bbz4021 commited on
Commit
6ff7eec
·
verified ·
1 Parent(s): 4db107d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md CHANGED
@@ -38,3 +38,60 @@ dataset_info:
38
  }
39
  ---
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  }
39
  ---
40
 
41
+ # AeroGrid100
42
+
43
+ **AeroGrid100** is a large-scale, structured aerial dataset collected via UAV to support 3D neural scene reconstruction tasks such as **NeRF**. It consists of **17,100 high-resolution images** with accurate 6-DoF camera poses, collected over a **10×10 geospatial grid** at **5 altitude levels** and **multi-angle views** per point.
44
+
45
+ ## 🔗 Access
46
+
47
+ To access the full dataset, [**click here to open the Google Drive folder**](https://drive.google.com/drive/folders/1cUUjdoMNSig2Jw_yRBeELuTF6T8c9e_b?usp=drive_link).
48
+
49
+ ## 🌍 Dataset Overview
50
+
51
+ - **Platform:** DJI Air 3 drone with wide-angle lens
52
+ - **Region:** Urban site in Claremont, California (~0.209 km²)
53
+ - **Image Resolution:** 4032 × 2268 (JPEG, 24mm FOV)
54
+ - **Total Images:** 17,100
55
+ - **Grid Layout:** 10 × 10 spatial points
56
+ - **Altitudes:** 20m, 40m, 60m, 80m, 100m
57
+ - **Viewpoints per Altitude:** Up to 8 yaw × 5 pitch combinations
58
+ - **Pose Metadata:** Provided in JSON (extrinsics, GPS, IMU)
59
+
60
+ ## 📦 What’s Included
61
+
62
+ - High-resolution aerial images
63
+ - Per-image pose metadata in NeRF-compatible OpenGL format
64
+ - Full drone flight log
65
+ - Scene map and sampling diagrams
66
+ - Example reconstruction using NeRF
67
+
68
+ ## 🎯 Key Features
69
+
70
+ - ✅ Dense and structured spatial-angular coverage
71
+ - ✅ Real-world variability (lighting, pedestrians, cars, vegetation)
72
+ - ✅ Precise pose annotations from onboard GNSS + IMU
73
+ - ✅ Designed for photorealistic NeRF reconstruction and benchmarking
74
+ - ✅ Supports pose estimation, object detection, keypoint detection, and novel view synthesis
75
+
76
+ ## 📊 Use Cases
77
+
78
+ - Neural Radiance Fields (NeRF)
79
+ - View synthesis and novel view generation
80
+ - Pose estimation and camera localization
81
+ - Multi-view geometry and reconstruction benchmarks
82
+ - UAV scene understanding in complex environments
83
+
84
+ ## 📌 Citation
85
+
86
+ If you use AeroGrid100 in your research, please cite:
87
+
88
+ ```bibtex
89
+ @inproceedings{zeng2025aerogrid100,
90
+ title = {AeroGrid100: A Real-World Multi-Pose Aerial Dataset for Implicit Neural Scene Reconstruction},
91
+ author = {Zeng, Qingyang and Mohanty, Adyasha},
92
+ booktitle = {RSS Workshop on Leveraging Implicit Methods in Aerial Autonomy},
93
+ year = {2025},
94
+ url = {https://im4rob.github.io/attend/papers/7_AeroGrid100_A_Real_World_Mul.pdf}
95
+ }
96
+
97
+