9 c = 45a^8 b^2 + 10a^9 c $$ <p>Now we are given $p_1 = 20$ and $p_2 = 210$. So, $$ 10a^9 b = 20 \implies a^9 b = 2 $$</p> <p>and $$ 45a^8 b^2 + 10a^9 c = 210 $$</p> <p>Now, divide the second equation by $a^8$: $$ 45b^2 + 10ac = 210 $$</p> <p>We know that $a^9 b = 2$. Taking the $9^{th}$ root of both sides: $$ ab = \sqrt[9]{2} $$</p> <p>Now, let $k = ab = \sqrt[9]{2}$. We can rewrite the equation for $x^2$ term as: $$ 45k^2 + 10k^9 = 210 $$</p> <p>From the equation $ab = k = \sqrt[9]{2}$, we know that $a$ and $b$ are positive integers. Thus, $k = 2$ (as both $a$ and $b$ must be factors of 2). Now we have:</p> <p>$$ a+b = 2 $$</p> <p>and from the equation $a^9 b = 2$, we get $a = 1, b = 2$ or vice versa. </p> <p>Now we need to find the value of $c$. We can use the equation for the $x^2$ term again:</p> <p>$$ 45a^8 b^2 + 10a^9 c = 210 $$</p> <p>Using $a=1$ and $b=2$, we get:</p> <p>$$ 45(1)^8 (2)^2 + 10(1)^9 c = 210 \implies 180 + 10c = 210 \implies c = 3 $$</p> <p>So, $a=1$, $b=2$, and $c=3$. Now, we need to find the value of $2(a+b+c)$:</p> <p>$$ 2(a+b+c) = 2(1+2+3) = 2(6) = 12 $$</p> <p>Therefore, the answer is $\boxed{12}$.</p>
mcq
jee-main-2023-online-15th-april-morning-shift
1lgxwe9tk
maths
binomial-theorem
multinomial-theorem
<p>The coefficient of $$x^7$$ in $${(1 - x + 2{x^3})^{10}}$$ is ___________.</p>
[]
null
960
Given expression is $\left(1-x+2 x^3\right)^{10}$ <br/><br/>So, general term is $\frac{10 !}{r_{1} ! r_{2} ! r_{3} !}(1)^{r_1}(-1)^{r_2} \cdot(2)^{r_3} \cdot(x)^{r_2+r_3}$ <br/><br/>Where, $r_1+r_2+r_3=10$ and $r_2+3 r_3=7$ <br/><br/>Now, for possibility, <br/><br/>$\begin{array}{ccc}r_1 & r_2 & r_3 \\ 3 & 7 & 0 \\ 7 & 1 & 2 \\ 5 & 4 & 1\end{array}$ <br/><br/>Thus, required co-efficient <br/><br/>$$ \begin{aligned} & =\frac{10 !}{3 ! 7 !}(-1)^7+\frac{10 !}{5 ! 4 !}(-1)^4(2)+\frac{10 !}{7 ! 2 !}(-1)^1(2)^2 \\\\ & =-120+2520-1440 \\\\ & =2520-1560=960 \end{aligned} $$
integer
jee-main-2023-online-10th-april-morning-shift
lsapwdnz
maths
binomial-theorem
multinomial-theorem
If the Coefficient of $x^{30}$ in the expansion of $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ is $\alpha$, then $|\alpha|$ equals ___________.
[]
null
678
$\begin{aligned} & \text { Coefficient of } x^{30} \text { in } \frac{(1+x)^6\left(1+x^2\right)^7\left(1-x^3\right)^8}{x^6} \\\\ & \Rightarrow \text { Coefficient of } x^{36} \text { in }(1+x)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 \\\\ & \Rightarrow \text { General term }={ }^6 C_{r_1}{ }^7 C_{r_2}{ }^8 C_{r_3}(-1)^{r_3} x^{r_1+2 r_2+3 r_3} \\\\ & \Rightarrow r_1+2 r_2+3 r_3=36\end{aligned}$ <br/><br/>$$ \text { Case-I : } \begin{array}{|c|c|c|} \hline \mathrm{r}_1 & \mathrm{r}_2 & \mathrm{r}_3 \\ \hline 0 & 6 & 8 \\ \hline 2 & 5 & 8 \\ \hline 4 & 4 & 8 \\ \hline 6 & 3 & 8 \\ \hline \end{array} $$ <br/><br/>$r_1+2 r_2=12 \quad\left(\right.$ Taking $\left.r_3=8\right)$ <br/><br/>$$ \begin{aligned} &\text { Case-II :}\\\\ &\begin{array}{|l|l|l|} \hline r_1 & r_2 & r_3 \\ \hline 1 & 7 & 7 \\ \hline 3 & 6 & 7 \\ \hline 5 & 5 & 7 \\ \hline \end{array} \end{aligned} $$ <br/><br/>$r_1+2 r_2=15\left(\right.$ Taking $\left.r_3=7\right)$ <br/><br/>$$ \begin{aligned} &\text { Case-III : }\\\\ &\begin{array}{|l|l|l|} \hline r_1 & r_2 & r_3 \\ \hline 4 & 7 & 6 \\ \hline 6 & 6 & 6 \\ \hline \end{array} \end{aligned} $$ <br/><br/>$\begin{aligned} & \text { Coefficient}=7+(15 \times 21)+(15 \times 35)+(35) \\\\ & -(6 \times 8)-(20 \times 7 \times 8)-(6 \times 21 \times 8)+(15 \times 28) \\\\ & +(7 \times 28)=-678=\alpha \\\\ & |\alpha|=678\end{aligned}$
integer
jee-main-2024-online-1st-february-morning-shift
jaoe38c1lse5mmmr
maths
binomial-theorem
multinomial-theorem
<p>Let $$a$$ be the sum of all coefficients in the expansion of $$\left(1-2 x+2 x^2\right)^{2023}\left(3-4 x^2+2 x^3\right)^{2024}$$ and $$b=\lim _\limits{x \rightarrow 0}\left(\frac{\int_0^x \frac{\log (1+t)}{t^{2024}+1} d t}{x^2}\right)$$. If the equation $$c x^2+d x+e=0$$ and $$2 b x^2+a x+4=0$$ have a common root, where $$c, d, e \in \mathbb{R}$$, then $$\mathrm{d}: \mathrm{c}:$$ e equals</p>
[{"identifier": "A", "content": "$$2: 1: 4$$\n"}, {"identifier": "B", "content": "$$1: 1: 4$$\n"}, {"identifier": "C", "content": "$$1: 2: 4$$\n"}, {"identifier": "D", "content": "$$4: 1: 4$$"}]
["B"]
null
<p>Put $$x=1$$</p> <p>$$\therefore \mathrm{a}=1$$</p> <p>$$\mathrm{b}=\lim _\limits{\mathrm{x} \rightarrow 0} \frac{\int_\limits0^{\mathrm{x}} \frac{\ln (1+\mathrm{t})}{1+\mathrm{t}^{2024}} \mathrm{dt}}{\mathrm{x}^2}$$</p> <p>Using L' HOPITAL Rule</p> <p>$$\mathrm{b}=\lim _\limits{\mathrm{x} \rightarrow 0} \frac{\ln (1+\mathrm{x})}{\left(1+\mathrm{x}^{2024}\right)} \times \frac{1}{2 \mathrm{x}}=\frac{1}{2}$$</p> <p>Now, $$\mathrm{cx}^2+\mathrm{dx}+\mathrm{e}=0, \mathrm{x}^2+\mathrm{x}+4=0$$</p> <p>$$(\mathrm{D}<0)$$</p> <p>$$\therefore \frac{\mathrm{c}}{1}=\frac{\mathrm{d}}{1}=\frac{\mathrm{e}}{4}$$</p>
mcq
jee-main-2024-online-31st-january-morning-shift
5xKBLBPPtldLjMPl
maths
binomial-theorem
negative-and-fractional-index
If $$x$$ is positive, the first negative term in the expansion of $${\left( {1 + x} \right)^{27/5}}$$ is
[{"identifier": "A", "content": "6th term "}, {"identifier": "B", "content": "7th term "}, {"identifier": "C", "content": "5th term "}, {"identifier": "D", "content": "8th term."}]
["D"]
null
General term of $${\left( {1 + x} \right)^{n}}$$ is ($${T_{r + 1}}$$) = $${{n\left( {n - 1} \right).....\left( {n - r + 1} \right)} \over {1.2.3....r}}{x^r}$$ <br><br>$$\therefore$$ General term of $${\left( {1 + x} \right)^{27/5}}$$ = $${{{{27} \over 5}\left( {{{27} \over 5} - 1} \right).....\left( {{{27} \over 5} - r + 1} \right)} \over {1.2.3....r}}{x^r}$$ <br><br>For first negative term, $${\left( {{{27} \over 5} - r + 1} \right)}$$ &lt; 0 <br><br>$$ \Rightarrow r &gt; {{27} \over 5} + 1$$ <br><br>$$ \Rightarrow r &gt; {{32} \over 5}$$ <br><br>$$ \Rightarrow r &gt; 6.4$$ <br><br>$$\therefore$$ r = 7 <br><br>$${T_{7 + 1}} = {T_8}$$ means 8<sup>th</sup> term is the first negative term.
mcq
aieee-2003
S34Ufc1rYv3mtMqj
maths
binomial-theorem
negative-and-fractional-index
If $$x$$ is so small that $${x^3}$$ and higher powers of $$x$$ may be neglected, then $${{{{\left( {1 + x} \right)}^{{3 \over 2}}} - {{\left( {1 + {1 \over 2}x} \right)}^3}} \over {{{\left( {1 - x} \right)}^{{1 \over 2}}}}}$$ may be approximated as
[{"identifier": "A", "content": "$$1 - {3 \\over 8}{x^2}$$ "}, {"identifier": "B", "content": "$$3x + {3 \\over 8}{x^2}$$ "}, {"identifier": "C", "content": "$$ - {3 \\over 8}{x^2}$$ "}, {"identifier": "D", "content": "$${x \\over 2} - {3 \\over 8}{x^2}$$ "}]
["C"]
null
$${\left( {1 + x} \right)^{{3 \over 2}}}$$ = 1 + $${3 \over 2}x + {{{3 \over 2}.{1 \over 2}} \over {1.2}}{x^2} + ...$$ <br><br>= 1 + $${3 \over 2}x + {3 \over 8}{x^2}$$ (As $$x$$ is so small, so $${x^3}$$ and higher powers of $$x$$ neglected) <br><br>$${{{{\left( {1 + x} \right)}^{{3 \over 2}}} - {{\left( {1 + {1 \over 2}x} \right)}^3}} \over {{{\left( {1 - x} \right)}^{{1 \over 2}}}}}$$ <br><br>= $${{\left( {1 + {3 \over 2}x + {3 \over 8}{x^2}} \right) - \left( {1 + {}^3{C_0}.{x \over 2} + {}^3{C_1}.{{\left( {{x \over 2}} \right)}^2}} \right)} \over {{{\left( {1 - x} \right)}^2}}}$$ <br><br>= $${{{3 \over 8}{x^2} - {3 \over 4}{x^2}} \over {{{\left( {1 - x} \right)}^2}}}$$ <br><br>= $${{x^2}\left( {{3 \over 8} - {3 \over 4}} \right){{\left( {1 - x} \right)}^{ - 2}}}$$ <br><br>= $${ - {3 \over 8}{x^2}\left( {1 - {1 \over 2}\left( { - x} \right) + ....} \right)}$$ <br><br>= $$ - {3 \over 8}{x^2} - {3 \over {16}}{x^3}$$ <br><br>[ As x<sup>3</sup> is so small we can ignore $$-{3 \over {16}}{x^3}$$] <br><br>= $$ - {3 \over 8}{x^2}$$
mcq
aieee-2005
hI198LyRc6DYt2by
maths
binomial-theorem
negative-and-fractional-index
If the expansion in powers of $$x$$ of the function $${1 \over {\left( {1 - ax} \right)\left( {1 - bx} \right)}}$$ is $${a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3}.....$$ then $${a_n}$$ is
[{"identifier": "A", "content": "$${{{b^n} - {a^n}} \\over {b - a}}$$ "}, {"identifier": "B", "content": "$${{{a^n} - {b^n}} \\over {b - a}}$$ "}, {"identifier": "C", "content": "$${{{a^{n + 1}} - {b^{n + 1}}} \\over {b - a}}$$ "}, {"identifier": "D", "content": "$${{{b^{n + 1}} - {a^{n + 1}}} \\over {b - a}}$$ "}]
["D"]
null
$${1 \over {\left( {1 - ax} \right)\left( {1 - bx} \right)}}$$ <br><br>= $${\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}$$ <br><br>= $$\left[ {1 + \left( { - 1} \right)\left( { - ax} \right) + {{\left( { - 1} \right)\left( { - 2} \right)} \over {1.2}}{{\left( { - ax} \right)}^2} + ...} \right]$$ - <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$$\left[ {1 + \left( { - 1} \right)\left( { - bx} \right) + {{\left( { - 1} \right)\left( { - 2} \right)} \over {1.2}}{{\left( { - bx} \right)}^2} + ...} \right]$$ <br><br>= $$\left[ {1 + ax + {a^2}{x^2} + ... + {a^{n - 1}}{x^{n - 1}} + {a^n}{x^n}}+.... \right]$$ - <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;$$\left[ {1 + bx + {b^2}{x^2} + ... + {b^{n - 1}}{x^{n - 1}} + {b^n}{x^n}}+.... \right]$$ <br><br>Coefficient of x<sup>n</sup> = <br><br>$${a^n} + {a^{n - 1}}b + {a^{n - 2}}{b^2} + .... + {b^n}$$ <br><br>= $${a^n}\left[ {1 + {b \over a} + {{{b^2}} \over {{a^2}}} + ..... + {{{b^n}} \over {{a^n}}}} \right]$$ <br><br>= $${a^n}\left[ {{{{{\left( {{b \over a}} \right)}^{n + 1}} - 1} \over {{b \over a} - 1}}} \right]$$ <br><br>= $${a^n}\left[ {{{{b^{n + 1}} - {a^{n + 1}}} \over {{a^{n + 1}}\left( {{{b - a} \over a}} \right)}}} \right]$$ <br><br>= $${{{{b^{n + 1}} - {a^{n + 1}}} \over {b - a}}}$$
mcq
aieee-2006
1krvyf364
maths
binomial-theorem
negative-and-fractional-index
If b is very small as compared to the value of a, so that the cube and other higher powers of $${b \over a}$$ can be neglected in the identity $${1 \over {a - b}} + {1 \over {a - 2b}} + {1 \over {a - 3b}} + ..... + {1 \over {a - nb}} = \alpha n + \beta {n^2} + \gamma {n^3}$$, then the value of $$\gamma$$ is :
[{"identifier": "A", "content": "$${{{a^2} + b} \\over {3{a^3}}}$$"}, {"identifier": "B", "content": "$${{a + b} \\over {3{a^2}}}$$"}, {"identifier": "C", "content": "$${{{b^2}} \\over {3{a^3}}}$$"}, {"identifier": "D", "content": "$${{a + {b^2}} \\over {3{a^3}}}$$"}]
["C"]
null
$${(a - b)^{ - 1}} + {(a - 2b)^{ - 1}} + .... + {(a - nb)^{ - 1}}$$<br><br>$$ = {1 \over a}\sum\limits_{r = 1}^n {{{\left( {1 - {{rb} \over a}} \right)}^{ - 1}}} $$<br><br>$$ = {1 \over a}\sum\limits_{r = 1}^n {\left\{ {\left( {1 + {{rb} \over a} + {{{r^2}{b^2}} \over {{a^2}}}} \right) + (terms\,to\,be\,neglected)} \right\}} $$<br><br>$$ = {1 \over a}\left[ {n + {{n(n + 1)} \over 2}.{b \over a} + {{n(n + 1)(2n + 1)} \over 6}.{{{b^2}} \over {{a^2}}}} \right]$$<br><br>$$ = {1 \over a}\left[ {{n^3}\left( {{{{b^2}} \over {3{a^2}}}} \right) + .....} \right]$$<br><br>So, $$\gamma = {{{b^2}} \over {3{a^3}}}$$
mcq
jee-main-2021-online-25th-july-morning-shift
LV5BeeNJAp7oiwUq
maths
binomial-theorem
problems-based-on-binomial-co-efficient-and-collection-of-binomial-co-efficient
If the sum of the coefficients in the expansion of $$\,{\left( {a + b} \right)^n}$$ is 4096, then the greatest coefficient in the expansion is
[{"identifier": "A", "content": "1594 "}, {"identifier": "B", "content": "792 "}, {"identifier": "C", "content": "924 "}, {"identifier": "D", "content": "2924"}]
["C"]
null
We know, $$\,{\left( {a + b} \right)^n}$$ = $${}^n{C_0}.{a^n} + {}^n{C_1}.{a^{n - 1}}.b + ... + {}^n{C_n}.{b^n}$$ <br><br>Remember to find sum of coefficient of binomial expansion we ave to put 1 in place of all the variable. <br><br>So put $$a$$ = b = 1 <br><br>$$\therefore$$ 2<sup>n</sup> = $${}^n{C_0} + {}^n{C_1} + {}^n{C_2}... + {}^n{C_n}$$ <br><br>According to question, 2<sup>n</sup> = 4096 = 2<sup>12</sup> <br><br>$$ \Rightarrow n = 12$$ <br><br>So $$\,{\left( {a + b} \right)^n}$$ = $$\,{\left( {a + b} \right)^{12}}$$ <br><br>Here n = 12 is even so formula for greatest term is <br>$${T_{{n \over 2} + 1}} = {}^n{C_{{n \over 2}}}.{a^{{n \over 2}}}.{b^{{n \over 2}}}$$ <br><br>For n = 12, greatest term $${T_{6 + 1}} = {}^{12}{C_6}.{a^6}.{b^6}$$ <br><br>$$\therefore$$ Coefficient of the greatest term = $${}^{12}{C_6}$$ = $${{12!} \over {6!6!}}$$ = 924
mcq
aieee-2002
Dv471cd1hiN4I75F
maths
binomial-theorem
problems-based-on-binomial-co-efficient-and-collection-of-binomial-co-efficient
$$r$$ and $$n$$ are positive integers $$\,r &gt; 1,\,n &gt; 2$$ and coefficient of $$\,{\left( {r + 2} \right)^{th}}$$ term and $$3{r^{th}}$$ term in the expansion of $${\left( {1 + x} \right)^{2n}}$$ are equal, then $$n$$ equals
[{"identifier": "A", "content": "$$3r$$"}, {"identifier": "B", "content": "$$3r + 1$$ "}, {"identifier": "C", "content": "$$2r$$ "}, {"identifier": "D", "content": "$$2r + 1$$"}]
["C"]
null
$$\,{\left( {r + 2} \right)^{th}}$$ term = $${}^{2n}{C_{r+1}}{\left( x \right)^r}$$ <br><br>And coefficient of $$\,{\left( {r + 2} \right)^{th}}$$ = $${}^{2n}{C_{r+1}}$$ <br><br>$$3{r^{th}}$$ term = $${}^{2n}{C_{3r - 1}}{\left( x \right)^{3r - 1}}$$ <br><br>And coefficient of $$3{r^{th}}$$ term = $${}^{2n}{C_{3r - 1}}$$ <br><br>According to the question, <br>$${}^{2n}{C_{r+1}}$$ = $${}^{2n}{C_{3r - 1}}$$ <br><br>$$ \Rightarrow \left( {r + 1} \right) + \left( {3r - 1} \right) = 2n$$ <br><br>[As if $${}^n{C_p} = {}^n{C_q}$$ then p + q = n] <br><br>$$ \Rightarrow 4r = 2n$$ <br><br>$$ \Rightarrow n = 2r$$
mcq
aieee-2002
9o9lRt7vfpS59rnX
maths
binomial-theorem
problems-based-on-binomial-co-efficient-and-collection-of-binomial-co-efficient
If $${S_n} = \sum\limits_{r = 0}^n {{1 \over {{}^n{C_r}}}} \,\,and\,\,{t_n} = \sum\limits_{r = 0}^n {{r \over {{}^n{C_r}}},\,} $$then $${{{t_{ n}}} \over {{S_n}}}$$ is equal to
[{"identifier": "A", "content": "$${{2n - 1} \\over 2}$$ "}, {"identifier": "B", "content": "$${1 \\over 2}n - 1$$ "}, {"identifier": "C", "content": "n - 1"}, {"identifier": "D", "content": "$${1 \\over 2}n$$ "}]
["D"]
null
$${S_n} = \sum\limits_{r = 0}^n {{1 \over {{}^n{C_r}}}}$$ <br><br>=$${1 \over {{}^n{C_0}}} + {1 \over {{}^n{C_1}}} + .... + {1 \over {{}^n{C_n}}}$$ <br><br>$${t_n} = \sum\limits_{r = 0}^n {{r \over {{}^n{C_r}}}}$$ <br><br>= $${0 \over {{}^n{C_0}}} + {1 \over {{}^n{C_1}}} + {2 \over {{}^n{C_2}}}.... + {n \over {{}^n{C_n}}}$$.........(1) <br><br>We can write $${t_n}$$ by rearranging like this, <br><br>$${t_n}$$ = $${n \over {{}^n{C_n}}} + {{n - 1} \over {{}^n{C_{n - 1}}}} + ... + {1 \over {{}^n{C_1}}} + {0 \over {{}^n{C_0}}}$$ <br><br>= $${n \over {{}^n{C_0}}} + {{n - 1} \over {{}^n{C_1}}} + ... + {1 \over {{}^n{C_{n - 1}}}} + {0 \over {{}^n{C_n}}}$$.........(2) <br><br>[as $${{}^n{C_0}}$$ = $${{}^n{C_n}}$$, $${{}^n{C_1}}$$ = $${{}^n{C_{n - 1}}}$$......] <br><br>By adding (1) and (2) we get, <br><br>$$2{t_n}$$ = $${n \over {{}^n{C_0}}} + {n \over {{}^n{C_1}}} + ... + {n \over {{}^n{C_{n - 1}}}} + {n \over {{}^n{C_n}}}$$ <br><br>= $$n\left[ {{1 \over {{}^n{C_0}}} + {1 \over {{}^n{C_1}}} + ... + {1 \over {{}^n{C_{n - 1}}}} + {1 \over {{}^n{C_n}}}} \right]$$ <br><br>= n$${S_n}$$ <br><br>$$\therefore$$ $${{{t_n}} \over {{S_n}}} = {n \over 2}$$
mcq
aieee-2004