content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
from typing import Callable import math def binom_tree(s: float, k: float, r: float, sig: float, t: float, n: int, iv: Callable[[float, float], float], fv: Callable) -> float: """ Price of an option from a binomial tree. The tree is represented as dictionaries: - the keys (i, u, d) denote the step (from i=0, present to i=n at time t in equal increments) and the number of times there has been a move up (u) and down (d). While this is overspecified (i=u+d) this should make a subsequent implementation of trinomial trees easier. - the Values of the dictionary f holds the value of the option - the values of the dictionary p holds the probability of being in a node (probabilities sum to 1 within a time index i) The values of the underlying at each node are computed at decision time based on the keys. Source: Chapter 13 :param s: Price of the underlying at time 0 :param k: Strike :param r: Risk free rate :param sig: volatility (non-negative) :param t: Time to maturity :param n: number of steps :param iv: fucntion(s, k) -> float yielding the intrinsic value of the option given underlying s and strike k :param fv: function (*, i, pu, i_u, pd, i_d, f, iv) -> float yielding value of the option given i: time index i n: number of time steps t: total time at i=n r: risk free rate pu: (risk neutral) probability of up move i_u: # of up moves at the node pd: (risk neutral) probability of down move i_d: # of down moves at node f: dictionary with option values iv: intrinsic value function and downs at the node, value dictionary f and intrinsiv value function iv. Function is allowed to depend on only a subset, but in that case must accept **kwargs :return: option price """ if sig == 0: return iv(s, k) f = dict() # value 'tree'" u = math.exp(sig * math.sqrt(t / n)) # up factor d = math.exp(-sig * math.sqrt(t / n)) # down factor pu = (math.exp(r * t / n) - d) / (u - d) # probability of up move pd = 1 - pu # probability of down move for i_u in range(n+1): # intrinsic value at T f[(n, i_u, n - i_u)] = iv(s * u ** i_u * d ** (n - i_u), k) for i in range(n-1, -1, -1): # update backward in time for i_u in range(i+1): f[(i, i_u, i - i_u)] = fv(s0=s, i=i, n=n, t=t, r=r, u=u, pu=pu, i_u=i_u, d=d, pd=pd, i_d=i - i_u, f=f, iv=iv, k=k) # update return f[(0, 0, 0)]
93644712d6284db34b38c24ef1e23e347f346096
549,739
import functools def rgetattr(obj, attr): """ >>> from types import SimpleNamespace >>> args = SimpleNamespace(a=1, b=SimpleNamespace(c=2, d='e')) >>> rgetattr(args, "a") 1 >>> rgetattr(args, "b.c") 2 """ return functools.reduce(getattr, [obj] + attr.split('.'))
a3994923a6027c7c62cbe05e673a76de7988d76a
401,674
def load_plain_file(file_path): """ Reads a path and returns the string information Arguments: - file_path (str): path to the file Returns: - text (str): the information to be retrieved """ with open(file_path, "r") as fp: info = fp.read() return info
d205b139cc7c2078e91fc133a87b3959aeb422e1
434,483
def _vpos(da): """ vPOS = Value at peak of season """ return da.max("time")
b245bbdb0eb8879301dc8c9e4e16a21a1a44d7e0
441,874
def parsehmmoutput(hmmresult): """parses the hmm output for housekeeping gene locations parameters ---------- hmmresult filename of parsable hmmsearch output returns ---------- genelocs = dict, {gene:location} """ genelocs = {} with open(hmmresult, "r") as f: for line in f: line = line.strip() if not line.startswith("#"): els = line.split() loc = els[0] gene = els[2] if not gene in genelocs: genelocs[gene] = loc return (genelocs)
2b87c097db6706cb543cd0dbeecd421750f5da7a
357,115
def get_mapping(series): """ Map a series of n elements to 0, ..., n. Parameters ---------- series : Pandas series (e.g. user-ids) Returns ------- mapping : Dict[] """ mapping = {} i = 0 for element in series: if element not in mapping: mapping[element] = i i += 1 return mapping
452542dee5de04f6e50cc36ee6878dcd7c067bc6
201,767
def layer_size(X, Y): """ Get number of input and output size, and set hidden layer size :param X: input dataset's shape(m, 784) :param Y: input labels's shape(m,1) :return: n_x -- the size of the input layer n_h -- the size of the hidden layer n_y -- the size of the output layer """ n_x = X.T.shape[0] n_h = 10 n_y = Y.T.shape[0] return n_x, n_h, n_y
81add6bf528cfe872e62f622161bb25fb7dcb1d3
48,800
def _parse_volumes_kwarg(cli_style_volumes): """ The Python API for mounting volumes is tedious. https://github.com/docker/docker-py/blob/master/docs/volumes.md This makes it work like the CLI """ binds = {} volumes = [] for volume in cli_style_volumes: split = volume.split(':') if len(split) == 1: volume.append(split[0]) continue host_path = split[0] mountpoint = split[1] if len(split) == 3: read_only = split[2] == 'ro' else: read_only = False volumes.append(mountpoint) binds[host_path] = {'bind': mountpoint, 'ro': read_only} return volumes, binds
4c8d083ec2be02616491af42c725e2c5c14d419f
280,810
import base64 def base64_encode(data: bytes) -> bytes: """Does a URL-safe base64 encoding without padding.""" return base64.urlsafe_b64encode(data).rstrip(b'=')
341a6382a655ceb007bdba71e743d6c8656d4f7f
578,773
def dict_to_list(d): """Converts an ordered dict into a list.""" # make sure it's a dict, that way dict_to_list can be used as an # array_hook. d = dict(d) return [x[-1] for x in sorted(d.items())]
6a56f890d3a5e6e9cb8a19fc5af8598bf3411d33
690,124
import re def _remove_emoticons(tweet): """finds all emoticons, removes them from the tweet, and then returns the tweet with emoticons removed as well as a list of emoticons Parameters: ----------- tweet: str contents of a tweet Returns ------- tweet_no_emoticons: string of tweet with emoticons removed emoticons: list of emoticons """ emoticons_re = r'(?:[:;])(?:[-<])?(?:[()/\\|<>])' emoticons = re.findall(emoticons_re, tweet) tweet = re.sub(emoticons_re, '', tweet) return tweet.strip(), emoticons
bbe7e1abed0228ccfd4aef6f191662a9a674a6ce
64,629
def _color_strip(color): """ 去除字符串中的多余空格 Parameters ---------- color : str Returns ------- str 返回去除了空格的颜色字符串 """ return color.strip().replace(' ', '')
8b7f815c64d1a9bf57cbd76db260e64f450783de
71,093
import inspect def form_of(state): """Return the form of the given state.""" if hasattr(state, "__form__"): if callable(state.__form__) and not inspect.isclass(state.__form__): return state.__form__() else: return state.__form__ else: raise ValueError(f"{state} has no form")
e39aa7db7b324ab38b65232b34b987b862812c54
709,484
def extract_crs(da): """ Takes an xarray Dataset pulled from opendatacube and extracts crs metadata if exists. Returns None if not found. Parameters ---------- da: xarray Dataset A single- or multi-dimensional array containing (or not) crs metadata. Returns ------- crs: str A crs object. """ # notify user print('Beginning extraction of CRS metadata.') try: # notify user print('> Extracting CRS metadata.') # extract crs metadata crs = da.geobox.crs # notify user print('> Success!\n') except: # notify user print('> No CRS metadata found. Returning None.\n') crs = None return crs
d6c7432663d8606f9ff9346a9eeb82ea40b84ab6
429,675
def _validate_float(value): """Validate value is a float.""" try: value = float(value) except ValueError as err: raise ValueError("Could not convert to float") from err return value
d22281d79c440ba9c28ff79cbd3321dddd77831a
381,274
import math def sum_log_scores(s1: float, s2: float) -> float: """Sum log odds in a numerically stable way.""" # this is slightly faster than using max if s1 >= s2: log_sum = s1 + math.log(1 + math.exp(s2 - s1)) else: log_sum = s2 + math.log(1 + math.exp(s1 - s2)) return log_sum
7e41d5e0838a3bf78b0dd7a5c2b01ddcd1216247
659,869
import torch def reverse_padded_sequence(inputs, lengths, batch_first=False): """Reverses sequences according to their lengths. Inputs should have size ``T x B x *`` if ``batch_first`` is False, or ``B x T x *`` if True. T is the length of the longest sequence (or larger), B is the batch size, and * is any number of dimensions (including 0). Arguments: inputs (Variable): padded batch of variable length sequences. lengths (list[int]): list of sequence lengths batch_first (bool, optional): if True, inputs should be B x T x *. Returns: A Variable with the same size as inputs, but with each sequence reversed according to its length. """ if batch_first: inputs = inputs.transpose(0, 1) max_length, batch_size = inputs.size(0), inputs.size(1) if len(lengths) != batch_size: raise ValueError('inputs is incompatible with lengths.') ind = [list(reversed(range(0, length))) + list(range(length, max_length)) for length in lengths] ind = torch.LongTensor(ind).transpose(0, 1) for dim in range(2, inputs.dim()): ind = ind.unsqueeze(dim) ind = ind.expand_as(inputs) if inputs.is_cuda: ind = ind.cuda(inputs.get_device()) reversed_inputs = torch.gather(inputs, 0, ind) if batch_first: reversed_inputs = reversed_inputs.transpose(0, 1) return reversed_inputs
2794e1effb4227e509d97aa942a87f329a61b7b8
51,953
def get_first_and_last(input_string): """Get the first 10, and last 10 characters, and returns them as a tuple Args: input_string (str): string that will be used as source Returns: (str, str): tuple of first and last 10 chars in specified string """ return input_string[0: 10], input_string[-10:]
895859f64b394b0f778ccb6c33ffdc731ce299ca
510,207
def clean_and_split_input(input): """ Removes carriage return and line feed characters and splits input on a single whitespace. """ input = input.strip() input = input.split(' ') return input
232f254db9083c23f49eed9305122f1cf9f5b936
212,558
def is_scalar(obj): """ Return True if the input is a scalar """ return obj.dims == []
6c1fae8c98758ed9f4da6140afbdef60b10d5cd0
534,635
def flatten(list_of_lists): """Flatten a given list of lists Args: list_of_lists (list): Given list of lists Returns: list: Flattened list """ return [x for each_list in list_of_lists for x in each_list]
fa1738d9ac2d9ec763a5461d7373a81fdef18b6a
214,701
import re from typing import List def gen_flags_repr(flags: re.RegexFlag) -> str: """通过 RegexFlag 生成对应的字符串 Args: flags (re.RegexFlag): 正则表达式的标记 Returns: str: 对应的标记字符串 """ flags_list: List[str] = [] if re.ASCII in flags: flags_list.append("a") if re.IGNORECASE in flags: flags_list.append("i") if re.LOCALE in flags: flags_list.append("L") if re.MULTILINE in flags: flags_list.append("m") if re.DOTALL in flags: flags_list.append("s") if re.UNICODE in flags: flags_list.append("u") if re.VERBOSE in flags: flags_list.append("x") return "".join(flags_list)
60f5b6be4c46c04d4ed3a445ddec597505e50f54
549,046
def field_size(field_label): """ Helper function to determine the size of a binary table field Parameters ---------- field_label : PVLModule The field label Returns ------- int : The size of the one entry in bytes """ data_sizes = { 'Integer' : 4, 'Double' : 8, 'Real' : 4, 'Text' : 1 } return data_sizes[field_label['Type']] * field_label['Size']
afaff70bc18d4d9d023fb7c89d45560f1a691bcf
699,111
def __date_to_iso8601(date): """Convert date to ISO-8601 format """ return '{year}-{month:02d}-{day:02d}T{hour:02d}:{minute:02d}:{second:02d}'.format( year=date.year, month=date.month, day=date.day, hour=date.hour, minute=date.minute, second=date.second)
c6e3f8bfd630f1d04656015013c32f3cdcf9dc1f
474,510
def compute_gain(data,pol): """ Compute the gain and apeture efficiency from the data. Parameters ---------- data : heterogeneous record array containing 'calc_beam_height' and 'flux' records Return ------ gain : The gains """ gain = data['beam_height_' + pol] / data['flux'] return gain
740a90593f2d3e46d86ce9b9b4e9b9f92956e152
366,436
def dict2list(dict_: dict) -> list: """ Converts a dict into a list of key-value dictionaries and returns it. Parameters ---------- dict_ Some dictionary to be converted. Returns ------- list_ Each element is a dict with one key-value pair. These key-value pairs are those contained in dict_. """ if type(dict_) != dict: raise TypeError( f"Input argument must be of type 'dict', found '{type(dict_)}'." ) list_ = [] for key, value in dict_.items(): list_.append({key: value}) return list_
16a066e41fe2dbb6dcc23e8d3e0b88da34aad84e
331,744
import torch def identity_grid(shape, dtype=None, device=None, jitter=False): """Returns an identity deformation field. Parameters ---------- shape : (dim,) sequence of int Spatial dimension of the field. dtype : torch.dtype, default=`get_default_dtype()` Data type. device torch.device, optional Device. jitter : bool or 'reproducible', default=False Jitter identity grid. Returns ------- grid : (*shape, dim) tensor Transformation field """ mesh1d = [torch.arange(float(s), dtype=dtype, device=device) for s in shape] grid = torch.meshgrid(*mesh1d) grid = torch.stack(grid, dim=-1) if jitter: reproducible = jitter == 'reproducible' device_ids = [grid.device.index] if grid.device.type == 'cuda' else None with torch.random.fork_rng(device_ids, enabled=reproducible): if reproducible: torch.manual_seed(0) jitter = torch.rand_like(grid).sub_(0.5).mul_(0.1) grid += jitter return grid
6c70d5f04bc15555d9c5369594acb9e1c50c1e56
381,320
def sdss2decam(g_sdss, r_sdss, i_sdss, z_sdss): """ Converts SDSS magnitudes to DECam magnitudes Args: [griz]_sdss: SDSS magnitudes (float or arrays of floats) Returns: g_decam, r_decam, z_decam Note: SDSS griz are inputs, but only grz (no i) are output """ gr = g_sdss - r_sdss ri = r_sdss - i_sdss iz = i_sdss - z_sdss # - DESI-1788v1 equations 4-6 g_decals = g_sdss + 0.01684 - 0.11169*gr r_decals = r_sdss - 0.03587 - 0.14114*ri z_decals = z_sdss - 0.00756 - 0.07692*iz return g_decals, r_decals, z_decals
a0869eeb138c00eb30476dd34883eabe77066129
71,954
def get_options(num): """Convert bitmasked int options into a dict.""" return { 'require_id': bool(num & 1), 'register_id': bool(num & (1 << 1)), }
9141db068aa3e9ab909f37a99f851182ce69a1da
146,953
def read_cfg_intrinsics(cfg, section, key, default): """ Read intrinsics from a config file Args: cfg: config file section: [section] of the config file key: key to be read default: value if couldn't be read Returns: resulting intrinsic dict """ if cfg.has_option(section, key): str = cfg.get(section, key).split(',') intinsics = { "x0": 320, "y0": 240, "fx": float(str[0]), "fy": float(str[2]) } return intinsics else: return default
6f419136e7851685308a1d43ce9585596ca7c802
405,768
def tile_to_quadkey(tile_x, tile_y, level): """This is a function that converts tile coordinates at a certain level of detail of a Bing Map to a unique string identifier (QuadKey). :param tile_x: The x axis coordinate of the tile at `level` level of detail :param tile_y: The y axis coordinate of the tile at `level` level of detail :param level: The level of detail of the Bing Map :return: A `quadkey` string of length given by the `level` level of detail """ ql = [] for i in range(level, 0, -1): digit = ord('0') mask = 1 << (i-1) if ((tile_x & mask) != 0): digit+=1 if ((tile_y & mask) != 0): digit+=2 ql.append(chr(digit)) quadkey = ''.join(ql) return quadkey
6416511a03e4bb65eef969fa223aacbb18b8ee32
624,657
def _is_fedora(distname): """detect Fedora-based distro (e.g Fedora, CentOS, RHEL)""" distname = distname.lower() for x in ["fedora", "centos", "red hat"]: if x in distname: return True return False
273407ec9eccd3ee5e5e209e3a9c6fe54187b188
260,837
def get_all_headers(rows_list): """Utility to get all the keys for a list of dicts""" headers = [] for row_dict in rows_list: [headers.append(h) for h in list(row_dict.keys()) if h not in headers] return headers
36d4f6e2804535c76ce087f69c17a916a467ae8a
186,290
import math def get_angle(x, y): """Get angle based on the unit circle. Parameters ---------- x : float x-value y : float y-value Return: float angle """ if x == 0: if y > 0: return 90 else: return 270 elif x < 0: return math.degrees(math.atan(y / x)) + 180 return math.degrees(math.atan(y / x))
bf902232a1ae0aa5afff1b8ebfc27f744cdd0d3b
242,774
def FindDocks(docks, dock_direction, dock_layer=-1, dock_row=-1, reverse=False): """ This is an internal function that returns a list of docks which meet the specified conditions in the parameters and returns a sorted array (sorted by layer and then row). :param `docks`: a list of L{AuiDockInfo}; :param `dock_direction`: the L{AuiDockInfo} docking direction to analyze; :param `dock_layer`: the L{AuiDockInfo} layer to analyze; :param `dock_row`: the L{AuiDockInfo} row to analyze; """ matchDocks = [(d.dock_layer, d.dock_row, d.dock_direction, d) for d in docks if \ (dock_direction == -1 or dock_direction == d.dock_direction) and \ ((dock_layer == -1 or dock_layer == d.dock_layer) and \ (dock_row == -1 or dock_row == d.dock_row))] arr = [x[-1] for x in sorted(matchDocks, reverse=reverse)] return arr
188d9afacb05914247f4e47e835315a5a38b51df
317,174
import click def extended_help_option(extended_help=None, *param_decls, **attrs): """ Based on the click.help_option code. Adds a ``--extended-help`` option which immediately ends the program printing out the extended extended-help page. Defaults to using the callback's doc string, but can be given an explicit value as well. This is intended for use as a decorator on a command to provide a 3rd level of help verbosity suitable for use as a manpage (though not formatted as such explicitly). Like :func:`version_option`, this is implemented as eager option that prints in the callback and exits. All arguments are forwarded to :func:`option`. """ def decorator(f): def callback(ctx, param, value): if value and not ctx.resilient_parsing: if not extended_help: ctx.command.help = ctx.command.callback.__doc__ click.echo(ctx.get_help(), color=ctx.color) else: ctx.command.help = extended_help click.echo(ctx.get_help(), color=ctx.color) ctx.exit() attrs.setdefault('is_flag', True) attrs.setdefault('expose_value', False) attrs.setdefault('help', 'Show extended help content, similar to manpage, and exit.') attrs.setdefault('is_eager', True) attrs['callback'] = callback return click.option(*(param_decls or ('--extended-help',)), **attrs)(f) return decorator
b7c4f623c252baf17cdc7daf645a15ec67451cde
522,298
import typing def is_basic_iterable(obj: typing.Any) -> bool: """Checks if an object is a basic iterable. By basic iterable we want to mean objects that are iterable and from a basic type. :param obj: Object to be analysed. :return: True if obj is a basic iterable (see list below). False otherwise. """ return isinstance(obj, (list, tuple, bytearray, set, frozenset))
48a87ea430021fe7086ba9c17d973da1ef5f7fdd
645,138
def calc_nchk(n,k): """ Calculate n choose k """ accum = 1 for i in range(1,k+1): accum = accum * (n-k+i)/i return int(accum)
3b176bd05147b0f9bc549c885fed303faeb97bbe
307,528
def translate(s: str, src: str, dest: str) -> str: """ Converts characters from `s` that appear in `src` with the characters at corresponding positions in `dest` """ if len(src) != len(dest): raise RuntimeError("impossible error") for a, b in zip(src, dest): s = s.replace(a, b) return s
52695fd7a56f4f2ba0a91f8f64683e6bda3d0b1a
79,436
def contain_disambig_symbol(phones): """Return true if the phone sequence contains disambiguation symbol. Return false otherwise. Disambiguation symbol is at the end of phones in the form of #1, #2... There is at most one disambiguation symbol for each phone sequence""" return True if phones[-1].startswith("#") else False
807f81b999632164de13fdf2c0d182e2abb73f44
196,270
import json def context_from_json_file(file_name): """ Load a json file into a dictionary. Parameters ---------- file_name: str Path to the json file. Returns dict Content of the file as dictionary. """ with open(file_name, encoding='utf-8') as json_file: data = json.load(json_file) return data
47968c0eb0f267421006ddaebf15c8a4ef643c25
589,841
def is_odd(n): """ Determine whether n is odd. :parameter n: int, n > 0 :return: bool, if it's odd """ return n % 2 != 0
b254da356b3aa6b87e3a546de2448b26d42a8636
266,501
def convert_epa_unit(df, obscolumn="SO2", unit="UG/M3"): """ converts ppb to ug/m3 for SO2 in aqs and airnow datasets See 40 CFR Part 50.5, Appendix A-1 to part 50, appendix A=2 to Part 50. to convert from ppb to ug/m3 multiply by 2.6178. Also will convert from ug/m3 to ppb. Parameters ---------- df : pandas dataframe self.df attribute from aqs or airnow class. obscolumn : string name of column with SO2 data in it. unit : string either 'UG/M3' or 'PPB' (not case sensitive) will convert data to this unit. inplace : boolean if TRUE then changes self.df attribute Returns ------- df : pandas dataframe returns dataframe identical to original but with data converted to new unit. """ factor = 2.6178 ppb = "ppb" ugm3 = "ug/m3" if unit.lower() == ugm3: df = df[df["units"] == ppb] # find columns with units of 'ppb' df["units"] = unit.upper() df[obscolumn] = df[obscolumn] * factor elif unit.lower() == ppb: df = df[df["units"] == ugm3] # find columns with units of 'ppb' df[obscolumn] = df[obscolumn] / factor return df
4af9811c3ae465904b3320cc6d5dd0e29f1ff598
69,221
from pathlib import Path def get_raw_svg(path: str) -> str: """Get and cache SVG XML.""" return Path(path).read_text()
60f85b0ff8f1d4478b7093acddef5255230197f9
349,653
def read_counts(counts_filename): """Reads counts file into dict of counts""" with open(counts_filename) as f: lines = f.read().splitlines() lines.pop(0) lines_proc = dict( (line.split()[1] , float(line.split()[8])) for line in lines if '*' not in line.split()[1] ) return lines_proc
f7b0ae671dd129470d3d8bd1ee44543519adde25
521,951
import re def _include_exclude( dictionary: dict, include_pattern: str, exclude_pattern: str, ) -> bool: """ Filters the items of a dictionary based on a include / exclude regexp pair. Returns `True` if the size of the dictionary changed. """ incl, excl = re.compile(include_pattern), re.compile(exclude_pattern) keys = list(dictionary.keys()) for k in keys: if excl.match(k) or not incl.match(k): del dictionary[k] return len(dictionary) != len(keys)
c7b06f84463c7d003a6516d5fc943da12ac4968e
680,224
import random import math def get_random_percents(number): """ retruns a list of n random percents that will sum to 100 """ tanks = [] total = 0 for _ in range(number): num = random.randint(1, 10) total += num tanks.append(num) percents = [] for tank in tanks: percents.append(math.floor(100 * tank / total)) dif = 100 - sum(percents) if dif != 0: percents[random.randint(0, len(percents)-1)] += dif return percents
1a8675448a7be1397c3993581feaf415b380604f
291,092
def get_bbox(x_start, y_start, x_end, y_end): """ This method returns the bounding box of a face. Parameters: ------------- x_start: the x value of top-left corner of bounding box y_start: the y value of top-left corner of bounding box width : the x value of bottom-right corner of bounding box height: the y value of bottom-right corner of bounding box returns: -------------- [x1, y1, x2, y2, x3, y3, x4, y4] the list of x and y values starting from the top-left corner and going clock, or counter-clock wise """ x1 = x_start y1 = y_start x2 = x_end y2 = y_start x3 = x_end y3 = y_end x4 = x_start y4 = y_end return [x1, y1, x2, y2, x3, y3, x4, y4]
79e440d4875f1e32d5f678d6715777ab525f4c69
46,572
def get_action_value(mdp, state_values, state, action, gamma): """ Computes Q(s,a) as in formula above """ result = 0 for to_state in mdp.get_all_states(): transition_probability = mdp.get_transition_prob(state, action, to_state) reward = mdp.get_reward(state, action, to_state) result += transition_probability * (reward + gamma * state_values[to_state]) return result
226d8e01054552ae1108d3d83e0e438ddc821df9
28,702
def _get_required_data(description=False): """ Provides a list of the required inputs for all possible ensembles. Parameters ---------- description : bool, default = False. If True, it prints the descriptions of the input_variables (i.e. dict), If False, it only prints the input_variables without the descriptions (i.e. list) Returns --------- required_data : dict or list, default = list. If the description = True then a dict is provided with the key and value. if the description = False then a list of the dict keys is provided. Note: Variables and text extracted with permission from the GOMC manual version 2.60. Some of the text was modified from its original version. Cite: Potoff, Jeffrey; Schwiebert, Loren; et al. GOMC Documentation. https://raw.githubusercontent.com/GOMC-WSU/GOMC/master/GOMC_Manual.pdf, 2021. """ required_data = { "charmm_object": "Charmm object, " "A Charmm object, which by definition has been parameterized " "from the selected force field.", "ensemble_type": "Required files or System Info (all ensembles): str, " "(valid strings are 'NVT', 'NPT', 'GEMC_NPT', 'GCMC-NVT', or 'GCMC'), " "the ensemble type for the simulation.", "RunSteps": "Required files or System Info (all ensembles): int (> 0), " "The number or run steps for the simulation.", "Temperature": "Required files or System Info (all ensembles): float or integer (> 0), " "Temperature of system in Kelvin (K)", } if description: return required_data else: return list(required_data.keys())
0a37e425e1b9efc426c53a19522b2d0e9fc2edc1
155,079
def dim_col(d: int) -> str: """ Name of an dimension columns. Parameters ---------- d Dimension number. Returns ------- name: str Dimension name. Example ------- >>> from rle_array.testing import dim_col >>> dim_col(1) 'dim_1' """ return f"dim_{d}"
e4f76bdba041535993aaea1ba613f1596d8e32e9
652,019
def get_image_batch(generator,batch_size): """keras generators may generate an incomplete batch for the last batch""" img_batch = generator.next() if len(img_batch) != batch_size: img_batch = generator.next() assert len(img_batch) == batch_size return img_batch
c9c9b61e1775b275157f4d979eb7117d8fbef0d2
425,011
def split_folds(X, y, fold_series, test_fold): """Take a dataset whose observations have been grouped into folds, then perform a train-test split. X, y: feature and target DataFrames. fold_series: Series containing the fold numbers of the observations. test_fold: Integer, the fold number that will be used as the test fold. Returns: tuple of four DataFrames""" if fold_series.dtype != "int64": raise AttributeError("The fold list does not purely contain integers.") test_mask = (fold_series == test_fold) X_train = X.loc[~test_mask].copy() y_train = y.loc[~test_mask].copy() X_test = X.loc[test_mask].copy() y_test = y.loc[test_mask].copy() return X_train, X_test, y_train, y_test
38051e584c427ffe77273fbbcdd764b6fe432b2f
45,296
import torch def resort_points(points, idx): """ Resort Set of points along G dim :param points: [N, G, 3] :param idx: [N, G] :return: [N, G, 3] """ device = points.device N, G, _ = points.shape n_indices = torch.arange(N, dtype=torch.long).to(device).view([N, 1]).repeat([1, G]) new_points = points[n_indices, idx, :] return new_points
a886b1c694a2c8c1ef5a3c2bdccf201aa7a53812
654,095
def ansiSameText(s1:str,s2:str)->bool: """Compare two strings case insensitive""" return (s1.lower()==s2.lower())
2faad19d93fc60377418b9f6f0b56778f07b46be
579,495
import hashlib def md5sum(file_path): """ Calculate md5 checksum of single file Args: file_path (str): Path to file Returns: str: md5 checksum """ md5sum = hashlib.md5() with open(file_path, 'rb') as file_object: for block in iter(lambda: file_object.read(md5sum.block_size), b''): md5sum.update(block) return md5sum.hexdigest()
7bf5542334a752690bd8e7298ae67c9c14020a21
406,603
def get_readable_file_size(size): """ Returns a human-readable file size given a file size in bytes: >>> get_readable_file_size(100) '100.0 bytes' >>> get_readable_file_size(1024) '1.0 KB' >>> get_readable_file_size(1024 * 1024 * 3) '3.0 MB' >>> get_readable_file_size(1024**3) '1.0 GB' """ for t in ('bytes', 'KB', 'MB', 'GB', 'TB'): if size < 1024.0: return "%3.1f %s" % (size, t) size /= 1024.0
aa103e6c41195dbbcf37d83397570ac19410fdcb
332,180
def decode_model_info_proto(model_info_proto): """Decodes the model_info_proto created by create_model_info_proto Arguments: model_info_proto (ModelInfo proto): model_info_proto created by create_model_info_proto Returns: list_of_model_info_dict (list): A list containing model_info_dicts Note: model_info_dict contains the following keys: ```python { "name": "model name as string" "version": "version as string" "status": "status string" "misc": "string with miscellaneous info" } ``` """ list_of_model_info_dict = [] for model_info in model_info_proto.info: model_info_dict = {} model_info_dict["name"] = model_info.name model_info_dict["version"] = model_info.version model_info_dict["misc"] = model_info.misc model_info_dict["status"] = model_info.status list_of_model_info_dict.append(model_info_dict) return list_of_model_info_dict
34ce3043463dc8cf2b3716f208ab9758a6215a74
283,718
import random def generate_addends(n_addend, minimum=1, maximum=9): """ n_addend : number of addends minimum : minimum of an addend. 1 by default maximum : maximum of an addend. 9 by default """ # generate addends addends_list = [] for _ in range(n_addend): addends_list.append(random.randint(1, 9)) return addends_list
40af83dcc94092e7e0834fef3d22394385ff8d96
439,256
def render_warning(s) : """ Make rst code for a warning. Nothing if empty """ return """ .. warning:: %s"""%(s) if s else ''
2ba32b16e9f81b85ce51d4b2e7c9e34d2bd5c9e7
316,575
def compose_redis_key(vim_name, identifier, identifier_type="vdu"): """Compose the key for redis given vim name and vdu uuid Args: vim_name (str): The VIM name identifier (str): The VDU or VNF uuid (NFVI based) identifier_type (str): the identifier type. Default type is vdu. Also vnf is supported. Returns: str: the key for redis """ if identifier_type == "vnf": return "{}:vnf#{}".format(vim_name.lower(), identifier) else: return "{}:{}".format(vim_name.lower(), identifier)
e9a03cf9ff704fea8b9cdf75c59695568e366649
709,026
from typing import List from typing import Dict from typing import ChainMap def concat_stocks(stock_lists: List[Dict]) -> Dict[str, str]: """Concats a list of small dictionaries of `stock`:`price` into one dictionary""" return dict(ChainMap(*stock_lists))
b7e050f36b1ee42c969afe4c21b22bf43548e80c
324,800
import re def pick_address_string(src): """ Pick address string from input string with regex Args: src (str) : Text would you like get address Return: str: Address what you picked """ match = re.match(r'.*?[로(지하)?|길동리]\s?(\d+-*)+\s?((번*길)\s?(\d+-*)+)?', src) return match.group().strip() if match else None
1748ada790610e9904b758cc32c48fd059f9d51b
529,929
def signed_leb128_decode(data) -> int: """Read variable length encoded 128 bits signed integer. .. doctest:: >>> from ppci.utils.leb128 import signed_leb128_decode >>> signed_leb128_decode(iter(bytes([0x9b, 0xf1, 0x59]))) -624485 """ result = 0 shift = 0 while True: byte = next(data) result |= (byte & 0x7F) << shift shift += 7 # Detect last byte: if byte & 0x80 == 0: break if byte & 0x40: # We have sign bit set! mask = (1 << shift) - 1 result = result ^ mask result = -result - 1 return result
43419df92be9a1bc32f51c7b1dde13d6e1599424
536,037
def group_weight_decay(net, decay_factor, skip_list): """Set up weight decay groups. skip_list is a list of module names to not apply decay to. """ decay, no_decay = [], [] for name, param in net.named_parameters(): if not param.requires_grad: continue if any([pattern in name for pattern in skip_list]): no_decay.append(param) else: decay.append(param) return [{'params': no_decay, 'weight_decay': 0.0}, {'params': decay, 'weight_decay': decay_factor}]
a3a9a0b3aa45963b0d0fb0aafc3be850e05060b4
591,696
def l_min(s, m): """ Minimum allowed value of l for a given s, m. The formula is l_min = max(\|m\|,\|s\|). Parameters ---------- s: int Spin-weight of interest m: int Magnetic quantum number Returns ------- int l_min """ return max(abs(s), abs(m))
9eec996df3b8e026c8b58649fddbbbcc05c38372
11,672
import re def generate_unique_name(base: str, items: list): """ Generates a unique name for a new item using a common base string :param base: The generated name will be the base string, followed by a number if required :param items: The named items to avoid generating a matching name with. Each must have a 'name' attribute """ regex = f"^{re.escape(base)}\\d*$" similar_names = [item.name for item in items if re.match(regex, item.name)] if len(similar_names) == 0 or base not in similar_names: return base # find the highest number in use, and go one higher tailing_numbers = [int(name[len(base) :]) for name in similar_names if name != base] return base + str(max(tailing_numbers) + 1) if tailing_numbers else base + "1"
9c7093c59825862c1e15f8385e7207e277b6088d
516,644
from datetime import datetime def ymd2date(y, m, d): """ Convert (y, m, d) tuple to datetime.datetime object where y, m, d are year, mont and date integers Example (2013, 12, 20) :param tpl: Tuple inf (y, m, d) format :return: datetime.datetime object Example: >>> import dtime as d >>> d.tdate_ymd((2013,12,20)) datetime.datetime(2013, 12, 20, 0, 0) >>> """ #y, m, d = tpl return datetime(y, m, d)
e4a2fa6a9534c10f887b8ae71e0eae0b13599ce4
138,372
def setup_with_context_manager(testcase, cm): """Use a contextmanager to setUp a test case.""" val = cm.__enter__() testcase.addCleanup(cm.__exit__, None, None, None) return val
ef60ebfe6ce00ea2a4784a61241dc22dd292b81d
624,366
def make_get_request(client, endpoint): """ Makes a get request to the given endpoint from the client. """ return client.get(endpoint)
d64376e5e7b0ad42b3b093af48bfa97e3a137744
57,790
import re def get_urls(string): """Get all url matching strings from string""" regex = re.compile(r"""(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+| (\([^\s()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:'\".,<>?«»“”‘’]))""", re.VERBOSE) try: url = regex.findall(string) return [u[0] for u in url] except TypeError: return list()
3b9f085e99f540d65d86e500f73c6c6607297b96
218,631
import inspect def bound_args(func, args, kwargs): """Return a dictionary mapping parameter name to value. Parameters ---------- func : Callable this must be inspectable; mocks will require a spec args : List args list kwargs : Dict kwargs Dict Returns ------- Dict[str, Any] : mapping of string name of function parameter to the value it would be bound to """ sig = inspect.Signature.from_callable(func) bound = sig.bind(*args, **kwargs) return bound.arguments
32abe2cdd621b52b0bb306830e542c92430962b9
454,704
def get_X_Y(lockin): """ Get X and Y (Measure) args: lockin (pyvisa.resources.gpib.GPIBInstrument): SRS830 returns: (tuple): X, Y """ X, Y = lockin.query("SNAP? 1,2").split("\n")[0].split(",") X, Y = float(X), float(Y) return X, Y
3d56151042682f86350a499ab639852fc6387887
15,198
def _adjmatType(adjMat): """(helper function) retruns <class 'int'> if the adjacency matrix is a (0,1)-matrix, and returns <class 'list'> if the adjacency matrix contains edge weights, and returns None if neither of the cases occurs. Args: adjMat (2D - nested - list): the adjacency matrix. Returns: (type) the type of the adjacency matrix as explained above. """ checktype = {all(isinstance(entry, list) for entry in row) for row in adjMat} if len(checktype) == 1 and checktype.pop() == True: return list checktype = {all(isinstance(entry, int) for entry in row) for row in adjMat} if len(checktype) == 1 and checktype.pop() == True: return int return None
f57e3a97c6d759a564bcf0e546c67ee975caf4c7
669,943
def get_square_centre_crop(img): """ This function calculates a centered square crop bounding box as big as the image's smaller dimension allows. :param img: PIL Image object. :return: Tuple with bounding box of the square crop. """ width, height = img.size if width > height: x_min = int((width - height) / 2) x_max = int(width - (width - height) / 2) y_min = 0 y_max = height else: x_min = 0 x_max = width y_min = int((height - width) / 2) y_max = int(height - (height - width) / 2) return x_min, y_min, x_max, y_max
141691ea388d783bd51a85f55b9a03519231196a
264,801
def fn2Test(pStrings, s, outputFile): """ Function concatenates the strings in pStrings and s, in that order, and writes the result to the output file. Returns s. """ with open(outputFile, 'w') as fH: fH.write(" ".join(pStrings) + " " + s) return s
1c1e811edd80c461c5173774f7bb0014b4ad9f92
399,280
def meta2idx(current_idxs, meta_per_dataset): """ Map meta information of a dataset to the indexes of its samples in the full data. Parameters ---------- current_idxs: list of list of integers each sublist corresponds to list of index of cells in each dataset meta_per_dataset: list of list of strings each sublist in the form of ['animal_id', 'bregma'] for each dataset Returns ------- meta2idx: dictionary key as ['animal_id', 'bregma'], value as the start and end index + 1 of the samples in the full data """ meta2idx = dict.fromkeys(meta_per_dataset) idx_start = 0 idx_end = 0 for i in range(len(current_idxs)): current_idx = current_idxs[i] current_meta = meta_per_dataset[i] idx_end += len(current_idx) meta2idx[current_meta] = [idx_start, idx_end] idx_start = idx_end return meta2idx
9c74a6b778f04a8ff4035bf5601f3bc69cb81180
366,629
import re def sentence_segmenter(paragr): """ Function to break a string 'paragraph' into a list of sentences based on the following rules: 1. Look for terminal [.,?,!] followed by a space and [A-Z] 2. If ., check against abbreviation list ABBREV_LIST: Get the string between the . and the previous blank, lower-case it, and see if it is in the list. Also check for single-letter initials. If true, continue search for terminal punctuation 3. Extend selection to balance (...) and "...". Reapply termination rules 4. Add to sentlist if the length of the string is between MIN_SENTLENGTH and MAX_SENTLENGTH 5. Returns sentlist Parameters ---------- paragr: String. Content that will be split into constituent sentences. Returns ------- sentlist: List. List of sentences. """ # this is relatively high because we are only looking for sentences that # will have subject and object MIN_SENTLENGTH = 100 MAX_SENTLENGTH = 512 # sentence termination pattern used in sentence_segmenter(paragr) terpat = re.compile('[\.\?!]\s+[A-Z\"]') # source: LbjNerTagger1.11.release/Data/KnownLists/known_title.lst from # University of Illinois with editing ABBREV_LIST = ['mrs.', 'ms.', 'mr.', 'dr.', 'gov.', 'sr.', 'rev.', 'r.n.', 'pres.', 'treas.', 'sect.', 'maj.', 'ph.d.', 'ed. psy.', 'proc.', 'fr.', 'asst.', 'p.f.c.', 'prof.', 'admr.', 'engr.', 'mgr.', 'supt.', 'admin.', 'assoc.', 'voc.', 'hon.', 'm.d.', 'dpty.', 'sec.', 'capt.', 'c.e.o.', 'c.f.o.', 'c.i.o.', 'c.o.o.', 'c.p.a.', 'c.n.a.', 'acct.', 'llc.', 'inc.', 'dir.', 'esq.', 'lt.', 'd.d.', 'ed.', 'revd.', 'psy.d.', 'v.p.', 'senr.', 'gen.', 'prov.', 'cmdr.', 'sgt.', 'sen.', 'col.', 'lieut.', 'cpl.', 'pfc.', 'k.p.h.', 'cent.', 'deg.', 'doz.', 'Fahr.', 'Cel.', 'F.', 'C.', 'K.', 'ft.', 'fur.', 'gal.', 'gr.', 'in.', 'kg.', 'km.', 'kw.', 'l.', 'lat.', 'lb.', 'lb per sq in.', 'long.', 'mg.', 'mm.,, m.p.g.', 'm.p.h.', 'cc.', 'qr.', 'qt.', 'sq.', 't.', 'vol.', 'w.', 'wt.'] sentlist = [] # controls skipping over non-terminal conditions searchstart = 0 terloc = terpat.search(paragr) while terloc: isok = True if paragr[terloc.start()] == '.': if (paragr[terloc.start() - 1].isupper() and paragr[terloc.start() - 2] == ' '): isok = False # single initials else: # check abbreviations loc = paragr.rfind(' ', 0, terloc.start() - 1) if loc > 0: if paragr[loc + 1:terloc.start() + 1].lower() in ABBREV_LIST: isok = False if paragr[:terloc.start()].count('(') != paragr[:terloc.start()].count(')'): isok = False if paragr[:terloc.start()].count('"') % 2 != 0: isok = False if isok: if (len(paragr[:terloc.start()]) > MIN_SENTLENGTH and len(paragr[:terloc.start()]) < MAX_SENTLENGTH): sentlist.append(paragr[:terloc.start() + 2]) paragr = paragr[terloc.end() - 1:] searchstart = 0 else: searchstart = terloc.start() + 2 terloc = terpat.search(paragr, searchstart) # add final sentence if (len(paragr) > MIN_SENTLENGTH and len(paragr) < MAX_SENTLENGTH): sentlist.append(paragr) return sentlist
127467d8128ee9e47d325ca20905c508fbd17d18
143,479
def _PyComplex_FromCComplex(space, v): """Create a new Python complex number object from a C Py_complex value.""" return space.newcomplex(v.c_real, v.c_imag)
fd980468f0df584ea2672edab40b7108798cd535
469,804
import re def template_pattern_match(results, template_pattern): """ Return templates which match the template pattern. No pattern specified returns all template :param results - list of all template :param template_pattern - optional wildcard (*) name of template to match :return: list of template """ if template_pattern: # convert wildcard "*" to regex format ".*" pattern = template_pattern.replace("*", ".*") compiled = re.compile(pattern) return [template for template in results if compiled.match(template['name'])] return results
2ad1c1d6b8700f9c2ca4bf67afd8c501b53825b7
481,982
from typing import List from typing import Tuple def group(lst: List, n: int) -> List[Tuple]: """ Splits a list into tuples of length n https://stackoverflow.com/a/15480610/36061 eg a = 'Moscow|city|London|city|Royston Vasey|vilage' list(group(a.split('|'), 2)) gives [('Moscow', 'city'), ('London', 'city'), ('Royston Vasey', 'vilage')] Parameters ---------- lst : a list n : int, number of entries per tuple Returns ------ list of tuples, each of length n """ r = [] for i in range(0, len(lst), n): val = lst[i:i + n] if len(val) == n: r.append(tuple(val)) return r
61de96a908434e63423529a55194f7a7fa027d54
591,917
def mod_family_accession(family_accession): """Reduces family accession to everything prior to '.'.""" return family_accession[:family_accession.index('.')]
ec033cd33fccd8fbd7a0c4407d706ca32fb87fb2
658,789
def bollinger_band_generator(dataframe_name, closing_price_column_name = 'close', bollinger_band_window = 20, num_standard_deviation = 2): """Creates Bollinger Band function Args: dataframe_name (dict): Single security dataframe containing at least closing prices closing_price_column_name (str): Name of column in dataframe containing closing prices bollinger_band_window (int): Desired timeframe window used for rolling calculations num_standard_deviation (int): Desired number of standard deviations to calculate Returns: A dataframe of: original data passed to function, bollinger_band_middle (flt): Column of values for middle band, bollinger_band_std (flt): Column of values to calculate standard deviation, bollinger_band_upper (flt): Column of values for upper band, bollinger_band_lower (flt): Column of values for lower band, """ # Calculate mean and standard deviation dataframe_name['bollinger_band_middle'] = dataframe_name[closing_price_column_name].rolling(window=bollinger_band_window).mean() dataframe_name['bollinger_band_std'] = dataframe_name[closing_price_column_name].rolling(window=bollinger_band_window).std() # Calculate upper bollinger band and lower bollinger band dataframe_name['bollinger_band_upper'] = dataframe_name['bollinger_band_middle'] + (dataframe_name['bollinger_band_std'] * num_standard_deviation) dataframe_name['bollinger_band_lower'] = dataframe_name['bollinger_band_middle'] - (dataframe_name['bollinger_band_std'] * num_standard_deviation) # Drop NaN values dataframe_name.dropna(inplace=True) # Return dataframe with features and target return dataframe_name
43d585c72338fb050f1f595b0659de689b4b8c18
470,328
def levels_to_graph(levels): """ Convert an array of levels into a unicode string graph. Each level in the levels array is an integer 0-3. Those levels will be represented in the graph by 1-4 dots each. The returned string will contain two levels per rune. """ if len(levels) % 2 == 1: # Left pad uneven-length arrays with an empty column levels = [-1] + levels # From: http://stackoverflow.com/a/19177754/473672 unicodify = chr try: # Python 2 unicodify = unichr # type: ignore except NameError: # Python 3 pass # https://en.wikipedia.org/wiki/Braille_Patterns#Identifying.2C_naming_and_ordering LEFT_BAR = [0x00, 0x40, 0x44, 0x46, 0x47] RIGHT_BAR = [0x00, 0x80, 0xA0, 0xB0, 0xB8] graph = "" for index in range(0, len(levels) - 1, 2): left_level = levels[index] + 1 right_level = levels[index + 1] + 1 code = 0x2800 + LEFT_BAR[left_level] + RIGHT_BAR[right_level] graph += unicodify(code) return graph
8994d6d6eea5c741f706b78e6754bab7850909b2
73,365
def delete_session_mock(mocker): """Mock for patching DELETE request""" return mocker.patch("hydra_agent.agent.Session.delete")
26c3073e2d51dec1f3dcd9bfee3db311fdcf6a66
76,284
import torch def log_initial_entropy(log_probs: torch.Tensor): """ Calculates the log of the initial state posterior entropy from log_probs, with dimensions -1: s_k, -2: s_1 :param log_probs: :return: """ inits = log_probs.logsumexp(-1) return ((-inits).log() + inits).logsumexp(-1)
d38a4359aef1f52117a33c806d04a26f4aee572e
166,291
def enable_show_options(options): """Sets all show options to True.""" options.show_nagios = True options.show_rrdfile = True options.show_rawmetric = True options.show_metric = True options.show_skipped = True return options
6da8a5d4c1b381d5ab343c2035ff5262fbf69f23
127,027
def _bytes(packet): """ Returns a human-friendly representation of the bytes in a bytestring. >>> _bytes('\x12\x34\x56') '123456' """ return ''.join('%02x' % ord(c) for c in packet)
c3877c4081e191bcdcb95dd958beb0fd8356699e
304,651
def profit_in_percentage(value, arg): """Profit Percentage with % sign >>> profit_in_percentage(2, 1) '100.0 %' """ val = value - arg return str(round(val * 100, 2)) + " %"
cf22a48b5d9b2819883b47d1db558a6c1a3f8707
212,813
def getDestBinFormatByOS(destOS): """ Return the binary format based on the platform name. Returns 'elf' if nothing is found. """ if destOS == 'darwin': return 'mac-o' if destOS in ('win32', 'cygwin', 'uwin', 'msys', 'windows'): return 'pe' return 'elf'
99665fdbc0b83cde6c04d68591602699997746b8
361,870
from typing import Union def wmi_object_2_list_of_dict(wmi_objects, depth: int = 1, root: bool = True) -> Union[dict, list]: """ Return a WMI object as a list of dicts, accepts multiple depth Example for Win32_LoggedOnUser().Antecedent.AccountType return is [{'Antecedent': {'AccountType': 512}}] Hence wmi_handle.Win32_LoggedOnUser()[0].Antecedent.AccountType is equivalent of res = wmi_object_2_list_of_dict(wmi_handle.Win32_LoggedOnUser(), 2) res[0]['Antecedent']['AccountType'] """ result = [] if root is False: dictionary = {} try: for attribute in wmi_objects.properties: try: if depth > 1: dictionary[attribute] = wmi_object_2_list_of_dict( getattr(wmi_objects, attribute), (depth - 1), root=False) else: dictionary[attribute] = getattr(wmi_objects, attribute) except TypeError: dictionary[attribute] = None return dictionary # wmi_object.properties might just be a string depending on the depth. Just return as is in that case except AttributeError: return wmi_objects for wmi_object in wmi_objects: dictionary = {} for key in wmi_object.properties.keys(): if depth <= 1: try: dictionary[key] = wmi_object.Properties_(key).Value except TypeError: dictionary[key] = None else: # noinspection PyBroadException try: dictionary[key] = wmi_object_2_list_of_dict(getattr(wmi_object, key), (depth - 1), root=False) # Some keys won't have attributes and trigger pywintypes.com_error and others. Need for bare except except Exception: pass result.append(dictionary) return result
6b54a7b75ee41c7bd3cedb7b38a2e2fe5a44cb15
310,152
from typing import Sequence def prepend_parts(prefix_parts: Sequence[str], parts: Sequence[str]) -> Sequence[str]: """ Prepend `prefix_parts` before given `parts` (unless they are rooted). Both `parts` & `prefix_parts` must have been produced by :meth:`.json_path()` so that any root(``""``) must come first, and must not be empty (except `prefix-parts`). **Examples:** >>> prepend_parts(["prefix"], ["b"]) ['prefix', 'b'] >>> prepend_parts(("", "prefix"), ["b"]) ['', 'prefix', 'b'] >>> prepend_parts(["prefix ignored due to rooted"], ("", "b")) ('', 'b') >>> prepend_parts([], ["b"]) ['b'] >>> prepend_parts(["prefix irrelevant"], []) Traceback (most recent call last): IndexError: list index out of range """ if "" != parts[0]: parts = [*prefix_parts, *parts] return parts
ced228055e64b0ef7877856ce536ed8884ce6819
181,817
def get_weekdays(first_weekday=0): """Get weekdays as numbers [0..6], starting with first_weekday""" return list(list(range(0, 7)) * 2)[first_weekday: first_weekday + 7]
8773a6b35f1104ca298074d90e639919353d357d
133,303
def HOUR(expression): """ Returns the hour portion of a date as a number between 0 and 23. See https://docs.mongodb.com/manual/reference/operator/aggregation/hour/ for more details :param expression: expression or variable of a Date, a Timestamp, or an ObjectID :return: Aggregation operator """ return {'$hour': expression}
f34b9d923ee9416174d3d2871cface57e539363e
476,289
def map_per_image(label, predictions): """Computes the precision score of one image. Parameters ---------- label : string The true label of the image predictions : list A list of predicted elements (order does matter, 5 predictions allowed per image) Returns ------- score : double """ try: return 1 / (predictions[:5].index(label) + 1) except ValueError: return 0.0
5874d669d83143a6e4dd5f32d15fb58da70fe9aa
564,595
def seqcomp(s1, s2): """ Compares 2 sequences and returns a value with how many differents elements they have. """ p = len(s1) for x,y in zip(s1, s2): # Walk through 2 sequences. if x==y: p -= 1 return p
1ef0e7fddc751225ba2030804b360daf8bf10abd
670,035
import six def to_string(s, encoding='utf-8'): """ Accept unicode(py2) or bytes(py3) Returns: py2 type: str py3 type: str """ if six.PY2: return s.encode(encoding) if isinstance(s, bytes): return s.decode(encoding) return s
3b2c5ea3e1de9724cb705a79c54f3eb700b0f16d
319,054
def min_length(word, thresh): """ Predicate for the length of a word """ return len(word) >= thresh
5f6eff3e06726294a64ef7705e3797ab188202f3
625,640
def distance(rgb1, rgb2): """Return quasi-distance in 3D space of RGB colors.""" return (rgb1[0]-rgb2[0])**2 + (rgb1[1]-rgb2[1])**2 + (rgb1[2]-rgb2[2])**2
d2db02322d355a0c86c279e5fb38af4438d8d754
353,469
def combination(a: int, b: int) -> int: """ Choose b from a. a >= b """ b = min(b, a - b) numerator = 1 dominator = 1 for i in range(b): numerator *= (a - i) dominator *= (b - i) return int(numerator / dominator)
9e31462423b998b6a3f10b497ebe5a0a8fb0c0fb
457,124