content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def print_multi_list(list_ch_info=None, sep=";"):
"""Print the summary of downloaded claims from multiple channels.
This is meant to be used with the returned list from
`ch_download_latest_multi`.
Parameters
----------
list of lists of dicts
A list of lists, where each internal list represents one channel,
and this internal list has as many dictionaries as downloaded claims.
The information in each dictionary represents the standard output
of the `lbrynet_get` command for each downloaded claim.
If the download fails, then the corresponding item in the list
may be `False`, in which case no claim information is printed.
sep: str, optional
It defaults to `;`. It is the separator character between
the data fields in the printed summary. Since the claim name
can have commas, a semicolon `;` is used by default.
Returns
-------
bool
It returns `True` if the information was read and printed
without problems.
If there is a problem or no list of items, it will return `False`.
"""
if not list_ch_info or not isinstance(list_ch_info, (list, tuple)):
print("Print information from a list of lists from multiple "
"channels obtained from `ch_download_latest_multi`.")
return False
if len(list_ch_info) < 1:
print("Empty list.")
return False
# flat_list = [item for sublist in list_ch_info for item in sublist]
flat_list = []
for sublist in list_ch_info:
if not sublist:
flat_list.append(None)
continue
for item in sublist:
if not item:
flat_list.append(None)
continue
flat_list.append(item)
n_items = len(flat_list)
print("Summary of downloads")
out_list = []
for it, item in enumerate(flat_list, start=1):
out = "{:2d}/{:2d}".format(it, n_items) + f"{sep} "
if not item:
out += "empty item. Failure establishing server connection?"
out_list.append(out)
continue
if "claim_id" in item:
out += "{}".format(item["claim_id"]) + f"{sep} "
out += "{:3d}/{:3d}".format(item["blobs_completed"],
item["blobs_in_stream"]) + f"{sep} "
out += '"{}"'.format(item["channel_name"])
out += f"{sep} "
out += '"{}"'.format(item["claim_name"])
out_list.append(out)
elif "error" in item:
out_list.append(out + '"{}"'.format(item["error"]))
else:
out_list.append(out + "not downloaded")
print("\n".join(out_list))
return True | 51aefe169399561e5d0e0f6c21576c9ec8e4813f | 53,655 |
import random
def randBytes(b: int = 2) -> bytes:
"""
Get a random number of bytes
:param b: number of bytes generate
:return: random number of bytes requested
"""
return bytes([random.getrandbits(8) for _ in range(b)]) | 51af4722e9710f0cff315a09bb9ce2f6e956ee6a | 75,884 |
def pg_utcnow(element, compiler, **kw):
"""
Postgres UTC timestamp object
"""
return "TIMEZONE('utc', CURRENT_TIMESTAMP)" | 3deb31b98b8c75417ff0ecf5c7b5fa9eb0b91df9 | 695,769 |
def _to_extended_delta_code(seconds: int) -> str:
"""Return the deltaCode encoding for the ExtendedZoneProcessor which is
roughly: deltaCode = (deltaSeconds + 1h) / 15m. Using the lower 4-bits of
the uint8_t field, this will handle deltaOffsets from -1:00 to +2:45.
"""
return f"({seconds // 900} + 4)" | 26adc142df031d38cd383ba12c3fac8ac0030e75 | 212,007 |
def MemorySizeBytesToGB(memory_size):
"""Returns a memory size value in GB.
Args:
memory_size: int, size in bytes, or None for default value
Returns:
float, size in GB rounded to 3 decimal places
"""
if not memory_size:
return memory_size
return round(memory_size / float(1 << 30), 3) | a98f4f96f5d49840077b824324fd98d967dac185 | 516,136 |
def _genpoints(xlist, lbound, ubound):
"""Generate the points necessary to plot the lines showing the interval estimates.
Parameters
----------
xlist : array_like
Array of values on the x-axis.
lbound : array_like
Lower bounds of the estimates.
ubound : array_like
Upper bounds of the estimates.
Returns
-------
points : list
List of start and end points for plotting the interval estimates.
"""
xlist = xlist.tolist().copy()
lbound = lbound.tolist().copy()
ubound = ubound.tolist().copy()
# Alternative approach -> shorter, seen in
# https://pandas.pydata.org/docs/getting_started/10min.html Stack example
xtemp = list(zip(*[xlist, xlist]))
inttemp = list(zip(*[lbound, ubound]))
points = []
for xnew, ynew in zip(xtemp, inttemp):
points.append(list(zip(xnew, ynew)))
return points | e6edb25e7bfce3af5890f68c0d8f865db57acb50 | 492,091 |
def yoToZA( yo_i ) :
"""Returns ZA designator, or special code, from yo id. That is, ::
yo_i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
is converted to
0, 1, 1001, 1002, 1003, 2003, 2004, 0, -8, -9, -10, 1, 1001, 1002, 1003, 2003, 2004
with the following meanings ::
none, n, p, d, t, He3, He, g, b+, b-, EC, n, p, d, t, He3, He.
yo_i must be a python integer."""
if ( yo_i < 0 ) or ( yo_i > 16 ) : raise Exception( "\nError in yoToZA: unsupported yo value = %s" % repr(yo_i) )
yo = yo_i
if ( yo > 10 ) : yo -= 10
return ( 0, 1, 1001, 1002, 1003, 2003, 2004, 0, -8, -9, -10 )[yo] | 4a877b729aa9a5ab397409a8f1784844f188fa52 | 116,484 |
def undo_reshape_padding(image, orig_shape):
"""
Undoes the padding done by the `reshape` function in `utils.shape_io`
Args:
image: numpy array that was reshaped to a larger size using reshape
orig_shape: original shape before padding (do not include the channels)
Returns:
the reshaped image
"""
return image[:orig_shape[0], :orig_shape[1], :orig_shape[2]] | 6b4629a81b699c610b406801f78e6b953bd29083 | 498,153 |
from typing import List
from typing import Dict
from typing import Any
from typing import Optional
def get_entity(entity_id: str, entities: List[Dict[str, Any]]) -> Dict:
"""
Retrieves entity from list of entities given the entity id.
Parameters
----------
entity_id: String identifier of the relevant entity.
entities: List of entities
Returns
-------
Entity from entity list with matching entity id
"""
entity: Optional[Dict] = next((x for x in entities if x['id'] == entity_id), None)
if entity:
return entity
else:
raise Exception(f'The entity_id {entity_id} was not found in:\n {entities}') | 28dbc7475ce1bfb38fe44ba6dcd273735af80cf8 | 587,733 |
import re
def uppercase_lowercase(a_string):
"""Assumes a_string is a string
returns a boolean, True is a_string contains one upper case letter
followed by lower case letters
else False
"""
regex = "[A-Z][a-z]+"
results = re.search(regex, a_string)
return bool(results) | cd0623fd885b1f6d4833b901852985f4317e9156 | 677,021 |
def scale_minmax(X, min=0.0, max=1.0):
"""
Minmax scaler for a numpy array
PARAMS
======
X (numpy array) - array to scale
min (float) - minimum value of the scaling range (default: 0.0)
max (float) - maximum value of the scaling range (default: 1.0)
"""
X_std = (X - X.min()) / (X.max() - X.min())
X_scaled = X_std * (max - min) + min
return X_scaled | 1aed3f5f854d973bd81b821d637c17f741fa895a | 77,918 |
import re
def ngram_parser(text, ngram_parser):
""" Parse out N-grams using a custom regex
:param: text: a string object
:param ngram_parser: a compiled regex expression to extract one-grams
:return a list of 1-grams
"""
# take care of a few edge cases
text = re.sub(r'(([\-\.]{2,})|(\'\'))', r' \1 ', text)
return [x[0] for x in ngram_parser.findall(text) if x[0] != ''] | e8db18a88b4c3ed0c6c469617f7f75e87aef7a65 | 163,917 |
def add_prefix(dct, prefix, sep="/"):
"""
Add a prefix to all keys in `dct`.
:param dct: Input dict
:type dct: dict
:param prefix: Prefix
:type prefix: str
:param sep: Separator between prefix and key
:type sep: str
:return: Dict with prefix prepended to all keys
:rtype: dict
"""
return {prefix + sep + key: value for key, value in dct.items()} | ae6b8fc74f0c655b14f3c8b8ae29d3d9b67bc601 | 416,526 |
def compare_webapps(list1, list2):
""" Return list of matching dictionaries from two lists of dictionaries.
"""
check = set([(d['name'], d['id']) for d in list2])
return [d for d in list1 if (d['name'], d['id']) in check] | d02bac02e6dea5bbf7188b7e3afa6c6cbb64e054 | 641,274 |
def seq_idx(df):
"""
Provide boolean indexer for South East Queensland
Parameters:
-------
df : dataframe
a population dataframe
Raises
------
ValueError
if the dataframe does not contain an asgs_name column
Returns
-------
idx_seq : boolean indexer
an indexer to Tudge's definition of SEQ.
"""
if "asgs_name" not in df.columns:
raise ValueError("asgs_name column not in dataframe")
idx_seq = (
(df.asgs_name == "Greater Brisbane")
| (df.asgs_name == "Sunshine Coast")
| (df.asgs_name == "Gold Coast")
| (df.asgs_name == "Toowoomba")
)
return idx_seq | d7816d3e21ede1b2d8d46e096b5c25ee5318b8ab | 506,297 |
def unix_time_to_mjd(time_in_unix):
"""
Converts the time format from unix to MJD (Modified Julian Date)
86400 is the # of sec per 24 hours
40587 is the unix epoch in mjd
"""
time_in_mjd = time_in_unix / 86400 + 40587
return time_in_mjd | 77dfde227cab75e0db0b38af1a68bfd0d933fa42 | 152,621 |
import yaml
def info_dumper(infos):
"""Dump a dictionary information to a formated string.
Now, it's just a wrapper to yaml.dump, put here to customize if needed.
"""
return yaml.dump(infos) | 16a6217054801ef6924741be25512feb828e28a1 | 306,281 |
def ref(logical_name):
"""The intrinsic function Ref returns the value of the specified parameter or resource.
When you are declaring a resource in a template and you need to
specify another template resource by name, you can use the Ref to refer
to that other resource. In general, Ref returns the name of the
resource. For example, a reference to an
AWS::AutoScaling::AutoScalingGroup returns the name of that Auto
Scaling group resource.
For some resources, an identifier is returned that has another
significant meaning in the context of the resource. An AWS::EC2::EIP
resource, for instance, returns the IP address, and an
AWS::EC2::Instance returns the instance ID.
Args:
logical_name: The logical name of the resource or parameter you want
to dereference.
Returns:
* When you specify a parameter's logical name, it returns the value
of the parameter.
* When you specify a resource's logical name, it returns a value
that you can typically use to refer to that resource.
.. note:: You can also use Ref to add values to Output messages.
"""
return {'Ref': logical_name} | 68db97a89dafcf5c087aefefa8868e7d8a60479f | 518,174 |
def normalize_comment(s):
"""
Normalize comments, turning things like "????" into "?".
:param s: The original comment
:return: The normalized comment as string
"""
if s:
if set(s) == {'#'}:
return
if set(s) == {'?'}:
return '?'
return s | 1b5c3b6071f2861c7c72c4bb53cec2ccb8807324 | 386,372 |
import time
def getTimestamp(t=None, fmt='%Y-%m-%d %H:%M:%S'):
"""Returns the timestamp for the given time (defaults to current time).
The time should be in secs since epoch.
.. note::
The default `fmt` includes spaces and colons.
"""
if not t:
t = time.time()
return time.strftime(fmt, time.localtime(t)) | 23c3d106a1a58f6d186318825bf83802112d5f71 | 263,173 |
def dataverse_tree_walker(
data: list,
dv_keys: list = ["dataverse_id", "dataverse_alias"],
ds_keys: list = ["dataset_id", "pid"],
df_keys: list = ["datafile_id", "filename", "pid", "label"],
) -> tuple:
"""Walk through a Dataverse tree by get_children().
Recursively walk through the tree structure returned by ``get_children()``
and extract the keys needed.
Parameters
----------
data : dict
Tree data structure returned by ``get_children()``.
dv_keys : list
List of keys to be extracted from each Dataverse element.
ds_keys : list
List of keys to be extracted from each Dataset element.
df_keys : list
List of keys to be extracted from each Datafile element.
Returns
-------
tuple
(List of Dataverse, List of Datasets, List of Datafiles)
"""
dataverses = []
datasets = []
datafiles = []
if type(data) == list:
for elem in data:
dv, ds, df = dataverse_tree_walker(elem)
dataverses += dv
datasets += ds
datafiles += df
elif type(data) == dict:
if data["type"] == "dataverse":
dv_tmp = {}
for key in dv_keys:
if key in data:
dv_tmp[key] = data[key]
dataverses.append(dv_tmp)
elif data["type"] == "dataset":
ds_tmp = {}
for key in ds_keys:
if key in data:
ds_tmp[key] = data[key]
datasets.append(ds_tmp)
elif data["type"] == "datafile":
df_tmp = {}
for key in df_keys:
if key in data:
df_tmp[key] = data[key]
datafiles.append(df_tmp)
if "children" in data:
if len(data["children"]) > 0:
dv, ds, df = dataverse_tree_walker(data["children"])
dataverses += dv
datasets += ds
datafiles += df
return dataverses, datasets, datafiles | a3ce15354e5a9b6c38510eafaec0dfa531b595ef | 596,836 |
def parse_file(file_name):
"""Parse file to image list
Args:
file_name (str): The path of data file
Returns:
List of image path
"""
with open(file_name, "r") as f:
data_list = [line.strip() for line in f.readlines()]
return data_list | c488727d1e11c08ad0dec775f5f9bb6d8b1de830 | 170,983 |
def _sort_baseline_facts(baseline_facts):
"""
helper method to sort baseline facts by name before saving to the DB.
"""
sorted_baseline_facts = sorted(baseline_facts, key=lambda fact: fact["name"].lower())
for fact in sorted_baseline_facts:
if "values" in fact:
fact["values"] = sorted(fact["values"], key=lambda fact: fact["name"].lower())
return sorted_baseline_facts | 571e464b1f6a1631a30529bc67aab1a7584a2cdb | 201,095 |
import fnmatch
def ignore_rule_matches_result(ignore_rule, pa11y_result):
"""
Returns a boolean result of whether the given ignore rule matches
the given pa11y result. The rule only matches the result if *all*
attributes of the rule match.
"""
return all(
fnmatch.fnmatch(pa11y_result.get(attr), ignore_rule.get(attr))
for attr in ignore_rule.keys()
) | e3596b41fe8fbcc910154d0514c62dc29096fa6c | 662,150 |
def get_slices_by_indices(str, indices):
"""Given a string and a list of indices, this function returns
a list of the substrings defined by those indices. For example,
given the arguments::
str='antidisestablishmentarianism', indices=[4, 7, 16, 20, 25]
this function returns the list::
['anti', 'dis', 'establish', 'ment', arian', 'ism']
@param str: text
@type str: string
@param indices: indices
@type indices: list of integers
"""
slices = []
for i in range(0, len(indices)):
slice = None
start = indices[i]
if i == len(indices)-1:
slice = str[start: ]
else:
finish = indices[i+1]
slice = str[start: finish]
slices.append(slice)
return slices | e69bd33abfd3f9f423ed33c3b46841ad0ed1a30e | 673,648 |
def get_gender_id(gender: str) -> int:
"""
A helper method for generating gender IDs.
:param gender: a gender string
:return: a gender id
"""
if gender == "FEMALE":
gender_id = 0
elif gender == "MALE":
gender_id = 1
else:
gender_id = 2
return gender_id | 2e44f52ef4c762e483a26ae5d87760f901216011 | 270,860 |
def add(x, y, z=0):
"""Add two (or three) objects"""
return x + y + z | 6f5284d580dc797b22f9465f0b2bd697ce2269e5 | 331,621 |
def find_pure_symbol(symbols, unknown_clauses):
"""
Find a symbol and its value if it appears only as a positive literal
(or only as a negative) in clauses.
Arguments are expected to be in integer representation.
>>> find_pure_symbol({1, 2, 3}, [{1, -2}, {-2, -3}, {3, 1}])
(1, True)
"""
all_symbols = set().union(*unknown_clauses)
found_pos = all_symbols.intersection(symbols)
found_neg = all_symbols.intersection([-s for s in symbols])
for p in found_pos:
if -p not in found_neg:
return p, True
for p in found_neg:
if -p not in found_pos:
return -p, False
return None, None | ffa20cee768e81cd3525483bc2490ada6482b550 | 48,539 |
def most_common_start_hour(df):
"""Get the most common start hour for the bike sharing service."""
df['Start Hour'] = df['Start Time'].dt.hour
common_start_hour = df['Start Hour'].mode()[0]
return "Most common start hour is {}.".format(common_start_hour) | 7b87b2b08c6a2fb48f1929757bf8f4846af81696 | 423,824 |
def test_single_processor(recipe):
"""Test for recipe having a single processor.
Args:
recipe: Recipe object.
Returns:
Tuple of Bool: Failure or success, and a string describing the
test and result.
"""
description = "Recipe has only a single processor, of type 'JSSImporter'."
result = False
processors = recipe.get("Process")
if len(processors) == 1:
processor = processors[0].get("Processor")
if processor and processor == "JSSImporter":
result = True
else:
description += " (Processor is not 'JSSImporter')"
else:
description += " (Too many processors: %s > 1)" % len(processors)
return (result, description) | c0404794ce87f4fd1aee8f8f9d7105f377461988 | 578,219 |
def stub_read(mote_id, chan_id, read_start_time):
"""
A stub to return nothing of interest; well, a value that is more
easily picked up as "invalid".
"""
return -1 | b3d94d002f9d112540d62ae1f985bf595b3f2558 | 39,837 |
import random
def generate_random_pastel() -> tuple:
""" Generate a random pastel color """
red = (random.randint(0, 255) + 255) / 2
green = (random.randint(0, 255) + 255) / 2
blue = (random.randint(0, 255) + 255) / 2
return red, green, blue | 9a9960d14d960d101cfcb1efa73ea16142cfe84f | 382,449 |
import torch
def _conformal_score_interval1(predictions, values, max_interval=1e+3):
""" Compute the alternative non-conformity score of a set of values under interval predictions
"""
diff = values - predictions.mean(dim=1).view(1, -1)
return torch.sign(diff) * max_interval + diff | b5e8ef02c90f882f8d66daf091052b5526910cfb | 294,475 |
def get_last_row(sheet_object) -> int:
"""
Get the last populated row from a spreadsheet
:param sheet_object: openpyxl worksheet
:return: int, index of the last row
"""
max_row_index = sheet_object.max_row
while max_row_index > 1:
if sheet_object.cell(max_row_index, column=1).value is None:
max_row_index -= 1
else:
break
return max_row_index | 840bd2aabc652a33ae2f4848227857eba75c497b | 548,697 |
def uint8_to_bool(np_img):
"""
Convert NumPy array of uint8 (255,0) values to bool (True,False) values
Args:
np_img: Binary image as NumPy array of uint8 (255,0) values.
Returns:
NumPy array of bool (True,False) values.
"""
result = (np_img / 255).astype(bool)
return result | 55b0b5f1376a7619f2691a05890e5840717f9716 | 614,560 |
from typing import List
def assign_encoder_layer_ids(
encoder_names: List[List[str]],
):
"""
Assign ids to encoder layers. The encoder may contain several blocks e.g., block1 and block2.
This function iterates through all the layers of each block from the input end towards the output end.
It increases 1 on the layer id when the detected digit in a layer name changes.
Parameters
----------
encoder_names
Encoder layer names.
Returns
-------
name_to_id
The encoder layer-to-id mapping.
encoder_layer_num
The encoder layer number.
"""
name_to_id = {}
cur_id = 0
for i, group_names in enumerate(encoder_names):
last_inferred_id = -1
for n in group_names:
detect_id = False
n_splits = n.split('.')
for split in n_splits:
# the first digit encountered is used to infer layer id
if split.isdigit():
inferred_id = int(split)
# increase at most 1 one time
if inferred_id != last_inferred_id:
cur_id += 1 # layer.0 -> layer_id 1
last_inferred_id = inferred_id
name_to_id[n] = cur_id
detect_id = True
break
if detect_id is False:
raise ValueError(f"parameter name: {n} not has no id inside")
if len(name_to_id) > 0:
encoder_layer_num = max(name_to_id.values())
else:
encoder_layer_num = 0
return name_to_id, encoder_layer_num | 5ab370eaa602063b2d840abf6de108ea2ef9d8ca | 205,281 |
def metrics(table):
"""Calculate the metrics for a set of crater matches.
Arguments:
table : Pandas table with the columns
N_match
N_detect
N_csv
Returns:
table : modified table with the additional columns
frac_new_csv : fraction of unmatched craters relative to the matched + diff
frac_new_detect : fraction of detected creaters that are new (FPR)
precision : The ratio of true positives to all positives
recall : The ratio of true positives to all craters
f1 : The harmonic mean of precision and recall.
"""
tp = table["N_match"]
fp = table["N_detect"]-table["N_match"]
fn = table["N_csv"] - table["N_match"]
g = table["N_csv"]
diff = table["N_detect"] - table["N_match"]
table["frac_new_csv"] = diff/(table["N_csv"] +diff)
table["frac_new_detect"] = diff/(table["N_detect"])
p = tp/(tp+fp)
r = tp/(fn+tp)
table["precision"] = p
table["recall"] = r
table["f1"] = 2*(r*p)/(r + p)
return table | a4ff1c019442d8334e26e30bf5126c807083e766 | 593,437 |
import re
def lmcp_toprettyxml(obj):
"""
Convert an LCMP object to a string that formats correctly with xml.dom.minidom's toprettyxml().
Keyword arguments:
obj -- an LMCP message object
"""
# toprettyxml() assumes no newlines or whitespace between XML elements,
# so remove them from what LMCP's toXML() returns.
return re.sub('\n(\s)*', '', obj.toXML()) | a916fed25573457ac908955a3151bf0c8c993cbe | 146,386 |
def binary_search(sorted_arr, wanted_num):
""" Szuka elementu w posortwanej tablicy, jeżeli znajdzie to zwraca indeks szukanego elementu. W przypadku nie znalezienia elemetu zwraca -1."""
left = 0
right = len(sorted_arr) - 1
mid = 0
while left <= right:
mid = (right + left) // 2
if sorted_arr[mid] < wanted_num:
left = mid + 1
elif sorted_arr[mid] > wanted_num:
right = mid - 1
else:
return mid
return -1 | fc3abd941bc134effc3ce8bbe741ee3a92ea6386 | 625,992 |
import json
import logging
def load_json_file(filepath):
"""Load contents of a .json file on disk into a JSON object.
"""
try:
with open(filepath, 'r') as jsonfile:
return json.load(jsonfile)
except:
logging.error('could not load .json file %s' % filepath)
return None | dd7f7c4adef2162ec8a617b09864a46cebfd2749 | 418,101 |
def expand_rle(rle):
"""expand an RLE back to a list"""
expanded_rle = []
for char, count in rle:
expanded_rle.extend(count*[char])
return expanded_rle | 21490f3ce7e022d5bcb212d7763909beea5641c8 | 403,994 |
def generate_dashboard_link(uuid: str) -> str:
"""Generate a MythX dashboard link for an analysis job.
This method will generate a link to an analysis job on the official
MythX dashboard production setup. Custom deployment locations are currently
not supported by this function (but available at mythx.io).
:param uuid: The analysis job's UUID
:return: The analysis job's dashboard link
"""
return "https://dashboard.mythx.io/#/console/analyses/{}".format(uuid) | 8001568677214c564a120e968a2362b1c5979c34 | 331,067 |
import json
def get_end_stream_request(stream_id: str, request_id: int, api_version: str) -> str:
"""
Parameters
----------
stream_id:
ID of stream we want to stop
request_id:
ID of EndStreamRequest
Returns
-------
Serialized EndStreamRequest
"""
api_message = {
"api_version": api_version,
"api_request": {
"request_id": request_id,
"end_stream_request": {"stream_id": stream_id},
},
}
return json.dumps(api_message) | 86265dd7cb7bef04eb9f1c5d876afa85bbac1a72 | 632,413 |
def emulator_type(emulator):
"""Identifies the type of emulator."""
return emulator["emulator_type"] | db33730c5f06ff1e50b592dc23050d9c7049c7b0 | 106,162 |
def sourceSingleSlitOpaqueWall(a, da):
""" We return two lists: one with the space coordinates, one with the
amplitude at the corresponding coordinate.
Amplitude is zero outside of coordinates from aCoords. """
Na = int(a/da)
amplitude = (1/float(Na)) # normalized
aCoords = [(j-Na/2)*da for j in range(Na+1)] # space coordinates
amplitudes = [ amplitude for y in aCoords] # constant amplitude
return (aCoords, amplitudes) | 83429643d3fa9c40fca9a373a376ebae1701bc96 | 338,117 |
import csv
def parse_csv_line(line):
"""
Parses a string holding a CSV line into a Python list
"""
return list(csv.reader([line]))[0] | cc0066f790fcda5eaea8a1fed18a1a5ac7f1cd47 | 473,513 |
def userfunc(say='Hi'):
"""Test func with one parameter."""
return 'SKPAR says {}'.format(say) | f55264cc50dfcf08fb15b491a052431abff57724 | 553,255 |
def file_len(file_name):
"""
Returns number of lines in text-like file_name
"""
i = 0
with open(file_name) as f:
for _ in f:
i += 1
return i | 702b6b25e550a0fe292315667c71968478a4eff0 | 217,188 |
def dict_to_desc(d: dict):
"""
Transform dictionary into a text-based description.
Parameters
----------
d : dict
Mapping factors->indicators.
Returns
-------
desc : str
Text-form description of the model.
"""
desc = str()
for lat, inds in d.items():
if lat != -1:
inds = ' + '.join(inds)
desc += f'{lat} =~ {inds}\n'
return desc | 6aa6c40d1766ade4bb2399c08f93e9fec986bc84 | 432,251 |
def get_score_end_time(score):
"""Return the timestamp just after the final note in the score ends."""
if not score:
return 0
last_event = score[-1]
if last_event.time_delta is None:
return last_event.time
return last_event.time + last_event.time_delta.total_beats() | 0376d62ca370e7d8bf0d6ffc4bf68f66e0d16e34 | 168,600 |
from typing import Dict
from typing import Any
def merge_dicts(*args: Dict[Any, Any]) -> Dict[Any, Any]:
"""
Successively merge any number of dictionaries.
>>> merge_dicts({'a': 1}, {'b': 2})
{'a': 1, 'b': 2}
>>> merge_dicts({'a': 1}, {'a': 2}, {'a': 3})
{'a': 3}
Returns:
Dict: Dictionary of merged inputs.
"""
out = {} # type: Dict[Any, Any]
for dct in args:
out = {**out, **dct}
return out | 68cf2046f830610a9b386edebc8f16671dfc9293 | 656,213 |
def estimate_microturbulence(effective_temperature, surface_gravity):
"""
Estimate microtubulence from relations between effective temperature and
surface gravity. For giants (logg < 3.5) the relationship employed is from
Kirby et al. (2008, ) and for dwarfs (logg >= 3.5) the Reddy et al. (2003)
relation is used.
:param effective_temperature:
The effective temperature of the star in Kelvin.
:type effective_temperature:
float
:param surface_gravity:
The surface gravity of the star.
:type surface_gravity:
float
:returns:
The estimated microturbulence (km/s) from the given stellar parameters.
:rtype:
float
"""
if surface_gravity >= 3.5:
return 1.28 + 3.3e-4 * (effective_temperature - 6000) \
- 0.64 * (surface_gravity - 4.5)
else:
return 2.70 - 0.509 * surface_gravity | bf54342e00fc61f042f183c8bbebc01005eb6b4c | 15,089 |
def single(a, b, distance_function):
"""
Given two collections ``a`` and ``b``, this will return the distance of the
points which are closest together. ``distance_function`` is used to
determine the distance between two elements.
Example::
>>> single([1, 2], [3, 4], lambda x, y: abs(x-y))
1 # (distance between 2 and 3)
"""
left_a, right_a = min(a), max(a)
left_b, right_b = min(b), max(b)
result = min(distance_function(left_a, right_b),
distance_function(left_b, right_a))
return result | a8252954d129d67755ade0cd119a6582dd063ee1 | 341,074 |
def remove_by_index(l, index):
"""removes element at index position from indexed sequence l and returns the result as new object"""
return l[:index] + l[index + 1:] | 1c55d35d6f37c1180de4eaf1244985734a73a033 | 662,908 |
def __get_type_NHC(code):
"""
Get the intensity category according to the status of system defined by
"National Hurricane Center".
Reference:
https://www.nhc.noaa.gov/data/hurdat/hurdat2-format-nov2019.pdf
0 - Subtropical cyclone of depression intensity;
Subtropical cyclone of storm intensity;
A low that is neither a TC, a subtropical cyclone, nor an EC;
Tropical wave;
Disturbuance (OTHERS, unknown intensity)
1 - Tropical depression (TD, <34 knots)
2 - Tropical storm (TS, 34-63 knots)
3 - Hurricane (HU, >64 knots)
4 - Extratropical cyclone (EC, any intensity)
Parameters
----------
code : str
A string code represents the type.
Returns
-------
re: str
One of the type in ['TD', 'TS', 'HU', 'EC', 'OTHERS'].
"""
return code | a59d97fa473dc5faea7d8d7c61a5d5766500e6dd | 692,425 |
def xywh2xyxy(xywh, inplace=False):
"""Convert bbox from (x1,y1,w,h) to (x1,y1,x2,y2).
"""
if inplace:
xyxy = xywh
else:
xyxy = xywh.clone()
if xywh.dim() == 1:
xywh = xywh.unsqueeze(0)
xyxy.unsqueeze_(0)
xyxy[:, 2] = xywh[:, 0] + xywh[:, 2] - 1
xyxy[:, 3] = xywh[:, 1] + xywh[:, 3] - 1
return xyxy.squeeze_() | ebe063414eb290510b56c2f1bac921f89da333ea | 532,607 |
def could_short_circuit(if_el):
"""
Is there the potential to take advantage of Python's ability to short-
circuit and collapse a nested IF into its parent as a single expression?
The if_el must have an IF as its only child AND that nested IF must have an
ORELSE as a child. But that ORELSE must have no children.
:param element if_el: If element
:return: True if the If has the potential to be short-circuited
:rtype: bool
"""
body_els = if_el.xpath('body')
has_one_body = len(body_els) == 1
if not has_one_body:
return False
body_el = body_els[0]
body_children_els = body_el.getchildren()
body_one_child = len(body_children_els) == 1
if not body_one_child:
return False
body_child_el = body_children_els[0]
sole_child_is_if = body_child_el.tag == 'If'
if not sole_child_is_if:
return False
nested_if_el = body_child_el
nested_if_orelse_els = nested_if_el.xpath('orelse')
one_orelse = len(nested_if_orelse_els) == 1
if not one_orelse:
return False
nested_if_orelse_el = nested_if_orelse_els[0]
orelse_has_children = bool(nested_if_orelse_el.getchildren())
if orelse_has_children:
return False
## we have an IF with one child which is an IF and the nested IF's ORELSE has no children
return True | f3ede43ae76e7a07cda67999d327aea61203c870 | 245,585 |
from typing import Optional
from typing import IO
def openfile(spec: Optional[str]) -> Optional[IO[str]]:
"""Open file helper.
Args:
spec: file/mode spec; for example:
* ``file`` uses mode ``w``
* ``file+`` uses mode ``a``
* ``file+r`` uses mode ``r``
Returns:
File object, or ``None`` if spec is ``None``.
"""
if spec is None:
return None
else:
parts = spec.split('+', 1)
name = parts[0]
mode = parts[1] if len(parts) > 1 else 'w'
mode = mode or 'a'
return open(name, mode=mode, buffering=1) | 435547e3fa359a787f1f14b378a6eed9a0c3ee53 | 677,572 |
def addContent(old_html, raw_html):
"""Add html content together"""
old_html += raw_html
return old_html | cd5a1677ac4f4216d4cbeb7b7565b44429872bcc | 633,528 |
def generate_param(name, location, _type, required=None, _format=None):
"""
Generates a parameter definition dynamically.
"""
param = {
'in': location,
'type': _type,
'name': name,
}
if required is not None:
param['required'] = required
if _format is not None:
param['format'] = _format
return param | e2c884e067635cb7c4e999505a60662491400cab | 517,151 |
def get_max_len(in_string, max_len):
"""Gets current length of string and returns it if it exceeds the provided
max_len. Otherwise, returns the provided max_len.
"""
curr_len = len(in_string)
if curr_len > max_len:
return curr_len
return max_len | e252a871600f4ec1ae1bd1694896395dadaca9a3 | 210,960 |
def default_none(value, default):
"""
Returns |value| if it is not None, otherwise returns |default|.
"""
return value if value != None else default | d36f266f68a472b9781174b36a853a2f2e332b5c | 175,363 |
def _upsert_user(request_session, api_url, user_doc):
"""
Insert user, or update if insert fails due to user already existing.
Returns:
requests.Response: API response.
Args:
request_session (requests.Session): Session to use for the request.
api_url (str): Base url for the API eg. 'https://localhost:8443/api'
user_doc (dict): Valid user doc defined in user input schema.
"""
new_user_resp = request_session.post(api_url + '/users', json=user_doc)
if new_user_resp.status_code != 409:
return new_user_resp
# Already exists, update instead
return request_session.put(api_url + '/users/' + user_doc['_id'], json=user_doc) | eebbb5d8bc2244371097955219068135b0a47d36 | 185,016 |
def app_name(experiment_uuid):
"""Convert a UUID to a valid Heroku app name."""
return "dlgr-" + experiment_uuid[:8] | 924ddf4204e4d387b1c2ece5b6ca21d0bea4c0c5 | 330,021 |
import six
def is_string(v):
"""Test if a value is currently a string
@param v: the value to test
@returns: True if the value is a string
"""
return isinstance(v, six.string_types) | e59aa19a2133ef5969835c866114b13790f10a31 | 352,355 |
def substitute_str_idx(s: str, r: str, i: int) -> str:
"""Substitute char at position
Arguments:
s: The str in which to substitute
r: The char to substitute
i: index of the substitution
Returns:
The string `s` with the i'th char substitute with `r`
"""
z = ''.join([(lambda: r, lambda: x)[idx != i]() for idx, x in enumerate(s)])
return z | 9cdef667249c3447338085ff47de01a58a192be2 | 673,251 |
def preformatted(text: str) -> str:
"""Make text to pre-formatted text."""
return f'```{text}```' | 152c9cf6ce78ffed74b23562f7f09195340ab9b0 | 46,716 |
def error_response(msg: str = ""):
"""Define a error json response to send a client.
:param msg: A message indicating that the request has errors.
"""
_data_response = {
u'valid': False,
u'msg': msg
}
return _data_response | f52d1a82f7786d1a6f5d1722fdd884d4bb623a7b | 281,787 |
def get_spo_count(spec):
"""Returns the number of spos in the spec file."""
total = 0
for f in spec["cfiles"]:
for ff in spec["cfiles"][f]["functions"]:
if "spos" in spec["cfiles"][f]["functions"][ff]:
total += len(spec["cfiles"][f]["functions"][ff]["spos"])
return total | dfa997d4c68e8973409a4de2d54ee5e8000ce4ec | 503,212 |
def z_score(x, avg, sd):
"""Calculate z-score.
Parameters
----------
x : float
Standardized variable..
avg : float
Average from population.
sd : float
Standard deviation from population.
Returns
-------
z : float
Z-score.
"""
return (x - avg) / sd | 7f1aa9f47ef685aba72154bf5144620d4a304b9f | 262,729 |
def format_list(list):
"""format a list into a space-separated string"""
return " ".join(str(tok) for tok in list) | db67e2fe16ee04883d30476de4d53f99d3335b9a | 312,381 |
def _get_node_count(graph_entry):
""" Get number of nodes"""
return graph_entry.vcount() | e5e9992aadfa0d2f84c698b1ceeae0c5f500c72e | 32,306 |
def get_multiline_description(description_start, lines):
"""
Return a multiline description given the ``description_start`` start of the
decsription and a ``lines`` list. These are common in .podspec.
https://guides.cocoapods.org/syntax/podspec.html#description
description is in the form:
spec.description = <<-DESC
Computes the meaning of life.
Features:
1. Is self aware
...
42. Likes candies.
DESC
"""
# from "<<-DESC" to "DESC"
description_end = description_start.strip('<-')
description_lines = []
started = False
for line in lines:
if started:
ended = line.strip().startswith(description_end)
if not ended:
description_lines.append(line)
else:
break
elif '.description' in line and description_start in line:
started = True
return '\n'.join(description_lines) | e32f6678e58863c293e1122e95b91ceb5d4f5c55 | 279,668 |
from typing import List
from typing import Dict
def order_by_station(order_list: List[Dict], station_name) -> List[tuple]:
"""Returns a list of tuples. The first element of each tuple contains the index of an order that contains the
station 'station_name'. The second element is the respective index in the station list of the order. Since a station
can be used by several orders, these tuples are stored in a list.
"""
indices: List[tuple] = []
for index, order in enumerate(order_list):
if station_name in order['station']:
indices.append((index, order['station'].index(station_name)))
return indices | 7826a01779dbcb4b6ce9874d61c1c430553fedb3 | 336,911 |
def wavelength_tlv(wave_period, velocity):
"""Usage: Calculate wavelength (l) using wave period (T) and velocity (v)"""
return wave_period*velocity | 35e6292ccf7407336acc33dbb934e7a034b6401b | 612,512 |
def average_throughput(throughputs):
"""Return the average `ops` value of `throughputs`, a list of `Throughput`s."""
return float(sum(throughput.ops for throughput in throughputs)) / len(throughputs) | ee3a95b1f90d8faa2bf014d598f82b6a75d01d9c | 322,256 |
def average(numbers):
"""
Return the average (arithmetic mean) of a sequence of numbers.
"""
return sum(numbers) / float(len(numbers)) | 206a490758e8a2ce082029f698ca0d6fbd8cddd6 | 325,944 |
def processed_events(object_type: str, subscriber: str) -> str:
"""Return the db key used to store processed events.
This is the key where processed events for the specified subscriber and
object type are stored.
Args:
object_type (str): Type of object
subscriber (str): Subscriber name
Returns:
str, db key where processed events are stored.
"""
return 'events:{}:{}:processed'.format(object_type, subscriber) | 5cd043759467307b2dfc5574db58b0ac946204df | 323,615 |
def findIndexes(text, subString):
"""
Returns a set of all indexes of subString in text.
"""
indexes = set()
lastFoundIndex = 0
while True:
foundIndex = text.find(subString, lastFoundIndex)
if foundIndex == -1:
break
indexes.add(foundIndex)
lastFoundIndex = foundIndex + 1
return indexes | 54f24abbb74f674b2b5a39dd545a0470c849c652 | 449,470 |
def extension(subdir):
"""Does a subdirectory use the .cpp or .cc suffix for its files?"""
return 'cpp' if subdir.startswith('vendor') else 'cc' | f8480b81a4c07e0902d8c13893196eb0ca4dbdea | 286,950 |
import torch
def squared_distances(x, y):
"""
Returns the matrix of $\|x_i - y_j\|_2^2$. Taken from the geomloss package.
parameters:
- x : Source data (TorchTensor (batch size, ns))
- y : Target data (TorchTensor (batch size, nt))
returns:
- Ground cost (float)
"""
if x.dim() == 2:
D_xx = (x*x).sum(-1).unsqueeze(1) # (N,1)
D_xy = torch.matmul( x, y.permute(1,0) ) # (N,D) @ (D,M) = (N,M)
D_yy = (y*y).sum(-1).unsqueeze(0) # (1,M)
elif x.dim() == 3: # Batch computation
D_xx = (x*x).sum(-1).unsqueeze(2) # (B,N,1)
D_xy = torch.matmul( x, y.permute(0,2,1) ) # (B,N,D) @ (B,D,M) = (B,N,M)
D_yy = (y*y).sum(-1).unsqueeze(1) # (B,1,M)
else:
print("x.shape : ", x.shape)
raise ValueError("Incorrect number of dimensions")
return D_xx - 2*D_xy + D_yy | 0875ac68321731fd87f0c4a45a185bc4e7b56294 | 159,371 |
def length_sqrd(vec):
"""
Returns the length of a vector2D sqaured.
Faster than Length(), but only marginally
"""
return vec[0] ** 2 + vec[1] ** 2 | 1950a086cd136abc923a4377356b68e7e1c728c2 | 607,030 |
def p2a(p, m1, m2):
"""
It computes the separation (Rsun) given m1 (Msun), m2 (Msun) and p (days).
"""
yeardy=365.24
AURsun=214.95
p = p/yeardy
a = AURsun*(p*p*(m1 + m2))**(1./3.)
return a | a0c5d8c0d7b961e8017217f22f54aa2a70daf5a0 | 20,231 |
def version_string(version):
"""Return the string representation of an Aardvark API version"""
return str((version >> 8) & 0xFF) + '.' + str(version & 0xFF) | 153e422798ed7674ee4df25c98c3cd52920499c3 | 320,671 |
import collections
def deep_convert_to_plain_dict(an_odict):
"""
Recursively convert `an_odict` and any of its dictionary subelements from
`collections.OrderedDict`:py:class: to plain `dict`:py:class:
.. note:: This is naive, in that it will not properly handle dictionaries
with recursive object references.
:Args:
an_odict
a (presumably) `collections.OrderedDict`:py:class: to convert
:Returns:
an "unordered" (i.e., plain) `dict`:py:class: with all ordered
dictionaries converted to `dict`:py:class:
"""
a_dict = {}
for (key, value) in an_odict.items():
if type(value) is collections.OrderedDict:
a_dict[key] = deep_convert_to_plain_dict(value)
else:
a_dict[key] = value
return a_dict | 0a463981909153d4beee64fbbf5fad489adf78ac | 7,527 |
def compute_gender(last_gender: str,
top_gender_male: int,
top_gender_female: int,
top_gender_7_days: str):
"""Computes the gender type of a visitor using a majority voting rule."""
def majority_voting(lst):
return max(set(lst), key=lst.count)
if top_gender_male > top_gender_female:
top_gender = 'M'
else:
top_gender = 'F'
return majority_voting([last_gender, top_gender, top_gender_7_days]) | 387f04fae4b593de54894eeac017b7fe124706c9 | 47,744 |
import csv
def load_aitlas_format_dataset(file_path):
"""Reads the images from a CSV. Format: (image_path, class_name)"""
data = []
with open(file_path, "r") as f:
csv_reader = csv.reader(f)
for index, row in enumerate(csv_reader):
path = row[0]
item = (path, row[1])
data.append(item)
return data | b36b9b213c88e6cd66ee88d0f3b5a76e113c320c | 622,878 |
def multiply(number_1, number_2):
"""
This function is used to perform finite field multiplication, which is the core operation of the MixColumn step.
:param number_1: The first number which involve the multiplication.
:param number_2: The second number which involve the multiplication.
:return: A decimal integer
"""
result_list = [number_1]
for x in range(7):
if number_1 >= 0x80:
result = ((number_1 << 1) & 0xff) ^ 0x1b
result_list.append(result)
number_1 = result
else:
result = number_1 << 1
result_list.append(result)
number_1 = result
result_list.reverse()
final_result = 0
zipper = zip('{:08b}'.format(number_2), result_list)
for x in zipper:
if int(x[0]) != 0:
final_result ^= x[1]
else:
pass
return final_result | d2511fc5a637f8532b3acd63205474b9081b2b24 | 514,887 |
def get_task_version(taskf):
"""return a version for a taskf.
This is wrapper around taskf.get_version() that will not raise
an exception if a tool is not installed but will return None
instead.
"""
try:
version = taskf().get_version()
except Exception as ex:
msg = str(ex)
if msg.startswith("no version defined for"):
raise ValueError(msg)
elif "non-zero exit status" in msg:
# if tool can not be found, that is ok
return None
elif "not found" in msg:
return None
else:
raise ValueError("version check failed with: {}".format(msg))
return version | cfafc774fa969a0eb3acad13f3acdf47b8de722e | 626,993 |
import re
def regex_finder(topics):
""" Extracts queries, questions and narratives"""
queries = re.findall("<query>(.*?)<\/query>", topics, flags = re.DOTALL)
questions = re.findall("<question>(.*?)<\/question>",topics, flags=re.DOTALL)
narratives = re.findall("<narrative>(.*?)<\/narrative>",topics, flags=re.DOTALL)
return (queries, questions, narratives) | 8bd6120835d3c5f95b9b0d59921d53295602096f | 346,957 |
def fringe_spacing(wavelength, slits_distance, screen_distance):
"""
This function provides the fringe spacing
when the following parameters are provided.
===========================================
Parameters:
wavelength : Wavelength of light
slits_distance : Distance between two slits
screen_distance : Distance between slits and screen
"""
return ((wavelength*slits_distance)/screen_distance) | 6f778da0126efda07c18679915a06bc1a4d5b1e0 | 461,781 |
def convert_cell_value_to_string(data):
"""
Converts the value of a call to a string if it is a list or a dictionary
Parameters
----------
data
The value of the cell in the dataframe
Returns
-------
str
The original data if it is not a list or a dictionary, otherwise the string representation of these
"""
if isinstance(data, list):
return ", ".join(data)
elif isinstance(data, dict):
return str(data)
else:
return data | 88e9db6dd9b3aa9d9608d364e5607d9bdd57c48a | 253,733 |
from typing import List
from typing import Union
def ls_strip_elements(ls_elements: List[str], chars: Union[None, str] = None) -> List[str]:
"""
>>> ls_strip_elements([' a','bbb',' '])
['a', 'bbb', '']
>>> ls_strip_elements([])
[]
"""
if (not ls_elements) or (ls_elements is None):
return list()
return [s_element.strip(chars) for s_element in ls_elements] | 830691f26e934d025b96e0d1c3d89d0bb634ed4d | 671,958 |
import ast
def robust_literal_eval(val):
"""Call `ast.literal_eval` without raising `ValueError`.
Parameters
----------
val : str
String literal to be evaluated.
Returns
-------
Output of `ast.literal_eval(val)', or `val` if `ValueError` was raised.
"""
try:
return ast.literal_eval(val)
except ValueError:
return val | 7c5136d72354ad6018b99c431fc704ed761ea7db | 674,993 |
import click
def verify_operation(txt, msg=None):
"""
Issue click confirm request and return result. If msg is none and
confirm response is n, output msg.
Parameters:
txt (:term:`string`):
String that is prefixed to the prompt text and defines the
verification request.
msg (:class:`py:bool`):
Optional parameter that if True causes an abort msg on the console.
Returns:
(:class:`py:bool`) where true corresponds to 'y' prompt response
"""
if click.confirm(txt):
return True
if msg:
click.echo('Request aborted')
return False | 70554e86b852e939fd40caf654a707ecfd55ec4e | 599,854 |
def queryset_to_dict(qs, key='id'):
""" Given a queryset will transform it into a dictionary based on ``key``. """
return dict((str(getattr(u, key)), u) for u in qs) | e9c4b9653106b949c887e3ff5d69c490aa769b86 | 332,818 |
def _get_more_static_shape(shape0, shape1):
"""Compare two shapes with the same rank,
and return the one with fewer symbolic dimension.
"""
assert len(shape0) == len(shape1)
num_sym_dim0 = 0
num_sym_dim1 = 0
for dim0, dim1 in zip(list(shape0), list(shape1)):
if not isinstance(dim0, int):
num_sym_dim0 += 1
if not isinstance(dim1, int):
num_sym_dim1 += 1
if num_sym_dim0 < num_sym_dim1:
return shape0
return shape1 | 290a1472b96509d8c424153171cd58175fc2d2c4 | 165,268 |
def tag_predicate(p):
"""
Given a full URI predicate, return a tagged predicate.
So, for example, given
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
return
rdf:type
"""
ns = {
"http://www.w3.org/1999/02/22-rdf-syntax-ns#":"rdf:",
"http://www.w3.org/2000/01/rdf-schema#":"rdfs:",
"http://www.w3.org/2001/XMLSchema#":"xsd:",
"http://www.w3.org/2002/07/owl#":"owl:",
"http://www.w3.org/2003/11/swrl#":"swrl:",
"http://www.w3.org/2003/11/swrlb#":"swrlb:",
"http://vitro.mannlib.cornell.edu/ns/vitro/0.7#":"vitro:",
"http://purl.org/ontology/bibo/":"bibo:",
"http://purl.org/spar/c4o/":"c4o:",
"http://purl.org/spar/cito/":"cito:",
"http://purl.org/dc/terms/":"dcterms:",
"http://purl.org/NET/c4dm/event.owl#":"event:",
"http://purl.org/spar/fabio/":"fabio:",
"http://xmlns.com/foaf/0.1/":"foaf:",
"http://aims.fao.org/aos/geopolitical.owl#":"geo:",
"http://purl.obolibrary.org/obo/":"obo:",
"http://purl.org/net/OCRe/research.owl#":"ocrer:",
"http://purl.org/net/OCRe/study_design.owl#":"ocresd:",
"http://www.w3.org/2004/02/skos/core#":"skos:",
"http://vivo.ufl.edu/ontology/vivo-ufl/":"ufVivo:",
"http://www.w3.org/2006/vcard/ns#":"vcard:",
"http://vitro.mannlib.cornell.edu/ns/vitro/public#":"vitro-public:",
"http://vivoweb.org/ontology/core#":"vivo:",
"http://vivoweb.org/ontology/scientific-research#":"scires:"
}
for uri, tag in ns.items():
if p.find(uri) > -1:
newp = p.replace(uri, tag)
return newp
return None | bfe1cf2ea83f4faee77299b0e7929571b550b59a | 686,876 |
from pathlib import Path
def files_list(mydir):
"""Create a list of filenames in mydir."""
searchDir = Path(mydir)
myfiles = list(searchDir.iterdir())
return myfiles | b6ebaaea602e4bd5d6b80a5b9a810a3a868dba9c | 301,759 |
import string
def convert(value):
"""Get a decimal value and return a tuple of that value in different
numerical formats. (<str>hex, <str>binary, <str>ASCII, <int>int)
"""
if value < 256 and value > 32 and chr(value) in string.printable:
ascii_val = chr(value)
else:
ascii_val = ""
return (hex(value), bin(value), ascii_val, value) | 54e00fa7227053e9a06593a525d67fad807f1a60 | 192,275 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.