content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def parse_clan_file(clan_list):
"""
Parses a list of Rfam clan accessions
clan_list: A plain .txt file containing a list of Rfam Clan Accessions
return: A list of clan accessions
"""
fp = open(clan_list, 'r')
clan_accessions = [x.strip() for x in fp]
fp.close()
return clan_accessions | c5869235750902876f10408e73bbf675316d130c | 49,312 |
def get_column(su, i):
""" get the ith column of the sudoku """
return [su[j][i] for j in range(len(su))] | ff35098f14bed4cef938a4a4e6af3d60fb4e7be3 | 38,674 |
def compute_age(date, dob):
"""
Compute a victim's age.
:param datetime.date date: crash date
:param datetime.date dob: date of birth
:return: the victim's age.
:rtype: int
"""
DAYS_IN_YEAR = 365
# Compute the age.
return (date - dob).days // DAYS_IN_YEAR | 39a88d3f780f46b50d4d64aa0f05f54d20389396 | 680,992 |
def is_unique(l):
"""Check if all the elements in list l are unique."""
assert type(l) is list, "Type %s is not list!" % type(l)
return len(l) == len(set(l)) | b39f70c2a9ccf0c862a57775c2090e4d7ebe46a2 | 358,922 |
def get_unchanged(src_list, npred_dict_new,
npred_dict_old,
npred_threshold=1e4,
frac_threshold=0.9):
"""Compare two dictionarys of npreds, and get the list of sources
than have changed less that set thresholds
Parameters
----------
src_list : list
List of sources to examine
npred_dict_new : dict
Dictionary mapping source name to npred for the current weights file
npred_dict_old : dict
Dictionary mapping source name to npred for the previous weights file
npred_threshold : float
Minimum value of npred above which to consider sources changed
frac_threshold : float
Value of npred_old / npred_new above which to consider sources unchanged
Returns
-------
l : list
Names of 'unchanged' sources
"""
o = []
for s in src_list:
npred_new = npred_dict_new[s]
if npred_new < npred_threshold:
o += [s]
continue
if npred_dict_old is None:
npred_old = 0.
else:
npred_old = npred_dict_old[s]
frac = npred_old / npred_new
if frac > frac_threshold:
o += [s]
return o | d344c4aa34ceff2003b4350d31436c03656d4bfb | 202,459 |
def _get_hidden_node_location(flattened_index, num_rows, num_columns):
"""Converts the flattened index of a hidden node to its index in the 3D array.
Converts the index of a hidden node in the first convolution layer (flattened)
into its location- row, column, and channel in the 3D activation map. The
3D activation map has dimensions: (num_channels, num_rows, num_columns).
Args:
flattened_index: int, index of a hidden node in the first convolution
layer after it is flattened.
num_rows: int, number of rows in the activation map produced by each
kernel.
num_columns: int, number of columns in the activation map produced by each
kernel.
Returns:
channel: int, channel number of the activation map to which the hidden node
belongs to.
row: int, row number of the hidden node in the activation map.
column: int, column number of the hidden node in the activation map.
"""
total = num_rows * num_columns
output_activation_map_row = (flattened_index % total) // num_columns
output_activation_map_column = (flattened_index % total) % num_columns
return (flattened_index // total,
output_activation_map_row,
output_activation_map_column) | 34eaae4183f234ee7bdf176740621ad465cf7006 | 559,578 |
def get_filt_raref_suffix(p_filt_threshs: str, raref: bool) -> str:
"""Create a suffix based on passed config to denote
whether the run is for filtered and/or rarefied data.
Parameters
----------
p_filt_threshs : str
Minimum sample read abundance to be kept in the sample
raref : bool
Whether to repeat all analyses on rarefied datasets (must be
set for a config passed to `-r` to be used)
Returns
-------
filt_raref : str
Suffix for output scripts denoting whether the
run is for filtered and/or rarefied data
"""
filt_raref = ''
if p_filt_threshs:
filt_raref += '_flt'
if raref:
filt_raref += '_rrf'
return filt_raref | 274add1a8b771013c8e3b4d473a3afbeec0db3a8 | 411,756 |
def square_boxes(boxes):
"""
Takes bounding boxes that are almost square and makes them exactly square
to deal with rounding errors.
Parameters
----------
boxes : list of tuple of tuple of int
The bounding boxes to be squared.
Returns
-------
boxes : list of tuple of tuple of int
The squared version of the boxes.
"""
for i,box in enumerate(boxes):
#Ignore missing boxes
if box is None:
continue;
x = box[1][0] - box[0][0];
y = box[1][1] - box[0][1];
if x == y:
continue;#Box is already square
elif x < y:
#x was rounded down
boxes[i] = (box[0],(box[1][0] + 1,box[1][1]));
else:
#y was rounded down
boxes[i] = (box[0],(box[1][0],box[1][1] + 1));
return boxes; | 4e772a5c1d01cd2850c717dc0a14ef68c4d04569 | 381,115 |
def read_file(infile):
"""Read an ASCII file and return the contents."""
f_in = open(infile)
contents = f_in.readlines()
f_in.close()
return contents | 70c2153335e8a8cb834e8602f90ee6815d111efc | 191,279 |
def parse_sources(sources_filename):
"""Parse a 'sources' file to get a list of files that need to be downloaded
for a package.
Args:
param1 (str) sources_filename: the full path to a valid sources file
Returns:
list of (str:md5sum, str:url, str:override_filename)
or
(str:md5sum, str:url, bool:has_override)
"""
fbuff = ""
with open(sources_filename, "r") as fd:
fbuff = fd.readlines()
sources = []
for line in fbuff:
split_line = line.rstrip().split(" ")
line_length = len(split_line)
if line_length == 2 or line_length == 3:
pass
else:
print("{} appears to have a mangled line...".format(sources_filename))
exit()
md5 = split_line[0]
url = split_line[1]
if len(split_line) == 3:
filename = split_line[2]
else:
filename = None
sources.append([md5, url, filename])
return sources | faff9bc3ee2ff634d899219620d60dd93bd23615 | 283,784 |
def getArch(rec):
"""Return arch type (intel/amd/arm).
"""
info = rec["product"]["attributes"]
if info["physicalProcessor"].startswith("Intel "):
return "intel"
if info["physicalProcessor"].startswith("High Frequency Intel "):
return "intel"
if info["physicalProcessor"].startswith("AMD EPYC "):
return "amd"
if info["physicalProcessor"].startswith("AWS Graviton"):
return "arm"
if info["physicalProcessor"].startswith("Variable"):
return "intel"
raise Exception("unknown cpu: %s" % info["physicalProcessor"]) | cc75766c49c748e9be8cbda3ca12d957777092c4 | 201,971 |
from pathlib import Path
from typing import Dict
def license_destination(
destination: Path, libname: str, filename: str, license_directories: Dict[str, str]
) -> Path:
"""Given the (reconstructed) library name, find appropriate destination"""
normal = destination / libname
if normal.is_dir():
return normal / filename
lowercase = destination / libname.lower()
if lowercase.is_dir():
return lowercase / filename
if libname in license_directories:
return destination / license_directories[libname] / filename
# fallback to libname.LICENSE (used for nondirs)
return destination / "{}.{}".format(libname, filename) | c10397d1e7f1664251edf085e78bdd4728b3e846 | 362,463 |
def dumb_unix2dos(in_str):
"""In-efficient but simple unix2dos string conversion
convert '\x0A' --> '\x0D\x0A'
"""
return in_str.replace('\x0A', '\x0D\x0A') | dfe5e8ad2f58b6440cb38c9b7e86dc8d1559346d | 323,638 |
def mk_time_info_extractor(spec):
"""
Returns a function that will extract information from timestamps in a dict format.
The specification should be a list of timetuple attributes
(see https://docs.python.org/2/library/time.html#time.struct_time) to extract,
or a {k: v, ...} dict where v are the timetuple attributes, and k what you want to call them in the output.
Example:
fun = mk_time_info_extractor({'day_of_week': 'tm_wday', 'hour_of_day': 'tm_hour'})
# assuming you defined some timestamp called t...
print t
print fun(t)
2015-06-02 20:46:16.629000
{'day_of_week': 1, 'hour_of_day': 20}
"""
if not isinstance(spec, dict): # if spec is not a dict, make it so
spec = {x: x for x in spec}
def extractor(timestamp):
time_struct = timestamp.timetuple()
return {k: time_struct.__getattribute__(v) for k, v in spec.items()}
return extractor | 808382a459064a31e95c481b16c66f92a0e70a16 | 687,579 |
def get_duplicates(items):
"""
gets a list of duplicate items in given list of items.
:param list | tuple | set items: items to be checked for duplications.
:rtype: list
"""
unique_set = set(items)
if len(unique_set) == len(items):
return []
duplicates = []
for item in unique_set:
if items.count(item) > 1:
duplicates.append(item)
return duplicates | 36e936d029567df40919e4ed6676de0a5eca89a9 | 218,608 |
def restaurant_bouncer(age:int, fully_vaxed:bool = False) -> bool:
"""
checks if the person is allowed to enter restaurant or not.
raises exception if age <= 0 and not int
raises exception if fully_vaxed is not a bool
:param age: (int) age of the individual
:param fully_vaxed: (bool) vaccination status, default is False
:return: (bool) True if allowed else False
"""
assert isinstance(age, int), 'age must be an int'
assert isinstance(fully_vaxed, bool), 'fully_vaxed must be a bool'
assert age >= 0, 'age cannot be negative'
if fully_vaxed or age < 18:
print('Allowed to enter restaurant')
return True
else:
print('Sorry, not allowed in')
return False | e7cafd0b7bff12ce73828d56df49a085a1c21d8a | 196,841 |
def is_odd(x):
""" Judge whether the parameter is odd """
if x % 2:
return True
return False | 7b99fceaf587cdacae853f19fe08a274e746ef0b | 279,367 |
def is_number(s):
"""Check if `s` is a number.
Parameters
----------
s : str, int, float, list
Variable for which the function checks, if it is a number.
Returns
-------
bool
True, if the variable is a number. For example 1, 1.0.
False, if the variable is not a pure number. For example "a", "1a".
"""
try:
float(s)
return True
except ValueError:
return False | 129933b7e28bbfacbe042cef53ac6d3d60354a38 | 448,218 |
def idxd_scan_accel_engine(client, config_number=None, config_kernel_mode=None):
"""Scan and enable IDXD accel engine.
Args:
config_number: Pre-defined configuration number, see docs.
config_kernel_mode: Use kernel IDXD driver. (optional)
"""
params = {}
params['config_number'] = config_number
if config_kernel_mode is not None:
params['config_kernel_mode'] = config_kernel_mode
return client.call('idxd_scan_accel_engine', params) | 0a0871357c06eeb09ca6af72532b88c262398d82 | 323,981 |
def _build_rules_helper(search):
"""Helper function for build_rules().
A branch node like:
["and", [node1, node2]]
will be transformed, recursively, into:
{
"condition": "AND",
"rules": [_build_rules_helper(node1), _build_rules_helper(node2)]
}
A leaf node like:
["nm", "contains", "paracetamol"]
will be transformed into:
{"id": "nm", "operator": "contains", "value": "paracetamol"}
"""
assert len(search) in [2, 3]
if len(search) == 2:
# branch node
return {
"condition": search[0].upper(),
"rules": list(map(_build_rules_helper, search[1])),
}
else:
# leaf node
value = search[2]
if value is True:
value = 1
elif value is False:
value = 0
return {"id": search[0], "operator": search[1], "value": value} | 7414ad3b7801291e09a0ec505ab81502187f273d | 374,361 |
def postproc(maps):
"""Generate PD, R1, R2* (and MTsat) volumes from log-parameters
Parameters
----------
maps : ParameterMaps
Returns
-------
pd : ParameterMap
r1 : ParameterMap
r2s : ParameterMap
mt : ParameterMap, optional
"""
maps.r1.volume = maps.r1.fdata().exp_()
maps.r1.name = 'R1'
maps.r1.unit = '1/s'
maps.r2s.volume = maps.r2s.fdata().exp_()
maps.r2s.name = 'R2*'
maps.r2s.unit = '1/s'
maps.pd.volume = maps.pd.fdata().exp_()
maps.r2s.name = 'PD'
maps.r2s.unit = 'a.u.'
if hasattr(maps, 'mt'):
maps.mt.volume = maps.mt.fdata().neg_().exp_()
maps.mt.volume += 1
maps.mt.volume = maps.mt.fdata().reciprocal_()
maps.mt.volume *= 100
maps.mt.name = 'MTsat'
maps.mt.unit = 'p.u.'
return maps.pd, maps.r1, maps.r2s, maps.mt
return maps.pd, maps.r1, maps.r2s | db16ec87e2400e7a627f23cc3f89a982c6a3ba66 | 42,910 |
import hashlib
import json
def get_config_tag(config):
"""Get configuration tag.
Whenever configuration changes making the intermediate representation
incompatible the tag value will change as well.
"""
# Configuration attributes that affect representation value
config_attributes = dict(frame_sampling=config.proc.frame_sampling)
sha256 = hashlib.sha256()
sha256.update(json.dumps(config_attributes).encode("utf-8"))
return sha256.hexdigest()[:40] | 2cab6e9473822d0176e878114ceb3fda94d1e0f7 | 1,510 |
import math
def is_hexagonal_number(number: int) -> bool:
"""Check if a given number `number` is a hexagonal number of the form n * (2*n − 1)."""
return ((math.sqrt(8*number + 1) + 1) / 4.0).is_integer() | bfa54070f199af7341bd7092b8006f770cad7f9a | 506,554 |
def relative_abundance(data, percent=False):
""" Compute the relative abundance values for a set of data
Args:
data (list of lists): Each list in data represents a row of data.
percent (bool): Abundance is a percent of 100 (30 for 30% instead of 0.3)
Requires:
None
Returns:
(list of lists): Each list in data represents a row of data with relative abundance values.
Example:
relative_abundance([[1,2,3],[4,5,6]])
"""
# compute the sum for each column
sums=[0.0]*len(data[0])
for i in range(len(data[0])):
for row in data:
sums[i]+=float(row[i])
relab=[]
for row in data:
new_row=[]
for i, value in enumerate(row):
try:
new_value=value/sums[i]
except ZeroDivisionError:
new_value=0
new_row.append(new_value)
if percent:
new_row = map(lambda x: x * 100.0, new_row)
relab.append(new_row)
return relab | 74809214376b0741468a999270e4b921cb0afbae | 252,152 |
import re
def clean_tag(tag):
"""
Clean image tags before logging to tensorboard
"""
invalid_characters = re.compile(r'[^-/\w\.]')
return invalid_characters.sub('_', tag) | e5b200564966a5832cd0ec5be14b42c77fe21f32 | 114,096 |
import hashlib
def checksum(file_path, hash_type = hashlib.sha256, chunk_num_blocks = 128):
"""
Compute a hash Checksum of the given File. Default Hash Method is MD5
:param file_path: Path of the File.
:param hash_type: Specify which Hash Algorithm to use (mdf5, sha256, sha3, etc).
:param chunk_num_blocks:
:return: Hexadecimal Checksum of the File.
"""
hash_to_use = None
hash_to_use = hash_type
with open(file_path, "rb") as file:
# Read and Iterate over the Data a step at a time until an Empty Line is received.
for chunk in iter(lambda: file.read(chunk_num_blocks * hash_to_use.block_size), b""):
hash_to_use.update(chunk)
return hash_to_use.hexdigest() | a2c9210e6b908f69f8a4ac8e476156c31d9b8687 | 481,392 |
import re
def is_dashed_words(token):
"""Is the string is dash separated like "Galatasary-Besiktas".
:param token: string
:return: Boolean
"""
regexp = re.compile(r'^[A-Za-z0-9]+(?:-[A-Za-z0-9]+)*$')
if regexp.search(token) is not None:
return True
else:
return False | c7bf01603aae5f7b8517d2f33d79346dac0940e9 | 535,980 |
def read_labeled_image_list(image_list_file):
"""Reads a .csv file containing paths and labels, should be in the format:
image_file_location1,valence_value1,arousal_value1
image_file_location2,valence_value2,arousal_value2
...
images should be jpgs
Returns:
a list with all filenames in file image_list_file and a list containing lists of the 2 respective labels
"""
f = open(image_list_file, 'r')
filenames = []
labels_val = []
labels_ar = []
for line in f:
inputs = line.rstrip().split(',')
filenames.append(inputs[0])
labels_val.append(float(inputs[1]))
labels_ar.append(float(inputs[2]))
labels = [list(a) for a in zip(labels_val, labels_ar)]
return filenames, labels | 15b86403c2eaf9ddc358a2c49a5d53a87e90a4d7 | 360,268 |
def merge_dict(*data) -> dict:
"""Merges any number of dictionaries together
Args:
data: any number of dictionaries
Returns:
result: merged dictionary
"""
result = {}
for d in data:
result.update(d)
return result | d5a77e8742bfae6e6846ae05be80e51e6e45e849 | 490,905 |
def read_clique_file(clique_ases_filename):
"""
Format of clique file:
!XXXXX <- These lines correspond to blacklisted guard ASes
XXXXX <- These lines correspond to client ASes in the clique
One AS per line.
"""
blacklisted_guard_asns = []
clique_asns = []
with open(clique_ases_filename, 'r') as clique_file:
for line in clique_file:
line = line.strip('\n')
if line[0] == '!':
blacklisted_guard_asns.append(line[1:])
else:
clique_asns.append(line)
return clique_asns, blacklisted_guard_asns | 9b1caee9a01ee74fe79bfcd3e9573cb0c33acc58 | 403,433 |
def find_person_id(source_table):
"""
convenience function to return the person_id for a source table
Args:
- source_table (ScanReportTable)
Returns:
- person_id (ScanReportField)
"""
return source_table.person_id | 533fdcd7206b8af9ff35d5120af943e5380e246a | 197,132 |
def first_matching(iterable, predicate):
"""The first item matching a predicate.
Args:
iterable: An iterable series of items to be searched.
predicate: A callable to which each item will be passed in turn.
Returns:
The first item for which the predicate returns True.
Raises:
ValueError: If there are no matching items.
"""
for item in iterable:
if predicate(item):
return item
raise ValueError("No matching items") | 8fe4a07e8794847b7e3fb6488ffdf5216e3b261f | 446,886 |
def _chk(resval):
"""Check result of command."""
if resval[0] != 'OK':
raise Exception(resval[1])
return resval[1] | 9ba56f760a4b25874c62f44301856d77b786c778 | 74,514 |
def upload_metadata_fixture() -> dict:
"""Fixture to return an example metadata dict for
creating a dataset
Returns:
dict: JSON formatted metadata dict for a Dataset
"""
metadata = {
"@context": ["metadata-v1"],
"@type": "dcat:Dataset",
"dafni_version_note": "Initial Dataset version",
"dcat:contactPoint": {
"@type": "vcard:Organization",
"vcard:fn": "Tester 1",
"vcard:hasEmail": "[email protected]",
},
"dcat:keyword": ["Test"],
"dcat:theme": ["Utility and governmental services"],
"dct:PeriodOfTime": {
"type": "dct:PeriodOfTime",
"time:hasBeginning": None,
"time:hasEnd": None,
},
"dct:accrualPeriodicity": None,
"dct:conformsTo": {"@id": None, "@type": "dct:Standard", "label": None},
"dct:created": "2021-03-29",
"dct:creator": [
{
"@type": "foaf:Organization",
"@id": "https://testing.com",
"foaf:name": "Testing",
"internalID": None,
}
],
"dct:description": "Some data for testing",
"dct:identifier": [],
"dct:language": "en",
"dct:license": {
"@type": "LicenseDocument",
"@id": "https://creativecommons.org/licences/by/4.0/",
"rdfs:label": None,
},
"dct:publisher": {
"@id": None,
"@type": "foaf:Organization",
"foaf:name": None,
"internalID": None,
},
"dct:rights": None,
"dct:spatial": {"@id": None, "@type": "dct:Location", "rdfs:label": None},
"dct:subject": "Utilities / Communication",
"dct:title": "Jamie test data",
"geojson": {},
}
return metadata | fdd924e1c91331425cb67b694050fa8e7eedea1a | 349,260 |
def _app_complete_on_provider(application, provider):
"""
Determines if an Application is completely available on a Provider, i.e. all active ApplicationVersions have a
ProviderMachine + InstanceSource on given Provider.
Args:
application: Application object
provider: Provider object
Returns: boolean
"""
for av in application.active_versions():
av_on_prov = False
for prov_machine in av.machines.all():
if prov_machine.instance_source.provider == provider:
av_on_prov = True
if not av_on_prov:
return False
return True | 9fb3d4671a9cfd0b6207306b48314a0b303a6b52 | 640,216 |
def group_split(items, group_size):
"""Split a list into groups of a given size"""
it = iter(items)
return list(zip(*[it] * group_size)) | 0fdb7eeaf29513b9c331aa19015a47e964ad19fc | 590,023 |
def get_main_app_sub_parser(parent_parser):
"""
Creates and adds a sub_parser to parent_parser.
Returns the sub_parser
:param parent_parser: Parser to add the sub_parser to
:type parent_parser: argparse.ArgumentParser
:return: Sub Parser
:rtype: argparse.ArgumentParser
"""
# Define sub_parser object, its dest is cmd
sub_parser = parent_parser.add_subparsers(
title="subcommands",
description="one of these subcommands must be provided",
metavar="",
dest="cmd"
)
return sub_parser | 3cb0e8d61473785d7cdfb5fdfcab5f040cc1e8e1 | 191,797 |
def AcPathProg(context, program, selection=None, value_if_not_found=None,
path=None, pathext=None, reject=[], prog_str=None):
"""Corresponds to AC_PATH_PROG_ autoconf macro.
:Parameters:
context
SCons configuration context.
program
Name of the program to be checked.
selection
If ``None`` (default), the program will be found automatically,
otherwise the method will return the value of **selection**.
value_if_not_found
Value to be returned, when the program is not found.
path
Search path.
pathext
Extensions used for executable files.
reject
List of file names to be rejected if found.
prog_str
Used to display 'Checking for <prog_str>...' message.
.. _AC_PATH_PROG: http://www.gnu.org/software/autoconf/manual/autoconf.html#index-AC_005fPATH_005fPROG-318
"""
if prog_str is None:
prog_str = program
context.Display("Checking for %s... " % prog_str)
if not selection:
progpath = context.env.WhereIs(program, path, pathext, reject)
if progpath:
context.Result(progpath)
else:
if value_if_not_found:
progpath = value_if_not_found
context.Result("not found, using '%s'" % progpath)
else:
context.Result('no')
return progpath
else:
context.Result(str(selection))
return selection | f4de015d78e5df4781123dbe1d491c33aaea739b | 452,052 |
def cluster_rating(df, movie_id, cluster):
"""Return the average rating for a movie, based on the cluster"""
cluster_rating = df[(df['movie_id'] == movie_id) & (df['cluster'] == cluster)]
return cluster_rating['rating'].mean() | f3fdf129efef25669b7f8b34b61c7cb7a6ce35ef | 405,369 |
def z_denorm(data, mean, std):
"""
Denormalize the data using that was normalized using z-norm
:param data: 1d array of power consumption
:param mean: the mean of the power consumption
:param std: the std of the power consumption
:return: denormalized power consumption
"""
return data * std + mean | 00bfb9178ff6c5b0160613ac90e19b2722165037 | 285,280 |
def to_from_idx(iterable, start_idx=0):
"""Return mappings of items in iterable to and from their index.
>>> char2idx, idx2char = to_from_idx("abcdefg")
>>> char2idx
{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5, 'g': 6}
>>> idx2char
{0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e', 5: 'f', 6: 'g'}
"""
return map(dict, zip(*(
((item, i), (i, item))
for i, item in enumerate(iterable, start=start_idx)))) | 8e62ea0222848a17deff5bef6942e71e71fef00f | 231,603 |
def check_list_date(date_list):
"""
Check that date is a list with 3 ints (day, month, yr)
:param date: list of length of 3
:return: boolean
"""
return len(date_list) == 3 and all(isinstance(item, int) for item in date_list) | 680775a1d85dadc8c937f39b93c2d9c4e9cb18dd | 267,248 |
def int_to_16bit(i):
"""
return an int as a pair of bytes
"""
return ((i >> 8) & 0xff, i & 0xff) | 4432252b485bf9cfd8cd4d42df533348d1d35200 | 611,063 |
def _filter_resources(prefix, resources):
"""
Returns a list of resources, which starts with given prefix
"""
return list(filter(lambda r: r.startswith(prefix), resources)) | 8f14e5cf4bf083499c75b3c5e7d29bb323958712 | 552,819 |
import torch
def abs_loss(labels, predictions):
""" Square loss function
Args:
labels (array[float]): 1-d array of labels
predictions (array[float]): 1-d array of predictions
Returns:
float: square loss
"""
# In Deep Q Learning
# labels = target_action_value_Q
# predictions = action_value_Q
# loss = 0
# for l, p in zip(labels, predictions):
# loss = loss + (l - p) ** 2
# loss = loss / len(labels)
# loss = nn.MSELoss()
output = torch.abs(predictions - labels)
output = torch.sum(output) / len(labels)
# output = loss(torch.tensor(predictions), torch.tensor(labels))
# print("LOSS OUTPUT")
# print(output)
return output | f371a972180960a089e720b0d4e6b08da602f7ae | 110,396 |
def jsonrpc_result(id, result):
"""Create JSON-RPC result response"""
return {
'jsonrpc': '2.0',
'result': result,
'id': id,
} | a318b85ac2a9727a3b6c02b1dde499bc4c3a505d | 339,947 |
def batchify(data, bsz, device):
"""Divides the data into bsz separate sequences, removing extra elements
that wouldn't cleanly fit.
Args:
data: Tensor, shape [N]
bsz: int, batch size
Returns:
Tensor of shape [N // bsz, bsz]
"""
seq_len = data.size(0) // bsz
data = data[:seq_len * bsz]
data = data.view(bsz, seq_len).t().contiguous()
return data.to(device) | 9529f65a7029fc49cf11c19dbfd6b46f7c32e1f9 | 496,586 |
from typing import Optional
from typing import Dict
def remove_none(d: Optional[Dict] = None) -> Dict:
"""Remove None value from dict.
Args:
d: Dict to remove None value.
Returns:
dict: Dict without None value.
"""
if not d:
return {}
return {k: v for k, v in d.items() if v is not None} | 8dc75a41a45cf39fa1a978e142ffc2b41375fdb4 | 469,964 |
def retrieve_from_cosmos_db(db_handler, vault_id):
"""
Retrieve vault from CosmosDB defined in db_handler
:param db_handler: handler for CosmosDB
:param vault_id: vault ID to be retrieved
:return: Vault
"""
vault_ret = db_handler.find_fuzzy_vault(vault_id)
return vault_ret | c69302240556980a35811777e9bbd81fca19310d | 98,972 |
def find_policy(boto_iam, policy_name):
"""
Find an AWS policy by name and return a dict of information about it.
AWS's existing `list_policies()` API doesn't seem to let you search by
name, so I iterate over all of them and match on our side.
"""
paginator = boto_iam.get_paginator('list_policies')
response_iterator = paginator.paginate()
for policy_resp in response_iterator:
for policy in policy_resp['Policies']:
if policy['PolicyName'] == policy_name:
return policy
return None | 870b240c001c83be8016059dffe704c71786b485 | 137,595 |
def get_all_with_given_response(rdd, response='404'):
"""
Return a rdd only with those requests
that received the response code entered.
Default set to '404'.
return type: pyspark.rdd.PipelinedRDD
"""
def status_iterator(ln):
try:
status = ln.split(' ')[-2]
return True if status == response else False
except:
pass
return rdd.filter(status_iterator) | 8268095938bbc35a6418f557af033a458f041c89 | 4,881 |
def mirror(arr, axes=None):
"""
Reverse array over many axes. Generalization of arr[::-1] for many dimensions.
Parameters
Adapted from scikit-ued: https://github.com/LaurentRDC/scikit-ued
----------
arr : `~numpy.ndarray`
Array to be reversed
axes : int or tuple or None, optional
Axes to be reversed. Default is to reverse all axes.
Returns
-------
out : `~numpy.ndarray`
Mirrored array.
"""
if axes is None:
reverse = [slice(None, None, -1)] * arr.ndim
else:
reverse = [slice(None, None, None)] * arr.ndim
if isinstance(axes, int):
axes = (axes,)
for axis in axes:
reverse[axis] = slice(None, None, -1)
return arr[tuple(reverse)] | eddb83ff410f8d32a1d615cba53412b927d69fd3 | 184,594 |
def pretty_byte_count(num):
"""Converts integer into a human friendly count of bytes, eg: 12.243 MB"""
if num == 1:
return "1 byte"
elif num < 1024:
return "%s bytes" % num
elif num < 1048576:
return "%.2f KB" % (num/1024.0)
elif num < 1073741824:
return "%.3f MB" % (num/1048576.0)
elif num < 1099511627776:
return "%.3f GB" % (num/1073741824.0)
else:
return "%.3f TB" % (num/1099511627776.0) | f0bac2c6ab126b4cfefeee1ff6522b85234e0a1b | 555,338 |
import operator
def upper_bound(x, values, cmp=operator.lt):
"""Find the last position in values
where x could be inserted without changing
the ordering.
>>> values = [1, 2, 3, 3]
>>> print upper_bound(0, values)
0
>>> print upper_bound(3, values)
4
>>> print upper_bound(4, values)
4
"""
first, count = 0, len(values)
while count > 0:
half = count/2
middle = first + half
if cmp(x, values[middle]):
count = half
else:
first = middle + 1
count = count - half - 1
return first | ab12fadda504b982aca146a7fae682dd163dc392 | 551,150 |
import socket
def is_hostname_valid(host: str) -> bool:
"""
Test if a given hostname can be resolved.
"""
try:
socket.gethostbyname(host)
return True
except socket.gaierror:
return False
return False | 99210e9a1c1eebb2a360e022a0d8dfa3c36418e9 | 538,439 |
def filter_and_rename_dict(indict, filterdict):
"""
Renames the keys of the input dict using the filterdict.
Keys not present in the filterdict will be removed.
Example:
>>> import pprint
>>> outdict =filter_and_rename_dict({'a': 1, 'b':[2,2]}, {'a': 'c', 'b': 'd', 'e': 'f'})
>>> pprint.pprint(outdict)
{'c': 1, 'd': [2, 2]}
"""
outdict = {
filterdict[k]: v
for k, v in indict.items()
if ((v is not None) and (k in filterdict.keys()))
}
return outdict | 26fd12002aeee455645333748b2a4f9d09642d3a | 489,126 |
from typing import Optional
import requests
import json
def authenticate_username(
token: str,
github_api: str = 'https://api.github.com/graphql') -> Optional[str]:
"""Check that the token correspond to a valid GitHub username.
Using `GitHub GraphQL API v4 <https://developer.github.com/v4/>`_
Parameters
----------
token
GitHub token that gives read only authorization
github_api
URL of GitHub's API
Return
------
GitHub's username or None
"""
headers = {'Authorization': f'bearer {token}'}
query = "query { viewer { login }}"
reply = requests.post(github_api, json={'query': query}, headers=headers)
status = reply.status_code
if status != 200:
return None
data = json.loads(reply.text)['data']
return data['viewer']['login'] | b8ba4b3fb2e42c27b474d364f37c6c7086450401 | 75,177 |
def _get_connection_params(resource):
"""Extract connection and params from `resource`."""
args = resource.split(";")
if len(args) > 1:
return args[0], args[1:]
else:
return args[0], [] | 87cdb607027774d58d1c3bf97ac164c48c32395c | 1,630 |
def ig_unfold_tree_with_attr(g, sources, mode):
"""Call igraph.Graph.unfold_tree while preserving vertex and edge
attributes.
"""
g_unfold, g_map = g.unfold_tree(sources, mode=mode)
g_eids = g.get_eids([(g_map[e.source], g_map[e.target]) for e in g_unfold.es])
for attr in g.edge_attributes():
g_unfold.es[attr] = g.es[g_eids][attr]
for attr in g.vertex_attributes():
g_unfold.vs[attr] = g.vs[g_map][attr]
return g_unfold | c451318ba382164ab73e35d2094737e94189453b | 499,172 |
def check_sig_name(sig_name, sigs, errors):
"""
Check sig name
:param sig_name: name of sig in sig-info.yaml
:param sigs: content of all sigs
:param errors: errors count
:return: errors
"""
if sig_name not in [x['name'] for x in sigs]:
print('ERROR! sig named {} does not exist in sigs.yaml.'.format(sig_name))
errors += 1
return errors | 08b750a71a67fa6926e9625db3be47f9281b72c6 | 472,975 |
def seq_max_split(seq, max_entries):
""" Given a seq, split into a list of lists of length max_entries each. """
ret = []
num = len(seq)
seq = list(seq) # Trying to use a set/etc. here is bad
beg = 0
while num > max_entries:
end = beg + max_entries
ret.append(seq[beg:end])
beg += max_entries
num -= max_entries
ret.append(seq[beg:])
return ret | 5f17c521abf0279267711811a6cbf54f8029f78b | 533,189 |
def _no_common_member(a, b):
"""
Validates that there is no common member in the two lists a and b. Returns
False if there is a common member.
"""
a_set = set(a)
b_set = set(b)
if (a_set & b_set):
return False
else:
return True | da514ff4be2ed0cfd02d9266e33851dd41d37b02 | 526,115 |
def div_growth_rateYr(t, dt, d0):
"""
Calculates the growth rate of a dividend using the dividend growth rate
valuation model where dividend is paid yearly.
parameters:
-----------
t = time
dt = current price of dividend
d0 = base year dividend price
"""
t = t - 1
growth_rate = (((dt/d0) ** (1/t)) - 1) * 100
return round(growth_rate, 4) | a6e497c426ed212d1caa2d241bacb8a0aa07b3bd | 190,817 |
from typing import List
def rotated_array(A: List[int], x: int) -> int:
"""We can use a binary search to get the time less than O(n). Instead of
looking for a particular element, we are going search for an index `i` such
that A[i - 1] > A[i] to find the actual starting index of the array.
Once we have the actual starting point of the array, we can break it into
two halves. Each half of the array is ascending within some range, and we
can use a simple comparison to check which half to search for `x`. We then
perform another binary search in that range.
If we don't find anything, that means the array was rotated 0 times.
param A: The array to search
param x: The element to find
returns: The index of the element in the array
"""
left = 0
right = len(A) - 1
def find_start_idx() -> int:
"""Find the starting index of the array given that there's some
arbitrary rotation.
"""
left = 0
right = len(A) - 1
# Find the starting index of the array
while left < right:
mid = (left + right) // 2
if A[mid - 1] > A[mid]:
return mid
elif A[mid] > A[-1]:
left = mid
else:
right = mid
return 0
def binary_search(left: int, right: int) -> int:
while left < right:
mid = (left + right) // 2
if A[mid] == x:
return mid
elif A[mid] < x:
left = mid
else:
right = mid
return -1
start_idx = find_start_idx()
# Check which half `x` is in, then set the left and right bounds for the
# search
if A[start_idx] <= x <= A[-1]:
left = start_idx
right = len(A) - 1
else:
left = 0
right = start_idx
return binary_search(left, right) | ff652bdcdac7b409bf4e1c4bd10e5fff6e9c67c4 | 54,530 |
import io
import tarfile
def extract_tarbytes(file_bytes, path):
"""Extract tarfile as bytes.
Args:
file_bytes (bytearray): Bytes of file to extract
path (str): Path to extract it to
Returns:
path: destination path
"""
tar_bytes_obj = io.BytesIO(file_bytes)
with tarfile.open(fileobj=tar_bytes_obj, mode="r:gz") as tar:
tar.extractall(path)
return path | 6c4d77d362d8bb0755cca00a505c1a40b2db2cb9 | 267,568 |
from typing import AnyStr
import json
def load_json_dict(text: AnyStr) -> dict:
"""Loads from JSON and checks that the result is a dict.
Raises
------
ValueError
if `text` is not valid JSON or is valid JSON but not a dict
"""
ans = json.loads(text)
if not isinstance(ans, dict):
raise ValueError('not a dict')
return ans | 3f35c6eed694f8b8087a7ee1252ef9fa99864280 | 696,138 |
import random
def fisher_yates_shuffle(sequence):
"""Shuffles the sequence in-place randomly and returns it"""
if len(sequence) < 1:
return sequence
index_last = len(sequence) - 1
for index_curr in range(index_last):
index_random = random.randint(index_curr, index_last)
if index_random != index_curr:
sequence[index_curr], sequence[index_random] =\
sequence[index_random], sequence[index_curr]
return sequence | 4c0b55a23ce7d8c580e477fd94274d5b8b872ad5 | 570,442 |
def format_number(value):
"""
Format a number returns it with comma separated
"""
return "{:,}".format(value) | 2f198c08beee40f3e128992c5c9b9de9a300bbdf | 492,080 |
def EscapePath(path):
"""Returns a path with spaces escaped."""
return path.replace(" ", "\\ ") | b07b0b5148eb95ce1a94363e045fb4468b172aa0 | 139,006 |
def _array(fn, cls, genelist, **kwargs):
"""
Returns a "meta-feature" array, with len(genelist) rows and `bins`
cols. Each row contains the number of reads falling in each bin of
that row's modified feature.
"""
reader = cls(fn)
_local_coverage_func = cls.local_coverage
biglist = []
if 'bins' in kwargs:
if isinstance(kwargs['bins'], int):
kwargs['bins'] = [kwargs['bins']]
for gene in genelist:
if not isinstance(gene, (list, tuple)):
gene = [gene]
coverage_x, coverage_y = _local_coverage_func(
reader, gene, **kwargs)
biglist.append(coverage_y)
return biglist | 7e7dae118a04ab787ad65a29f9ef4af851f25258 | 490,969 |
import re
def rm_stress(word_list):
"""
Takes a list of strings in IPA that contain prosodic accent marks and removes
the dashes to clean the data.
:word_list: list of strings
:returns: list of strings without prosodic accent marks
:rtype: list of strings
"""
new_list = []
for s in range(len(word_list)):
word = word_list[s]
new_word = re.compile(r"'").sub("",word)
new_list.append(new_word)
return(new_list) | a05b24a552380d5a2af2abe219a89b3496351f42 | 572,871 |
def stdDevOfLengths(L):
"""
L: a list of strings
returns: float, the standard deviation of the lengths of the strings,
or NaN if L is empty.
"""
if not L:
return float('NaN')
mean = sum([len(t) for t in L]) / float(len(L))
quantities = [(len(t) - mean)**2 for t in L]
stdDev = (sum(quantities) / len(L))**0.5
return stdDev | 62621be9ae0ad79ae523dc014a0b3e8bdbfbb19e | 108,974 |
def zipdict(keys, vals):
"""Creates a dict with keys mapped to the corresponding vals."""
return dict(zip(keys, vals)) | 15cb1a2c5936f973703ea14126056ff076160f70 | 72,870 |
def _sanitize_text(text):
""" Cleans up line and paragraph breaks in `text`
"""
text = ' '.join(text.replace('\n', ' ').split())
return text.replace('<br> ', '\n\n') \
.replace('<p>', '\n') | 845b41bf4de770422d0ad227bd08cffe02255822 | 138,555 |
def get_snapshots(cluster_config, repository):
"""
Get list of snapshots.
Args:
cluster_config: cluster specific config
repository: repository name
Returns:
Returns list of snapshots from the given cluster:repo
"""
es = cluster_config['es']
snapshots = es.cat.snapshots(
repository=repository,
format='json',
request_timeout=300
)
return snapshots | 679f530eb83f51577e4a8bf3d39544a341f1d5bd | 202,167 |
import re
def get_region_from_image_uri(image_uri):
"""
Find the region where the image is located
:param image_uri: <str> ECR image URI
:return: <str> AWS Region Name
"""
region_pattern = r"(us(-gov)?|ap|ca|cn|eu|sa)-(central|(north|south)?(east|west)?)-\d+"
region_search = re.search(region_pattern, image_uri)
assert region_search, f"{image_uri} must have region that matches {region_pattern}"
return region_search.group() | e9051bcd53b44fd8ff09ab6beebd861994a195af | 149,380 |
import re
def split_program_by_processing_element_label(program_string):
"""
Split a program string into a list of individual processing element programs based on the location of <*> labels.
:param program_string: multiline string containing an assembly program with <*> labels
:return: the corresponding list of label-string tuples
"""
# Find the labels.
labels = re.findall(r"<(.*?)>", program_string)
# Replace all instances of processing element delimiter with just the bookends "<>" as a sigil.
program_string = re.sub(r"<.*>", "<>", program_string)
# Split the program string into a list of processing element programs and delete the leading null field.
processing_element_program_strings = program_string.split("<>")
del processing_element_program_strings[0]
# Return the resulting list.
return list(zip(labels, processing_element_program_strings)) | 409ec401352bb7284f17fb49a9076b5cdd0359b6 | 617,595 |
def standard_arguments(parser):
"""Add required and optional arguments common to all scripts"""
parser._action_groups.pop()
required = parser.add_argument_group('required arguments')
optional = parser.add_argument_group('optional arguments')
required.add_argument('-s', dest='server', action='store', required=True, help="DHIS2 server URL")
required.add_argument('-u', dest='username', action='store', required=True, help='DHIS2 username')
optional.add_argument('-p', dest='password', action='store', required=False, help='DHIS2 password')
return required, optional | ab51507481cc34666acfa95f987aa36b39c9fdbf | 203,799 |
def new_vars(n):
"""Output a list of n characters startin with 'a'
Args:
n (int): Number of characters to output
Returns:
list[str]: A list ['a', 'b', 'c', ...] of length n.
"""
return [chr(ord('a') + i) for i in range(n)] | c9f17330dc5ca141b87c1a7cd365c3c09a005941 | 420,656 |
def compute_lambda_tilde(m1, m2 ,l1 , l2):
""" Compute Lambda Tilde from masses and tides components
--------
m1 = primary mass component [solar masses]
m2 = secondary mass component [solar masses]
l1 = primary tidal component [dimensionless]
l2 = secondary tidal component [dimensionless]
"""
M = m1 + m2
m1_4 = m1**4.
m2_4 = m2**4.
M5 = M**5.
comb1 = m1 + 12.*m2
comb2 = m2 + 12.*m1
return (16./13.)*(comb1*m1_4*l1 + comb2*m2_4*l2)/M5 | 620ae66de9e06cdbf08561fd1bf2514b4cc6ba63 | 603,038 |
def rax_clb_node_to_dict(obj):
"""Function to convert a CLB Node object to a dict"""
if not obj:
return {}
node = obj.to_dict()
node['id'] = obj.id
node['weight'] = obj.weight
return node | 14526744ef608f06534011d1dcdd5db62ac8b702 | 675,212 |
def distinct(l):
"""
Given an iterable will return a list of all distinct values.
param:
l:an iterable
return:
the list
"""
return list(set(l)) | 8051823ad033bbe978204dfee104aca7348af038 | 546,964 |
def transpose(grid):
"""
Switches rows and columns.
>>> transpose([[1, 2, 3], [4, 5, 6]])
[[1, 4], [2, 5], [3, 6]]
"""
R = len(grid)
C = len(grid[0])
inverted = []
for r in range(C):
row = [c[r] for c in grid]
inverted.append(row)
return inverted | b0b28a44784cfb7e212d48d5eb6b76d8e7f36904 | 212,160 |
def chunk(text: str, size: int) -> list:
""" Split text into chunks of a given size. """
return [text[i : i + size] for i in range(0, len(text), size)] | b6f063fcc1d678d7590b9a59eed580f7643cabbd | 298,397 |
def stmts_to_json(stmts_in, use_sbo=False, matches_fun=None):
"""Return the JSON-serialized form of one or more INDRA Statements.
Parameters
----------
stmts_in : Statement or list[Statement]
A Statement or list of Statement objects to serialize into JSON.
use_sbo : Optional[bool]
If True, SBO annotations are added to each applicable element of the
JSON. Default: False
matches_fun : Optional[function]
A custom function which, if provided, is used to construct the
matches key which is then hashed and put into the return value.
Default: None
Returns
-------
json_dict : dict
JSON-serialized INDRA Statements.
"""
if not isinstance(stmts_in, list):
json_dict = stmts_in.to_json(use_sbo=use_sbo)
return json_dict
else:
json_dict = [st.to_json(use_sbo=use_sbo, matches_fun=matches_fun)
for st in stmts_in]
return json_dict | 274a3507ff72432cf93171a7785ab5c05c00322c | 468,312 |
def construct_patch(self, path, data='',
content_type='application/octet-stream', **extra):
"""Construct a PATCH request."""
return self.generic('PATCH', path, data, content_type, **extra) | d063eef4ce62c8d764766a281bea48b0be15095c | 523,231 |
import hashlib
def get_checksum(data):
"""Return the MD5 hash for the given data."""
m = hashlib.md5()
m.update(data)
return m.hexdigest() | 6693610f0bbacfc5ee91f327b1deb377c00445fe | 332,164 |
import re
def order_files_numerically(file_list):
"""
If there is a list of files, order them numerically, not
alphabetically and return the sorted list of files.
Parameters
----------
file_list : list
A list of strings that contain one or more numerical values.
The strings will be sorted by only the numerical values within
them.
Returns
-------
sorted_file_list : list
A new list of strings sorted numerically
"""
sorted_file_list = []
numerical_dict = {}
for i, file_name in enumerate(file_list):
numbers = re.findall(r"\d+", file_name)
numbers = tuple([int(j) for j in numbers])
numerical_dict[numbers] = i
numerical_list = sorted(numerical_dict.keys())
for number in numerical_list:
index = numerical_dict[number]
sorted_file_list.append(file_list[index])
return sorted_file_list | ec602520005c470c2b2d977a4d4ea54827a6acc0 | 533,173 |
def enrich_ioc_dict_with_ids(ioc_dict):
"""
Enriches the provided ioc_dict with IOC ID
:param ioc_dict: IOC dict transformed using the SEARCH_IOC_KEY_MAP
:return: ioc_dict with its ID key:value updated
"""
for ioc in ioc_dict:
ioc['ID'] = '{type}:{val}'.format(type=ioc.get('Type'), val=ioc.get('Value'))
return ioc_dict | 34c471337a4e4c520dd8598e85c4cbd25ce56b93 | 600,868 |
def encrypt(public_key, message):
"""
Takes a non-negative integer message encrypts it using the public key
"""
if message >= public_key["n"]:
raise ValueError("Message is too long. Consider generating larger keys.")
return pow(message, public_key["e"], public_key["n"]) | 6a1be5b987c2d4bec644df8fee76762235cedb44 | 237,015 |
def monomial_gcd(a, b):
"""Greatest common divisor of tuples representing monomials.
Lets compute GCD of x**3*y**4*z and x*y**2:
>>> monomial_gcd((3, 4, 1), (1, 2, 0))
(1, 2, 0)
which gives x*y**2.
"""
return tuple([ min(x, y) for x, y in zip(a, b) ]) | 3e00732514415b21fbf105ee42486aef608d08c7 | 353,971 |
from typing import Any
from typing import Optional
from typing import Type
import json
import hashlib
def gethash(
value: "Any",
hashtype: str = "sha256",
encoding: str = "utf-8",
json_encoder: "Optional[Type[json.JSONEncoder]]" = None,
) -> str:
"""Return a hash of `value`.
Can hash most python objects. Bytes and bytearrays are hashed directly.
Strings are converted to bytes with the given encoding.
All other objects are first serialised using json.
Args:
value: Value to hash.
hashtype: Any of the hash algorithms supported by hashlib.
encoding: Encoding used to convert strings to bytes before
calculating the hash.
json_encoder: Customised json encoder for complex Python objects.
Returns:
A hash of the input `value`.
"""
if isinstance(value, (bytes, bytearray)):
data = value
elif isinstance(value, str):
data = value.encode(encoding)
else:
# Try to serialise using json
data = json.dumps(
value,
ensure_ascii=False,
cls=json_encoder,
sort_keys=True,
).encode(encoding)
hash_ = hashlib.new(hashtype)
hash_.update(data)
return hash_.hexdigest() | fab7801a8cc6bf5a23d3ba681a0a5d0fb2a81a0e | 477,162 |
def join_lemmas(doc):
"""Return joined lemmas with appropriate whitespace."""
return "".join(token.lemma_ + token.whitespace_ for token in doc) | 87e6f5b1d826dd9d97519dfe105d9020260d8626 | 71,434 |
def truncate_string(string, max_len=100):
"""Shorten string s to at most n characters, appending "..." if necessary.
"""
if string is None:
return None
if len(string) > max_len:
string = string[:max_len-3] + '...'
return string | 0b2ef8974e3509dd051c10fb5c3059a366e218a5 | 201,677 |
def contains(value, arg):
""" Checks insensitive if a substring is found inside a string
Args:
value (str): The string
arg (str): The substring
Returns:
bool: True if string contains substring, False otherwise
"""
value = value.upper()
arg = arg.upper()
if arg in value:
return True
return False | 7da05cf849c3e0bce88d039852175eee6b35c221 | 22,817 |
import math
def get_line_length(start_x, start_y, end_x, end_y):
"""
takes x and y of start and end point
returns distance of those points
"""
a = end_x - start_x
g = end_y - start_y
length = math.sqrt(a**2+g**2)
return length | 404075b6f387280ca906c16441da305e59cfbcf0 | 353,527 |
def min_list(lst):
"""
A helper function for finding the minimum of a list of integers where some of the entries might be None.
"""
if len(lst) == 0:
return None
elif len(lst) == 1:
return lst[0]
elif all([entry is None for entry in lst]):
return None
return min([entry for entry in lst if entry is not None]) | 5287286c843086c271f6fc709b275796cc68f314 | 675,056 |
def d8n_get_all_images_topic_bag(bag):
"""
Returns the (name, type) of all topics that look like images.
"""
tat = bag.get_type_and_topic_info()
consider_images = [
'sensor_msgs/Image',
'sensor_msgs/CompressedImage',
]
all_types = set()
found = []
topics = tat.topics
for t,v in topics.items():
msg_type = v.msg_type
all_types.add(msg_type)
_message_count = v.message_count
if msg_type in consider_images:
# quick fix: ignore image_raw if we have image_compressed version
if 'raw' in t:
other = t.replace('raw', 'compressed')
if other in topics:
continue
found.append((t,msg_type))
return found | 1093cb8bb13946a170acf2333bcae1617db163d9 | 657,652 |
def validate_password(data):
"""
Validates the given password in a request data. First, checks if
it exists, then check if the password has the necessary length
:param data: Dict containing all the request data
:return: Boolean determining the request has a valid password
"""
if "password" not in data:
return False
password = data["password"]
if len(password) < 4 or len(password) > 16:
return False
return True | 7b739842f1a584195e96993e968d2bd54cb3a5fa | 499,903 |
import re
def strip_concat(sequence: str,
) -> str:
"""
Cleans up concat sequences (peptide_charge) and remove modifications
to return peptide string for labeling site calculations
:param sequence: concat sequence containing charge and modificaitons
:return:
"""
# 2021-05-18 strip all N-terminal n from Comet
sequence = re.sub('^n', '', sequence)
# Strip all modifications
sequence = re.sub('\\[.*?\\]', '', sequence)
# Strip the underscore and charge
sequence = re.sub('_[0-9]+', '', sequence)
return sequence | c646f90a68873661049dd39b7cc4c9bcf47134b5 | 590,251 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.