path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
106196484/cell_16
[ "text_plain_output_1.png" ]
from flashtext import KeywordProcessor from nltk.tokenize import sent_tokenize import pke import re import re ml_ftxt = re.sub('\\n', ' ', ml_ftxt) ml_ftxt = ml_ftxt.translate(str.maketrans(' ', ' ', '!"#$%&\'()*+-/:;<=>?@[\\]^_`{|}~')) ml_ftxt = re.sub('[A-Za-z0-9]*@[A-Za-z]*\\.?[A-Za-z0-9]*', '', ml_ftxt) extractor = pke.unsupervised.TextRank() extractor.load_document(input=ml_ftxt) extractor.candidate_selection() extractor.candidate_weighting() keyphrases2 = extractor.get_n_best(n=9) TextRank = [] for i, j in keyphrases2: TextRank.append(i) from nltk.tokenize import sent_tokenize from flashtext import KeywordProcessor def tokenize_sentences(text): sentences = [sent_tokenize(text)] sentences = [y for x in sentences for y in x] sentences = [sentence.strip() for sentence in sentences if len(sentence) > 20] return sentences def get_sentences_for_keyword(keywords, sentences): keyword_processor = KeywordProcessor() keyword_sentences = {} for word in keywords: keyword_sentences[word] = [] keyword_processor.add_keyword(word) for sentence in sentences: keywords_found = keyword_processor.extract_keywords(sentence) for key in keywords_found: keyword_sentences[key].append(sentence) for key in keyword_sentences.keys(): values = keyword_sentences[key] values = sorted(values, key=len, reverse=True) keyword_sentences[key] = values return keyword_sentences sentences = tokenize_sentences(ml_ftxt) keyword_sentence_mapping = get_sentences_for_keyword(TextRank, sentences) sentences = [] for i, j in keyword_sentence_mapping.items(): sentences.append(j[0]) for i in sentences: print(nlp(i))
code
106196484/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
ml_ftxt[:3000]
code
106196484/cell_14
[ "text_plain_output_1.png" ]
!pip install --upgrade pip !pip install git+https://github.com/deepset-ai/haystack.git#egg=farm-haystack[colab]
code
106196484/cell_10
[ "text_plain_output_1.png" ]
import pke import re import re ml_ftxt = re.sub('\\n', ' ', ml_ftxt) ml_ftxt = ml_ftxt.translate(str.maketrans(' ', ' ', '!"#$%&\'()*+-/:;<=>?@[\\]^_`{|}~')) ml_ftxt = re.sub('[A-Za-z0-9]*@[A-Za-z]*\\.?[A-Za-z0-9]*', '', ml_ftxt) extractor = pke.unsupervised.TextRank() extractor.load_document(input=ml_ftxt) extractor.candidate_selection() extractor.candidate_weighting() keyphrases2 = extractor.get_n_best(n=9) TextRank = [] for i, j in keyphrases2: TextRank.append(i) TextRank
code
106196484/cell_12
[ "text_plain_output_1.png" ]
!pip install -U transformers==3.0.0 !python -m nltk.downloader punkt !git clone https://github.com/patil-suraj/question_generation.git
code
106196484/cell_5
[ "text_plain_output_1.png" ]
import re import re ml_ftxt = re.sub('\\n', ' ', ml_ftxt) ml_ftxt = ml_ftxt.translate(str.maketrans(' ', ' ', '!"#$%&\'()*+-/:;<=>?@[\\]^_`{|}~')) ml_ftxt = re.sub('[A-Za-z0-9]*@[A-Za-z]*\\.?[A-Za-z0-9]*', '', ml_ftxt) ml_ftxt[:3000]
code
88098897/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('iris.csv') df
code
129020311/cell_25
[ "image_output_5.png", "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols data.drop(['Ticket', 'Cabin'], axis=1, inplace=True) data.head()
code
129020311/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') print(train.shape) print(test.shape)
code
129020311/cell_33
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols data.drop(['Ticket', 'Cabin'], axis=1, inplace=True) num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] cat_cols = [feature for feature in data.columns if data[feature].dtypes == 'O'] cat_cols.extend(['SibSp', 'Pclass']) cat_cols
code
129020311/cell_20
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols data.head()
code
129020311/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.head()
code
129020311/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols num_cols = num_cols[1:6] num_cols data.drop(['Ticket', 'Cabin'], axis=1, inplace=True) num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] cat_cols = [feature for feature in data.columns if data[feature].dtypes == 'O'] num_cols
code
129020311/cell_26
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols data.drop(['Ticket', 'Cabin'], axis=1, inplace=True) data.info()
code
129020311/cell_11
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df
code
129020311/cell_1
[ "text_plain_output_1.png" ]
import os import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129020311/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) data.info()
code
129020311/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols num_cols = num_cols[1:6] num_cols def plt_num_cols(data, num_var): for feature in num_var: f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={'height_ratios': (0.15, 0.85)}) f.set_figheight(3) f.set_figwidth(15) sns.boxplot(x=feature, data=data, ax=ax_box, orient='h') sns.histplot(data=data, x=feature, ax=ax_hist) plt.show() plt_num_cols(data, num_cols)
code
129020311/cell_32
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols num_cols = num_cols[1:6] num_cols data.drop(['Ticket', 'Cabin'], axis=1, inplace=True) num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] cat_cols = [feature for feature in data.columns if data[feature].dtypes == 'O'] del num_cols[0] num_cols
code
129020311/cell_15
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols
code
129020311/cell_16
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols num_cols = num_cols[1:6] num_cols
code
129020311/cell_17
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols sns.boxplot(x='Age', data=data)
code
129020311/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols len(data['Ticket'].unique())
code
129020311/cell_22
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df num_cols = [feature for feature in data.columns if data[feature].dtypes != 'O'] num_cols data['Survived'].hist()
code
129020311/cell_12
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape data.set_index('PassengerId', inplace=True) data.drop('Name', axis=1, inplace=True) def find_missing_df(data): """ Create dataframe showing which columns is missing values, amount and percent of missing values """ missing_df = pd.DataFrame(columns=['Column_name', 'Total_missing_values', 'Percent_missing', 'data_types']) col_name_arr = [] missing_value_arr = [] percent_missing_arr = [] dtypes_arr = [] for col in data: if data[col].isna().sum() > 0: percent_missing = np.float(f'{data[col].isna().sum() / data.shape[0] * 100:.2f}') col_name_arr.append(col) dtypes_arr.append(data[col].dtypes) missing_value_arr.append(data[col].isna().sum()) percent_missing_arr.append(percent_missing) missing_df['Column_name'] = col_name_arr missing_df['Total_missing_values'] = missing_value_arr missing_df['Percent_missing'] = percent_missing_arr missing_df['data_types'] = dtypes_arr return missing_df missing_df = find_missing_df(data) missing_df missing_cols = missing_df.drop(0).Column_name.values missing_cols
code
129020311/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') data = pd.concat([train, test], axis=0, sort=False, ignore_index=True) data.shape
code
1004133/cell_4
[ "image_output_11.png", "image_output_24.png", "image_output_25.png", "text_plain_output_5.png", "text_plain_output_15.png", "image_output_17.png", "text_plain_output_9.png", "image_output_14.png", "image_output_28.png", "text_plain_output_20.png", "image_output_23.png", "text_plain_output_4.png", "text_plain_output_13.png", "image_output_13.png", "image_output_5.png", "text_plain_output_14.png", "image_output_18.png", "image_output_21.png", "text_plain_output_27.png", "text_plain_output_10.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_24.png", "text_plain_output_21.png", "text_plain_output_25.png", "image_output_20.png", "text_plain_output_18.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_22.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_16.png", "image_output_16.png", "text_plain_output_8.png", "text_plain_output_26.png", "image_output_27.png", "image_output_6.png", "text_plain_output_23.png", "image_output_12.png", "text_plain_output_28.png", "image_output_22.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "text_plain_output_19.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png", "image_output_15.png", "image_output_9.png", "image_output_19.png", "image_output_26.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.preprocessing as pre train_data = pd.read_csv('../input/train.csv') test_data = pd.read_csv('../input/test.csv') images = train_data.drop('label', 1) observations, features = images.shape pixel_width = int(np.sqrt(features)) X = images.as_matrix() X_train = X.reshape(observations, pixel_width, pixel_width, 1) labels = train_data['label'] Y = labels.as_matrix() labels = pre.LabelEncoder().fit_transform(labels)[:, None] Y_train = pre.OneHotEncoder().fit_transform(labels).todense() t = test_data.as_matrix() tr, tc = t.shape test = t.reshape(tr, pixel_width, pixel_width, 1) def showImage(X, index): N, w, h, c = X.shape grid = np.zeros((w, h)) for i in range(w): for j in range(h): grid[i, j] = X[index, i, j, 0] plt.rcParams['figure.figsize'] = [1.5, 1.5] plt.imshow(grid, cmap='gray') plt.ion() plt.show() showImage(X_train, 3) showImage(X_train, 875) showImage(X_train, 40000)
code
1004133/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import sklearn.preprocessing as pre train_data = pd.read_csv('../input/train.csv') test_data = pd.read_csv('../input/test.csv') images = train_data.drop('label', 1) observations, features = images.shape pixel_width = int(np.sqrt(features)) X = images.as_matrix() X_train = X.reshape(observations, pixel_width, pixel_width, 1) print('Image Array', X_train.shape) labels = train_data['label'] Y = labels.as_matrix() labels = pre.LabelEncoder().fit_transform(labels)[:, None] Y_train = pre.OneHotEncoder().fit_transform(labels).todense() print('Label Array', Y_train.shape) t = test_data.as_matrix() tr, tc = t.shape test = t.reshape(tr, pixel_width, pixel_width, 1) print('Image Array', test.shape)
code
1004133/cell_10
[ "text_plain_output_1.png" ]
import math import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.preprocessing as pre import tensorflow as tf train_data = pd.read_csv('../input/train.csv') test_data = pd.read_csv('../input/test.csv') images = train_data.drop('label', 1) observations, features = images.shape pixel_width = int(np.sqrt(features)) X = images.as_matrix() X_train = X.reshape(observations, pixel_width, pixel_width, 1) labels = train_data['label'] Y = labels.as_matrix() labels = pre.LabelEncoder().fit_transform(labels)[:, None] Y_train = pre.OneHotEncoder().fit_transform(labels).todense() t = test_data.as_matrix() tr, tc = t.shape test = t.reshape(tr, pixel_width, pixel_width, 1) def showImage(X, index): N, w, h, c = X.shape grid = np.zeros((w, h)) for i in range(w): for j in range(h): grid[i, j] = X[index, i, j, 0] plt.rcParams['figure.figsize'] = [1.5, 1.5] plt.ion() X = tf.placeholder('float', [None, 28, 28, 1]) Y = tf.placeholder('float', [None, 10]) lr = tf.placeholder(tf.float32) pkeep = tf.placeholder(tf.float32) pkeep_conv = tf.placeholder(tf.float32) K = 24 L = 48 M = 64 N = 200 W1 = tf.Variable(tf.truncated_normal([6, 6, 1, K], stddev=0.1)) B1 = tf.Variable(tf.ones([K]) / 10) W2 = tf.Variable(tf.truncated_normal([5, 5, K, L], stddev=0.1)) B2 = tf.Variable(tf.ones([L]) / 10) W3 = tf.Variable(tf.truncated_normal([4, 4, L, M], stddev=0.1)) B3 = tf.Variable(tf.ones([M]) / 10) W4 = tf.Variable(tf.truncated_normal([7 * 7 * M, N], stddev=0.1)) B4 = tf.Variable(tf.ones([N]) / 10) W5 = tf.Variable(tf.truncated_normal([N, 10], stddev=0.1)) B5 = tf.Variable(tf.ones([10]) / 10) def batchnorm(Ylogits, beta, convolutional=False): bnepsilon = 1e-05 if convolutional: mean, variance = tf.nn.moments(Ylogits, [0, 1, 2]) else: mean, variance = tf.nn.moments(Ylogits, [0]) BN = tf.nn.batch_normalization(Ylogits, mean, variance, beta, None, bnepsilon) return BN stride = 1 Y1 = tf.nn.conv2d(X, W1, strides=[1, stride, stride, 1], padding='SAME') BN1 = batchnorm(Y1, B1, convolutional=True) Y1_BN = tf.nn.relu(BN1) stride = 2 Y2 = tf.nn.conv2d(Y1_BN, W2, strides=[1, stride, stride, 1], padding='SAME') BN2 = batchnorm(Y2, B2, convolutional=True) Y2_BN = tf.nn.relu(BN2) stride = 2 Y3 = tf.nn.conv2d(Y2_BN, W3, strides=[1, stride, stride, 1], padding='SAME') BN3 = batchnorm(Y3, B3, convolutional=True) Y3_BN = tf.nn.relu(BN3) YY = tf.reshape(Y3, shape=[-1, 7 * 7 * M]) Y4 = tf.matmul(YY, W4) BN4 = batchnorm(Y4, B4) Y4_BN = tf.nn.relu(BN4) YY4 = tf.nn.dropout(Y4_BN, pkeep) Ylogits = tf.matmul(YY4, W5) + B5 YHat = tf.nn.softmax(Ylogits) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=Ylogits, labels=Y) cross_entropy = tf.reduce_mean(cross_entropy) correct_prediction = tf.equal(tf.argmax(YHat, 1), tf.argmax(Y_train, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) optimizer = tf.train.AdamOptimizer(lr).minimize(cross_entropy) predict = tf.argmax(YHat, 1) training_epochs = 2 batch_size = 100 max_learning_rate = 0.02 min_learning_rate = 0.0001 decay_speed = 1600.0 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) total_batch = int(observations / batch_size) batch_no = 1 print('Optimization In Progress') for epoch in range(training_epochs): c = 0.0 avg_cost = 0.0 for i in range(total_batch): start = i * 100 end = start + batch_size - 1 learning_rate = min_learning_rate + (max_learning_rate - min_learning_rate) * math.exp(-i / decay_speed) batch_X = X_train[start:end] batch_Y = Y_train[start:end] _, c = sess.run([optimizer, cross_entropy], feed_dict={X: batch_X, Y: batch_Y, lr: learning_rate, pkeep: 0.75}) avg_cost += c / total_batch print('epoch No {} cross entropy={}'.format(epoch + 1, avg_cost)) print('Optimization Completed') print('Predictions') test_batch = batch_size predictions = np.zeros(test.shape[0]) for i in range(0, test.shape[0] // test_batch): predictions[i * test_batch:(i + 1) * test_batch] = predict.eval(feed_dict={X: test[i * test_batch:(i + 1) * test_batch], pkeep: 1.0})
code
72108430/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') iris.info()
code
72108430/cell_30
[ "image_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() fig = iris[iris.Species=='Iris-setosa'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='orange', label='Setosa') iris[iris.Species=='Iris-versicolor'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='blue', label='versicolor',ax=fig) iris[iris.Species=='Iris-virginica'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='green', label='virginica', ax=fig) fig.set_xlabel("Petal Length") fig.set_ylabel("Petal Width") fig.set_title(" Petal Length VS Width") fig=plt.gcf() fig.set_size_inches(10,6) plt.show() iris.drop('Id', axis=1).boxplot(by='Species', figsize=(12, 6)) ax=plt.subplots(1,1,figsize=(10,8)) iris['Species'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True,figsize=(10,8)) plt.title("Iris Species %") plt.show() train, test = train_test_split(iris, test_size=0.25) train_X = train[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']] train_y = train.Species test_X = test[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']] test_y = test.Species train_X.head(5)
code
72108430/cell_33
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn import svm from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() fig = iris[iris.Species=='Iris-setosa'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='orange', label='Setosa') iris[iris.Species=='Iris-versicolor'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='blue', label='versicolor',ax=fig) iris[iris.Species=='Iris-virginica'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='green', label='virginica', ax=fig) fig.set_xlabel("Petal Length") fig.set_ylabel("Petal Width") fig.set_title(" Petal Length VS Width") fig=plt.gcf() fig.set_size_inches(10,6) plt.show() iris.drop('Id', axis=1).boxplot(by='Species', figsize=(12, 6)) ax=plt.subplots(1,1,figsize=(10,8)) iris['Species'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True,figsize=(10,8)) plt.title("Iris Species %") plt.show() train, test = train_test_split(iris, test_size=0.25) train_X = train[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']] train_y = train.Species test_X = test[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']] test_y = test.Species model = svm.SVC() model.fit(train_X, train_y) prediction = model.predict(test_X) print('The accuracy of the SVM is:', metrics.accuracy_score(prediction, test_y))
code
72108430/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() fig = iris[iris.Species=='Iris-setosa'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='orange', label='Setosa') iris[iris.Species=='Iris-versicolor'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='blue', label='versicolor',ax=fig) iris[iris.Species=='Iris-virginica'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='green', label='virginica', ax=fig) fig.set_xlabel("Petal Length") fig.set_ylabel("Petal Width") fig.set_title(" Petal Length VS Width") fig=plt.gcf() fig.set_size_inches(10,6) plt.show() iris.drop('Id', axis=1).boxplot(by='Species', figsize=(12, 6))
code
72108430/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') iris.describe()
code
72108430/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() fig = iris[iris.Species=='Iris-setosa'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='orange', label='Setosa') iris[iris.Species=='Iris-versicolor'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='blue', label='versicolor',ax=fig) iris[iris.Species=='Iris-virginica'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='green', label='virginica', ax=fig) fig.set_xlabel("Petal Length") fig.set_ylabel("Petal Width") fig.set_title(" Petal Length VS Width") fig=plt.gcf() fig.set_size_inches(10,6) plt.show() iris.drop('Id', axis=1).boxplot(by='Species', figsize=(12, 6)) ax=plt.subplots(1,1,figsize=(10,8)) iris['Species'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True,figsize=(10,8)) plt.title("Iris Species %") plt.show() plt.figure(figsize=(7, 4)) sns.heatmap(iris.drop('Id', axis=1).corr(), annot=True, cmap='cubehelix_r') plt.show()
code
72108430/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') iris.head()
code
72108430/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() fig = iris[iris.Species=='Iris-setosa'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='orange', label='Setosa') iris[iris.Species=='Iris-versicolor'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='blue', label='versicolor',ax=fig) iris[iris.Species=='Iris-virginica'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='green', label='virginica', ax=fig) fig.set_xlabel("Petal Length") fig.set_ylabel("Petal Width") fig.set_title(" Petal Length VS Width") fig=plt.gcf() fig.set_size_inches(10,6) plt.show() sns.pairplot(iris.drop('Id', axis=1), hue='Species', height=3)
code
72108430/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() fig = iris[iris.Species=='Iris-setosa'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='orange', label='Setosa') iris[iris.Species=='Iris-versicolor'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='blue', label='versicolor',ax=fig) iris[iris.Species=='Iris-virginica'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='green', label='virginica', ax=fig) fig.set_xlabel("Petal Length") fig.set_ylabel("Petal Width") fig.set_title(" Petal Length VS Width") fig=plt.gcf() fig.set_size_inches(10,6) plt.show() iris.drop('Id', axis=1).boxplot(by='Species', figsize=(12, 6)) ax=plt.subplots(1,1,figsize=(10,8)) iris['Species'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True,figsize=(10,8)) plt.title("Iris Species %") plt.show() train, test = train_test_split(iris, test_size=0.25) print(train.shape) print(test.shape)
code
72108430/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') iris['Species'].value_counts()
code
72108430/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() fig = iris[iris.Species=='Iris-setosa'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='orange', label='Setosa') iris[iris.Species=='Iris-versicolor'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='blue', label='versicolor',ax=fig) iris[iris.Species=='Iris-virginica'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='green', label='virginica', ax=fig) fig.set_xlabel("Petal Length") fig.set_ylabel("Petal Width") fig.set_title(" Petal Length VS Width") fig=plt.gcf() fig.set_size_inches(10,6) plt.show() sns.boxplot(x='Species', y='PetalLengthCm', data=iris)
code
72108430/cell_35
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn import svm from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() fig = iris[iris.Species=='Iris-setosa'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='orange', label='Setosa') iris[iris.Species=='Iris-versicolor'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='blue', label='versicolor',ax=fig) iris[iris.Species=='Iris-virginica'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='green', label='virginica', ax=fig) fig.set_xlabel("Petal Length") fig.set_ylabel("Petal Width") fig.set_title(" Petal Length VS Width") fig=plt.gcf() fig.set_size_inches(10,6) plt.show() iris.drop('Id', axis=1).boxplot(by='Species', figsize=(12, 6)) ax=plt.subplots(1,1,figsize=(10,8)) iris['Species'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True,figsize=(10,8)) plt.title("Iris Species %") plt.show() train, test = train_test_split(iris, test_size=0.25) train_X = train[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']] train_y = train.Species test_X = test[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']] test_y = test.Species model = svm.SVC() model.fit(train_X, train_y) prediction = model.predict(test_X) model = LogisticRegression() model.fit(train_X, train_y) prediction = model.predict(test_X) print('The accuracy of the Logistic Regression is', metrics.accuracy_score(prediction, test_y))
code
72108430/cell_31
[ "image_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() fig = iris[iris.Species=='Iris-setosa'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='orange', label='Setosa') iris[iris.Species=='Iris-versicolor'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='blue', label='versicolor',ax=fig) iris[iris.Species=='Iris-virginica'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='green', label='virginica', ax=fig) fig.set_xlabel("Petal Length") fig.set_ylabel("Petal Width") fig.set_title(" Petal Length VS Width") fig=plt.gcf() fig.set_size_inches(10,6) plt.show() iris.drop('Id', axis=1).boxplot(by='Species', figsize=(12, 6)) ax=plt.subplots(1,1,figsize=(10,8)) iris['Species'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True,figsize=(10,8)) plt.title("Iris Species %") plt.show() train, test = train_test_split(iris, test_size=0.25) train_X = train[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']] train_y = train.Species test_X = test[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']] test_y = test.Species test_y.head(5)
code
72108430/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() fig = iris[iris.Species == 'Iris-setosa'].plot.scatter(x='PetalLengthCm', y='PetalWidthCm', color='orange', label='Setosa') iris[iris.Species == 'Iris-versicolor'].plot.scatter(x='PetalLengthCm', y='PetalWidthCm', color='blue', label='versicolor', ax=fig) iris[iris.Species == 'Iris-virginica'].plot.scatter(x='PetalLengthCm', y='PetalWidthCm', color='green', label='virginica', ax=fig) fig.set_xlabel('Petal Length') fig.set_ylabel('Petal Width') fig.set_title(' Petal Length VS Width') fig = plt.gcf() fig.set_size_inches(10, 6) plt.show()
code
72108430/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() fig = iris[iris.Species=='Iris-setosa'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='orange', label='Setosa') iris[iris.Species=='Iris-versicolor'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='blue', label='versicolor',ax=fig) iris[iris.Species=='Iris-virginica'].plot.scatter(x='PetalLengthCm',y='PetalWidthCm',color='green', label='virginica', ax=fig) fig.set_xlabel("Petal Length") fig.set_ylabel("Petal Width") fig.set_title(" Petal Length VS Width") fig=plt.gcf() fig.set_size_inches(10,6) plt.show() iris.drop('Id', axis=1).boxplot(by='Species', figsize=(12, 6)) ax = plt.subplots(1, 1, figsize=(10, 8)) iris['Species'].value_counts().plot.pie(autopct='%1.1f%%', shadow=True, figsize=(10, 8)) plt.title('Iris Species %') plt.show()
code
72108430/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') iris.plot(kind='scatter', x='SepalLengthCm', y='SepalWidthCm')
code
72108430/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd iris = pd.read_csv('../input/iris/Iris.csv') import seaborn as sns import matplotlib.pyplot as plt sns.FacetGrid(iris, hue='Species', height=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend()
code
16132902/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import os bkshare_df = pd.read_csv('../input/bike_share.csv') bkshare_df1 = bkshare_df.copy() def remove_duplicates(bkshare_df1): bkshare_df1.drop_duplicates(inplace=True) def descibe_df(bkshare_df1): pass def bkshare_corr(bkshare_df1): pass remove_duplicates(bkshare_df1) descibe_df(bkshare_df1) bkshare_corr(bkshare_df1) plt.figure(figsize=(10, 5)) ax = sns.heatmap(bkshare_df1.corr(), annot=True) plt.show(ax)
code
16132902/cell_6
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import os bkshare_df = pd.read_csv('../input/bike_share.csv') bkshare_df1 = bkshare_df.copy() def remove_duplicates(bkshare_df1): bkshare_df1.drop_duplicates(inplace=True) def descibe_df(bkshare_df1): pass def bkshare_corr(bkshare_df1): pass remove_duplicates(bkshare_df1) descibe_df(bkshare_df1) bkshare_corr(bkshare_df1) plt.figure(figsize=(10,5)) ax = sns.heatmap(bkshare_df1.corr(), annot=True) plt.show(ax) X = bkshare_df1.drop(['count', 'casual', 'registered'], axis=1) Y = bkshare_df1['count'] X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=12) model = LinearRegression() model.fit(X_train, Y_train) print('Coef & Intercept:', model.coef_, model.intercept_)
code
16132902/cell_2
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import os bkshare_df = pd.read_csv('../input/bike_share.csv') bkshare_df1 = bkshare_df.copy() bkshare_df1.info()
code
16132902/cell_1
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import os print(os.listdir('../input')) bkshare_df = pd.read_csv('../input/bike_share.csv') bkshare_df1 = bkshare_df.copy() bkshare_df1.head()
code
16132902/cell_7
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import os bkshare_df = pd.read_csv('../input/bike_share.csv') bkshare_df1 = bkshare_df.copy() def remove_duplicates(bkshare_df1): bkshare_df1.drop_duplicates(inplace=True) def descibe_df(bkshare_df1): pass def bkshare_corr(bkshare_df1): pass remove_duplicates(bkshare_df1) descibe_df(bkshare_df1) bkshare_corr(bkshare_df1) plt.figure(figsize=(10,5)) ax = sns.heatmap(bkshare_df1.corr(), annot=True) plt.show(ax) X = bkshare_df1.drop(['count', 'casual', 'registered'], axis=1) Y = bkshare_df1['count'] X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=12) model = LinearRegression() model.fit(X_train, Y_train) Y_train_predict = model.predict(X_train) display(Y_train_predict.shape) Y_test_predict = model.predict(X_test) display(Y_test_predict.shape) print('Train MSE:', mean_squared_error(Y_train, Y_train_predict)) print('Test MSE:', mean_squared_error(Y_test, Y_test_predict))
code
16132902/cell_3
[ "text_html_output_2.png", "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import os bkshare_df = pd.read_csv('../input/bike_share.csv') bkshare_df1 = bkshare_df.copy() def remove_duplicates(bkshare_df1): bkshare_df1.drop_duplicates(inplace=True) def descibe_df(bkshare_df1): print('Describing Dataset') print('------------------') display(bkshare_df1.describe()) def bkshare_corr(bkshare_df1): print('Correlation') print('------------') display(bkshare_df1.corr()) remove_duplicates(bkshare_df1) descibe_df(bkshare_df1) bkshare_corr(bkshare_df1)
code
16132902/cell_5
[ "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import os bkshare_df = pd.read_csv('../input/bike_share.csv') bkshare_df1 = bkshare_df.copy() def remove_duplicates(bkshare_df1): bkshare_df1.drop_duplicates(inplace=True) def descibe_df(bkshare_df1): pass def bkshare_corr(bkshare_df1): pass remove_duplicates(bkshare_df1) descibe_df(bkshare_df1) bkshare_corr(bkshare_df1) plt.figure(figsize=(10,5)) ax = sns.heatmap(bkshare_df1.corr(), annot=True) plt.show(ax) X = bkshare_df1.drop(['count', 'casual', 'registered'], axis=1) Y = bkshare_df1['count'] X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=12) display(X_train.shape) display(X_test.shape) display(Y_train.shape) display(Y_test.shape)
code
129006129/cell_1
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_1.png" ]
!pip install transformers >/dev/null import torch from torch.utils.data import Dataset from torchvision import datasets from torchvision.transforms import ToTensor import matplotlib.pyplot as plt from torch.utils.data import DataLoader from tqdm import tqdm device = 'cuda' if torch.cuda.is_available() else 'cpu' import pandas as pd import numpy as np from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') bert = BertModel.from_pretrained("bert-base-uncased").to(device) print("torch.cuda.is_available:",torch.cuda.is_available())
code
129006129/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from tqdm import tqdm import pandas as pd import torch test_data = pd.read_pickle('/kaggle/input/nlp-with-disaster-tweets-eda-cleaning-and-bert/test.pkl') test_text = test_data.text_cleaned.apply(lambda x: x.lower()).values.tolist() bert.eval() testtext_embedding = [] with torch.no_grad(): for t in tqdm(test_text): t = tokenizer(t, return_tensors='pt').to(device) output = bert(**t).pooler_output.to('cpu').numpy() testtext_embedding.append(output) test_data = pd.read_pickle('/kaggle/input/nlp-with-disaster-tweets-eda-cleaning-and-bert/test.pkl') test_data.to_csv('preprocessed_test.csv') train_data = pd.read_pickle('/kaggle/input/nlp-with-disaster-tweets-eda-cleaning-and-bert/train.pkl') train_text = train_data.text_cleaned.apply(lambda x: x.lower()).values bert.eval() traintext_embedding = [] with torch.no_grad(): for t in tqdm(train_text): t = tokenizer(t, return_tensors='pt').to(device) output = bert(**t).pooler_output.to('cpu').numpy() traintext_embedding.append(output)
code
129006129/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
from tqdm import tqdm import pandas as pd import torch test_data = pd.read_pickle('/kaggle/input/nlp-with-disaster-tweets-eda-cleaning-and-bert/test.pkl') test_text = test_data.text_cleaned.apply(lambda x: x.lower()).values.tolist() bert.eval() testtext_embedding = [] with torch.no_grad(): for t in tqdm(test_text): t = tokenizer(t, return_tensors='pt').to(device) output = bert(**t).pooler_output.to('cpu').numpy() testtext_embedding.append(output)
code
16119472/cell_13
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) test_df.take(5)
code
16119472/cell_30
[ "text_plain_output_1.png" ]
from nltk import pos_tag from nltk import pos_tag from nltk.corpus import stopwords from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer from nltk.stem import WordNetLemmatizer from pyspark.sql import SparkSession import nltk import string spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5) train_df.columns out_cols = [i for i in train_df.columns if i not in ['id', 'comment_text']] train_df = train_df.drop(*out_cols) train_df.take(5) test_df.take(5) all_data = train_df.union(test_df) all_data.take(5) from nltk import pos_tag from nltk.corpus import wordnet def get_wordnet_pos(pos_tag): if pos_tag.startswith('J'): return wordnet.ADJ elif pos_tag.startswith('V'): return wordnet.VERB elif pos_tag.startswith('N'): return wordnet.NOUN elif pos_tag.startswith('R'): return wordnet.ADV else: return wordnet.NOUN import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] stop = stopwords.words('english') text = [x for x in text if x not in stop] text = [t for t in text if len(t) > 0] pos_tags = pos_tag(text) text = [WordNetLemmatizer().lemmatize(t[0], get_wordnet_pos(t[1])) for t in pos_tags] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text all_rdd = all_data.select('comment_text').rdd.flatMap(lambda x: x) all_rdd.take(5) all_rdd = all_rdd.filter(lambda x: x is not None).filter(lambda x: x != '') all_rdd = all_rdd.map(lambda x: x.lower()) all_rdd.take(5) all_rdd = all_rdd.map(lambda x: [word.strip(string.punctuation) for word in x.split(' ')]) all_rdd = all_rdd.map(lambda text: [word for word in text if not any((c.isdigit() for c in word))]) all_rdd.take(5) stop = stopwords.words('english') remove_stop = lambda text: [x for x in text if x not in stop] all_rdd = all_rdd.map(remove_stop) all_rdd.take(5) remove_empty = lambda text: [t for t in text if len(t) > 0] all_rdd = all_rdd.map(remove_empty) all_rdd.take(5) import nltk nltk.download('wordnet') from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() def lemma(x): return lemmatizer.lemmatize(x) lemmatize = lambda x: [lemma(i) for i in x] all_rdd = all_rdd.map(lemmatize)
code
16119472/cell_6
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5)
code
16119472/cell_29
[ "text_plain_output_1.png" ]
from nltk import pos_tag from nltk import pos_tag from nltk.corpus import stopwords from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer from pyspark.sql import SparkSession import string spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5) train_df.columns out_cols = [i for i in train_df.columns if i not in ['id', 'comment_text']] train_df = train_df.drop(*out_cols) train_df.take(5) test_df.take(5) all_data = train_df.union(test_df) all_data.take(5) from nltk import pos_tag from nltk.corpus import wordnet def get_wordnet_pos(pos_tag): if pos_tag.startswith('J'): return wordnet.ADJ elif pos_tag.startswith('V'): return wordnet.VERB elif pos_tag.startswith('N'): return wordnet.NOUN elif pos_tag.startswith('R'): return wordnet.ADV else: return wordnet.NOUN import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] stop = stopwords.words('english') text = [x for x in text if x not in stop] text = [t for t in text if len(t) > 0] pos_tags = pos_tag(text) text = [WordNetLemmatizer().lemmatize(t[0], get_wordnet_pos(t[1])) for t in pos_tags] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text all_rdd = all_data.select('comment_text').rdd.flatMap(lambda x: x) all_rdd.take(5) all_rdd = all_rdd.filter(lambda x: x is not None).filter(lambda x: x != '') all_rdd = all_rdd.map(lambda x: x.lower()) all_rdd.take(5) all_rdd = all_rdd.map(lambda x: [word.strip(string.punctuation) for word in x.split(' ')]) all_rdd = all_rdd.map(lambda text: [word for word in text if not any((c.isdigit() for c in word))]) all_rdd.take(5) stop = stopwords.words('english') remove_stop = lambda text: [x for x in text if x not in stop] all_rdd = all_rdd.map(remove_stop) all_rdd.take(5) remove_empty = lambda text: [t for t in text if len(t) > 0] all_rdd = all_rdd.map(remove_empty) all_rdd.take(5)
code
16119472/cell_26
[ "text_plain_output_1.png" ]
from nltk import pos_tag from nltk import pos_tag from nltk.corpus import stopwords from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer from pyspark.sql import SparkSession import string spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5) train_df.columns out_cols = [i for i in train_df.columns if i not in ['id', 'comment_text']] train_df = train_df.drop(*out_cols) train_df.take(5) test_df.take(5) all_data = train_df.union(test_df) all_data.take(5) from nltk import pos_tag from nltk.corpus import wordnet def get_wordnet_pos(pos_tag): if pos_tag.startswith('J'): return wordnet.ADJ elif pos_tag.startswith('V'): return wordnet.VERB elif pos_tag.startswith('N'): return wordnet.NOUN elif pos_tag.startswith('R'): return wordnet.ADV else: return wordnet.NOUN import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] stop = stopwords.words('english') text = [x for x in text if x not in stop] text = [t for t in text if len(t) > 0] pos_tags = pos_tag(text) text = [WordNetLemmatizer().lemmatize(t[0], get_wordnet_pos(t[1])) for t in pos_tags] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text all_rdd = all_data.select('comment_text').rdd.flatMap(lambda x: x) all_rdd.take(5) all_rdd = all_rdd.filter(lambda x: x is not None).filter(lambda x: x != '') all_rdd = all_rdd.map(lambda x: x.lower()) all_rdd.take(5) all_rdd = all_rdd.map(lambda x: [word.strip(string.punctuation) for word in x.split(' ')]) all_rdd = all_rdd.map(lambda text: [word for word in text if not any((c.isdigit() for c in word))]) all_rdd.take(5)
code
16119472/cell_2
[ "text_plain_output_1.png" ]
pip install pyspark
code
16119472/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16119472/cell_7
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5) train_df.columns
code
16119472/cell_18
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5) train_df.columns out_cols = [i for i in train_df.columns if i not in ['id', 'comment_text']] train_df = train_df.drop(*out_cols) train_df.take(5) test_df.take(5) all_data = train_df.union(test_df) all_data.take(5) all_rdd = all_data.select('comment_text').rdd.flatMap(lambda x: x) all_rdd.take(5)
code
16119472/cell_28
[ "text_plain_output_1.png" ]
from nltk import pos_tag from nltk import pos_tag from nltk.corpus import stopwords from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer from pyspark.sql import SparkSession import string spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5) train_df.columns out_cols = [i for i in train_df.columns if i not in ['id', 'comment_text']] train_df = train_df.drop(*out_cols) train_df.take(5) test_df.take(5) all_data = train_df.union(test_df) all_data.take(5) from nltk import pos_tag from nltk.corpus import wordnet def get_wordnet_pos(pos_tag): if pos_tag.startswith('J'): return wordnet.ADJ elif pos_tag.startswith('V'): return wordnet.VERB elif pos_tag.startswith('N'): return wordnet.NOUN elif pos_tag.startswith('R'): return wordnet.ADV else: return wordnet.NOUN import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] stop = stopwords.words('english') text = [x for x in text if x not in stop] text = [t for t in text if len(t) > 0] pos_tags = pos_tag(text) text = [WordNetLemmatizer().lemmatize(t[0], get_wordnet_pos(t[1])) for t in pos_tags] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text all_rdd = all_data.select('comment_text').rdd.flatMap(lambda x: x) all_rdd.take(5) all_rdd = all_rdd.filter(lambda x: x is not None).filter(lambda x: x != '') all_rdd = all_rdd.map(lambda x: x.lower()) all_rdd.take(5) all_rdd = all_rdd.map(lambda x: [word.strip(string.punctuation) for word in x.split(' ')]) all_rdd = all_rdd.map(lambda text: [word for word in text if not any((c.isdigit() for c in word))]) all_rdd.take(5) stop = stopwords.words('english') remove_stop = lambda text: [x for x in text if x not in stop] all_rdd = all_rdd.map(remove_stop) all_rdd.take(5)
code
16119472/cell_15
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5) train_df.columns out_cols = [i for i in train_df.columns if i not in ['id', 'comment_text']] train_df = train_df.drop(*out_cols) train_df.take(5) test_df.take(5) all_data = train_df.union(test_df) all_data.take(5)
code
16119472/cell_31
[ "text_plain_output_1.png" ]
from nltk import pos_tag from nltk import pos_tag from nltk.corpus import stopwords from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer from nltk.stem import WordNetLemmatizer from pyspark.sql import SparkSession import nltk import string spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5) train_df.columns out_cols = [i for i in train_df.columns if i not in ['id', 'comment_text']] train_df = train_df.drop(*out_cols) train_df.take(5) test_df.take(5) all_data = train_df.union(test_df) all_data.take(5) from nltk import pos_tag from nltk.corpus import wordnet def get_wordnet_pos(pos_tag): if pos_tag.startswith('J'): return wordnet.ADJ elif pos_tag.startswith('V'): return wordnet.VERB elif pos_tag.startswith('N'): return wordnet.NOUN elif pos_tag.startswith('R'): return wordnet.ADV else: return wordnet.NOUN import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] stop = stopwords.words('english') text = [x for x in text if x not in stop] text = [t for t in text if len(t) > 0] pos_tags = pos_tag(text) text = [WordNetLemmatizer().lemmatize(t[0], get_wordnet_pos(t[1])) for t in pos_tags] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text all_rdd = all_data.select('comment_text').rdd.flatMap(lambda x: x) all_rdd.take(5) all_rdd = all_rdd.filter(lambda x: x is not None).filter(lambda x: x != '') all_rdd = all_rdd.map(lambda x: x.lower()) all_rdd.take(5) all_rdd = all_rdd.map(lambda x: [word.strip(string.punctuation) for word in x.split(' ')]) all_rdd = all_rdd.map(lambda text: [word for word in text if not any((c.isdigit() for c in word))]) all_rdd.take(5) stop = stopwords.words('english') remove_stop = lambda text: [x for x in text if x not in stop] all_rdd = all_rdd.map(remove_stop) all_rdd.take(5) remove_empty = lambda text: [t for t in text if len(t) > 0] all_rdd = all_rdd.map(remove_empty) all_rdd.take(5) import nltk nltk.download('wordnet') from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() def lemma(x): return lemmatizer.lemmatize(x) lemmatize = lambda x: [lemma(i) for i in x] all_rdd = all_rdd.map(lemmatize) all_rdd.take(5)
code
16119472/cell_24
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5) train_df.columns out_cols = [i for i in train_df.columns if i not in ['id', 'comment_text']] train_df = train_df.drop(*out_cols) train_df.take(5) test_df.take(5) all_data = train_df.union(test_df) all_data.take(5) all_rdd = all_data.select('comment_text').rdd.flatMap(lambda x: x) all_rdd.take(5) all_rdd = all_rdd.filter(lambda x: x is not None).filter(lambda x: x != '') all_rdd = all_rdd.map(lambda x: x.lower()) all_rdd.take(5)
code
16119472/cell_10
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5) train_df.columns out_cols = [i for i in train_df.columns if i not in ['id', 'comment_text']] out_cols
code
16119472/cell_12
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession spark = SparkSession.builder.appName('TestCSV').getOrCreate() train_df = spark.read.csv('../input/train.csv', header=True) test_df = spark.read.csv('../input/test.csv', header=True) train_df.take(5) train_df.columns out_cols = [i for i in train_df.columns if i not in ['id', 'comment_text']] train_df = train_df.drop(*out_cols) train_df.take(5)
code
34120998/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
!ls ../train_overlay/
code
34120998/cell_8
[ "image_output_1.png" ]
from IPython.display import Image, display from PIL import Image display(Image(filename='../train_overlay/3046035f348012fdba6f7c53c4faa16e.png'))
code
34120998/cell_3
[ "text_html_output_1.png" ]
import pandas as pd path = '../input/prostate-cancer-grade-assessment' train = pd.read_csv(f'{path}/train.csv') test = pd.read_csv(f'{path}/test.csv') submission = pd.read_csv(f'{path}/sample_submission.csv') suspicious = pd.read_csv(f'../input/suspicious-data-panda/suspicious_test_cases.csv') data_dir = f'{path}/train_images' mask_dir = f'{path}/train_label_masks' df_train = train.copy().set_index('image_id') for j in df_train.index: for i in suspicious['image_id']: if i == j: df_train.drop([i], axis=0, inplace=True) df_train
code
90147986/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # Data processing, CSV file I/O (e.g. pd.read_csv) krenth311 = pd.read_csv('../input/dataset/krenth311.csv') krenth316 = pd.read_csv('../input/dataset/krenth316.csv') merge = pd.concat([krenth311, krenth316]) merge.to_csv('merge.csv', index=False) for col in ['aloneorinagroup']: krenth311[col].value_counts(ascending=True).plot(kind='barh', title=col) plt.xlabel('frequency') plt.show()
code
90147986/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import cufflinks as cf import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import dates as md import seaborn as sns import plotly.graph_objs as go import plotly import cufflinks as cf cf.set_config_file(offline=True) import os
code
90147986/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # Data processing, CSV file I/O (e.g. pd.read_csv) krenth311 = pd.read_csv('../input/dataset/krenth311.csv') krenth316 = pd.read_csv('../input/dataset/krenth316.csv') merge = pd.concat([krenth311, krenth316]) merge.to_csv('merge.csv', index=False) for i in heartrate: i += i heartrate = sum(heartx) krenth311['heartrate'] = krenth311[sum(heartrate) / len(heartrate)] krenth311['aloneorinagroup'] = krenth311['aloneorinagroup'].replace({9: 'Alone', 10: 'Online', 11: 'Group'})
code
128006303/cell_6
[ "text_html_output_1.png" ]
model1 = LinearRegression() model1.fit(total_X, total_y) model2 = LinearRegression() model2.fit(men_X, men_y) model3 = LinearRegression() model3.fit(women_X, women_y)
code
128006303/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error
code
128006303/cell_8
[ "text_plain_output_1.png" ]
model1 = LinearRegression() model1.fit(total_X, total_y) model2 = LinearRegression() model2.fit(men_X, men_y) model3 = LinearRegression() model3.fit(women_X, women_y) pred_total = model1.predict(total_X) pred_men = model2.predict(men_X) pred_women = model3.predict(women_X) """ MSE_total:16949.508877183063 MSE_men:10974.075600749911 MSE_women:3972.9602897642253 """ mse_total = mean_squared_error(pred_total, total_y) print(f'MSE_total:{mse_total}') mse_men = mean_squared_error(pred_men, men_y) print(f'MSE_men:{mse_men}') mse_women = mean_squared_error(pred_women, women_y) print(f'MSE_women:{mse_women}')
code
128006303/cell_3
[ "text_html_output_1.png" ]
train = pd.read_csv('/kaggle/input/population-projections/train.csv') train.head()
code
89137453/cell_21
[ "text_plain_output_1.png" ]
from ipywidgets import interact, widgets from tensorflow import keras import math import matplotlib.pyplot as plt import numpy as np fashion_mnist = keras.datasets.fashion_mnist (in_train, out_train), (in_valid, out_valid) = fashion_mnist.load_data() (in_train.shape, in_valid.shape, np.unique(out_train)) in_train = in_train / 255.0 in_valid = in_valid / 255.0 class_names = {index: cn for index, cn in enumerate(['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'])} # row_number = int(input('How many rows of training images would you like to review?')) row_number = 5 def plot_train(n_rows = 2, predictions=None): '''create a grid with 10 columns ''' n_cols = 10 # n_rows = math.ceil(len(images) / n_cols) images = in_train[: n_cols * n_rows] labels = out_train[: n_cols * n_rows] fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols + 3, n_rows + 2)) if predictions is None: predictions = [None] * len(labels) for index, (x, y_true, y_pred) in enumerate(zip(images, labels, predictions)): ax = axes.flat[index] ax.imshow(x, cmap=plt.cm.binary) ax.set_title(class_names[y_true]) if y_pred is not None: ax.set_xlabel(class_names[y_pred]) ax.set_xticks([]) ax.set_yticks([]) # plot first 20 images plot_train(row_number) #input('How many rows of training images would you like to review?') def plot(images, labels, predictions=None): '''create a grid with 10 columns ''' n_cols = min(10, len(images)) n_rows = math.ceil(len(images) / n_cols) fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols + 3, n_rows + 2)) if predictions is None: predictions = [None] * len(labels) for index, (x, y_true, y_pred) in enumerate(zip(images, labels, predictions)): ax = axes.flat[index] ax.imshow(x, cmap=plt.cm.binary) ax.set_title(class_names[y_true]) if y_pred is not None: ax.set_xlabel(class_names[y_pred]) ax.set_xticks([]) ax.set_yticks([]) # plot first 20 images #plot(in_train[:20], out_train[:20]) def plot(images, labels, predictions=None): # create a grid with 10 columns n_cols = min(10, len(images)) n_rows = math.ceil(len(images) / n_cols) fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols + 3, n_rows + 2)) if predictions is None: predictions = [None] * len(labels) for index, (x, y_true, y_pred) in enumerate(zip(images, labels, predictions)): ax = axes.flat[index] ax.imshow(x, cmap=plt.cm.binary) ax.set_title(class_names[y_true]) if y_pred is not None: ax.set_xlabel(class_names[y_pred]) ax.set_xticks([]) ax.set_yticks([]) # plot first 20 images #plot(in_train[:20], out_train[:20]) model = keras.Sequential(layers=[keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax')]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(in_train, out_train, batch_size=60, epochs=10, validation_split=0.2) loss, accuracy = model.evaluate(in_valid, out_valid) probs = model.predict(in_valid) preds = model.predict(in_valid).argsort()[:, -1] from ipywidgets import interact, widgets img_idx_slider = widgets.IntSlider(value=0, min=0, max=len(in_valid) - 1, description='Image index') @interact(index=img_idx_slider) def visualize_prediction(index=0): fix, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) ax1.imshow(in_valid[index], cmap=plt.cm.binary) ax1.set_title('label: %s' % class_names[out_valid[index]]) ax1.set_xlabel('predict: %s' % class_names[preds[index]]) ax2.bar(x=[class_names[index] for index in range(10)], height=probs[index] * 100) plt.xticks(rotation=90)
code
89137453/cell_4
[ "text_plain_output_1.png" ]
from tensorflow import keras fashion_mnist = keras.datasets.fashion_mnist (in_train, out_train), (in_valid, out_valid) = fashion_mnist.load_data()
code
89137453/cell_6
[ "image_png_output_1.png" ]
out_train
code
89137453/cell_19
[ "text_plain_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from tensorflow import keras import math import matplotlib.pyplot as plt import numpy as np fashion_mnist = keras.datasets.fashion_mnist (in_train, out_train), (in_valid, out_valid) = fashion_mnist.load_data() (in_train.shape, in_valid.shape, np.unique(out_train)) in_train = in_train / 255.0 in_valid = in_valid / 255.0 class_names = {index: cn for index, cn in enumerate(['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'])} # row_number = int(input('How many rows of training images would you like to review?')) row_number = 5 def plot_train(n_rows = 2, predictions=None): '''create a grid with 10 columns ''' n_cols = 10 # n_rows = math.ceil(len(images) / n_cols) images = in_train[: n_cols * n_rows] labels = out_train[: n_cols * n_rows] fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols + 3, n_rows + 2)) if predictions is None: predictions = [None] * len(labels) for index, (x, y_true, y_pred) in enumerate(zip(images, labels, predictions)): ax = axes.flat[index] ax.imshow(x, cmap=plt.cm.binary) ax.set_title(class_names[y_true]) if y_pred is not None: ax.set_xlabel(class_names[y_pred]) ax.set_xticks([]) ax.set_yticks([]) # plot first 20 images plot_train(row_number) #input('How many rows of training images would you like to review?') def plot(images, labels, predictions=None): '''create a grid with 10 columns ''' n_cols = min(10, len(images)) n_rows = math.ceil(len(images) / n_cols) fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols + 3, n_rows + 2)) if predictions is None: predictions = [None] * len(labels) for index, (x, y_true, y_pred) in enumerate(zip(images, labels, predictions)): ax = axes.flat[index] ax.imshow(x, cmap=plt.cm.binary) ax.set_title(class_names[y_true]) if y_pred is not None: ax.set_xlabel(class_names[y_pred]) ax.set_xticks([]) ax.set_yticks([]) # plot first 20 images #plot(in_train[:20], out_train[:20]) def plot(images, labels, predictions=None): # create a grid with 10 columns n_cols = min(10, len(images)) n_rows = math.ceil(len(images) / n_cols) fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols + 3, n_rows + 2)) if predictions is None: predictions = [None] * len(labels) for index, (x, y_true, y_pred) in enumerate(zip(images, labels, predictions)): ax = axes.flat[index] ax.imshow(x, cmap=plt.cm.binary) ax.set_title(class_names[y_true]) if y_pred is not None: ax.set_xlabel(class_names[y_pred]) ax.set_xticks([]) ax.set_yticks([]) # plot first 20 images #plot(in_train[:20], out_train[:20]) model = keras.Sequential(layers=[keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax')]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(in_train, out_train, batch_size=60, epochs=10, validation_split=0.2) loss, accuracy = model.evaluate(in_valid, out_valid) probs = model.predict(in_valid) preds = model.predict(in_valid).argsort()[:, -1] rand_idxs = np.random.permutation(len(in_valid))[:20] plot(in_valid[rand_idxs], out_valid[rand_idxs], preds[rand_idxs])
code
89137453/cell_18
[ "image_output_1.png" ]
from tensorflow import keras import numpy as np fashion_mnist = keras.datasets.fashion_mnist (in_train, out_train), (in_valid, out_valid) = fashion_mnist.load_data() (in_train.shape, in_valid.shape, np.unique(out_train)) in_train = in_train / 255.0 in_valid = in_valid / 255.0 model = keras.Sequential(layers=[keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax')]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(in_train, out_train, batch_size=60, epochs=10, validation_split=0.2) loss, accuracy = model.evaluate(in_valid, out_valid) probs = model.predict(in_valid) print(probs.argmax(axis=1)) preds = model.predict(in_valid).argsort()[:, -1] print(preds)
code
89137453/cell_15
[ "text_plain_output_1.png" ]
from tensorflow import keras import numpy as np fashion_mnist = keras.datasets.fashion_mnist (in_train, out_train), (in_valid, out_valid) = fashion_mnist.load_data() (in_train.shape, in_valid.shape, np.unique(out_train)) in_train = in_train / 255.0 in_valid = in_valid / 255.0 model = keras.Sequential(layers=[keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax')]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(in_train, out_train, batch_size=60, epochs=10, validation_split=0.2)
code
89137453/cell_16
[ "text_plain_output_1.png" ]
from tensorflow import keras import numpy as np fashion_mnist = keras.datasets.fashion_mnist (in_train, out_train), (in_valid, out_valid) = fashion_mnist.load_data() (in_train.shape, in_valid.shape, np.unique(out_train)) in_train = in_train / 255.0 in_valid = in_valid / 255.0 model = keras.Sequential(layers=[keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax')]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(in_train, out_train, batch_size=60, epochs=10, validation_split=0.2) loss, accuracy = model.evaluate(in_valid, out_valid)
code
89137453/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np (in_train.shape, in_valid.shape, np.unique(out_train)) in_train = in_train / 255.0 in_valid = in_valid / 255.0 class_names = {index: cn for index, cn in enumerate(['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'])} row_number = 5 def plot_train(n_rows=2, predictions=None): """create a grid with 10 columns """ n_cols = 10 images = in_train[:n_cols * n_rows] labels = out_train[:n_cols * n_rows] fig, axes = plt.subplots(n_rows, n_cols, figsize=(n_cols + 3, n_rows + 2)) if predictions is None: predictions = [None] * len(labels) for index, (x, y_true, y_pred) in enumerate(zip(images, labels, predictions)): ax = axes.flat[index] ax.imshow(x, cmap=plt.cm.binary) ax.set_title(class_names[y_true]) if y_pred is not None: ax.set_xlabel(class_names[y_pred]) ax.set_xticks([]) ax.set_yticks([]) plot_train(row_number)
code
89137453/cell_5
[ "image_output_1.png" ]
import numpy as np (in_train.shape, in_valid.shape, np.unique(out_train))
code
18143474/cell_4
[ "image_output_1.png" ]
import datetime as dt import matplotlib.pyplot as plt import pandas as pd df_source = pd.read_csv('../input/periodic-traffic-data/periodic_traffic.csv') df_source['rep_date'] = pd.to_datetime(df_source['_time']) df_source.drop(['_time'], axis=1, inplace=True) df_source_time = df_source.copy() df_source_time['rep_time'] = df_source_time['rep_date'].apply(lambda x: dt.datetime.strptime(x.strftime('%H:%M'), '%H:%M')) df_source_time.drop(['rep_date'], axis=1, inplace=True) df_source = df_source.set_index('rep_date') df_source_time = df_source_time.set_index('rep_time') df_source_time['C9'].plot() plt.show()
code
18143474/cell_6
[ "text_html_output_1.png", "image_output_1.png" ]
from pandas import DataFrame import datetime as dt import lowess as lo import matplotlib.pyplot as plt import numpy as np import pandas as pd df_source = pd.read_csv('../input/periodic-traffic-data/periodic_traffic.csv') df_source['rep_date'] = pd.to_datetime(df_source['_time']) df_source.drop(['_time'], axis=1, inplace=True) df_source_time = df_source.copy() df_source_time['rep_time'] = df_source_time['rep_date'].apply(lambda x: dt.datetime.strptime(x.strftime('%H:%M'), '%H:%M')) df_source_time.drop(['rep_date'], axis=1, inplace=True) df_source = df_source.set_index('rep_date') df_source_time = df_source_time.set_index('rep_time') #Задаем необходимые переменные #Window для расчета скользящего стандартного отклонения берем как, например, 1/12 от периода v_window=8 #скользящее окно k_out=1.5 #Коэффициент для умножения на std для расчета границ фильтрации выбросов для первого прогона k_norm=1.5 #Коэффициент для умножения на std для расчета границ "нормального" трафика для второго прогона i=df_source_time.index.shape[0] x=np.linspace(-10,10,i) #Вспомогательная функция для отсечения значений, выходящих за границы фильтрации выборосов def f_out(x): name=x.index[0] if x[name] > x[name+'_lo']+k_out*x[name+'_std_first_step']: x[name+'_adj']=np.nan elif x[name] < x[name+'_lo']-k_out*x[name+'_std_first_step']: x[name+'_adj']=np.nan else: x[name+'_adj']=x[name] return x #Функция для обработки данных. #На вход функции подается объект Series из исходных данных. #На выходе получаем данные с отсеченными выбросами ['lo'] и со стандартным отколонением для обработанных данных ['std']. def f_low(df_x): df_res=DataFrame(df_x) name=df_res.columns[0] i=df_x.index.shape[0] x=np.linspace(-10,10,i) df_res[name+'_lo'] = lo.lowess(x, df_x.values, x) df_res[name+'_std_first_step'] = df_x.rolling(window=v_window,min_periods=0).std().fillna(method='bfill').shift(-int(v_window/2)) df_res=df_res.apply(f_out,axis=1) df_res[name+'_adj_first_step']=df_res[name+'_adj'].fillna(method='bfill') df_res[name+'_adj'] = lo.lowess(x, np.array(df_res[name+'_adj_first_step']), x) df_res[name+'_std'] = df_res[name+'_adj_first_step'].rolling(window=v_window,min_periods=0).std().fillna(method='bfill').shift(-int(v_window/2)) return df_res l=list(df_source_time.columns) print( "Список полученных для анализа фич:\n{}".format(l) ) for name in l: df=f_low(df_source_time[name].sort_index(axis=0)) display(df.head()) fig,ax = plt.subplots(1,figsize=(12,9)) ax.plot(df[name],'b.',label='Original') #исходный график ax.plot(df[name+'_lo']+k_out*df[name+'_std_first_step'],'g',label='Границы фильтрации выбросов') #Верхняя граница для фильтрации выборосов ax.plot(df[name+'_lo']-k_out*df[name+'_std_first_step'],'g',label='Границы фильтрации выбросов') #Нижняя граница для фильтрации выборосов ax.plot(df[name+'_lo'],'r', label='Восстановленный график на первом шаге') #Восстановленный график методом lowess на первом шаге ax.plot(df[name+'_adj']+k_norm*df[name+'_std'],'k', label='Верхняя граница нормального трафика') #Верхняя граница нормального трафика ax.plot(df[name+'_adj']-k_norm*df[name+'_std'],'k', label='Нижняя граница нормального трафика') #Нижняя граница нормального трафика ax.plot(df[name+'_adj'],'y', label='Восстановленный график на втором шаге') #Восстановленный график методом lowess на втором шаге ax.set_title(name) plt.legend() plt.show() for name in ['NAKA']: df = f_low(df_source_time[name].sort_index(axis=0)) df[name + '_adj_avg'] = DataFrame(df[name + '_adj'].groupby(level=0).mean()) display(df.head()) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 9)) ax1.plot(df[name], 'b.', label='Original') ax1.plot(df[name + '_adj_avg'] + k_norm * df[name + '_std'], 'k', label='Верхняя граница нормального трафика') ax1.plot(df[name + '_adj_avg'] - k_norm * df[name + '_std'], 'k', label='Нижняя граница нормального трафика') ax1.plot(df[name + '_adj_avg'], 'r', label='Восстановленный график на втором шаге') ax1.set_title(name) ax1.legend() ax2.plot(df_source[name]) ax2.legend() plt.show()
code
18143474/cell_7
[ "text_html_output_1.png", "image_output_1.png" ]
from pandas import DataFrame import datetime as dt import lowess as lo import matplotlib.pyplot as plt import numpy as np import pandas as pd df_source = pd.read_csv('../input/periodic-traffic-data/periodic_traffic.csv') df_source['rep_date'] = pd.to_datetime(df_source['_time']) df_source.drop(['_time'], axis=1, inplace=True) df_source_time = df_source.copy() df_source_time['rep_time'] = df_source_time['rep_date'].apply(lambda x: dt.datetime.strptime(x.strftime('%H:%M'), '%H:%M')) df_source_time.drop(['rep_date'], axis=1, inplace=True) df_source = df_source.set_index('rep_date') df_source_time = df_source_time.set_index('rep_time') #Задаем необходимые переменные #Window для расчета скользящего стандартного отклонения берем как, например, 1/12 от периода v_window=8 #скользящее окно k_out=1.5 #Коэффициент для умножения на std для расчета границ фильтрации выбросов для первого прогона k_norm=1.5 #Коэффициент для умножения на std для расчета границ "нормального" трафика для второго прогона i=df_source_time.index.shape[0] x=np.linspace(-10,10,i) #Вспомогательная функция для отсечения значений, выходящих за границы фильтрации выборосов def f_out(x): name=x.index[0] if x[name] > x[name+'_lo']+k_out*x[name+'_std_first_step']: x[name+'_adj']=np.nan elif x[name] < x[name+'_lo']-k_out*x[name+'_std_first_step']: x[name+'_adj']=np.nan else: x[name+'_adj']=x[name] return x #Функция для обработки данных. #На вход функции подается объект Series из исходных данных. #На выходе получаем данные с отсеченными выбросами ['lo'] и со стандартным отколонением для обработанных данных ['std']. def f_low(df_x): df_res=DataFrame(df_x) name=df_res.columns[0] i=df_x.index.shape[0] x=np.linspace(-10,10,i) df_res[name+'_lo'] = lo.lowess(x, df_x.values, x) df_res[name+'_std_first_step'] = df_x.rolling(window=v_window,min_periods=0).std().fillna(method='bfill').shift(-int(v_window/2)) df_res=df_res.apply(f_out,axis=1) df_res[name+'_adj_first_step']=df_res[name+'_adj'].fillna(method='bfill') df_res[name+'_adj'] = lo.lowess(x, np.array(df_res[name+'_adj_first_step']), x) df_res[name+'_std'] = df_res[name+'_adj_first_step'].rolling(window=v_window,min_periods=0).std().fillna(method='bfill').shift(-int(v_window/2)) return df_res l=list(df_source_time.columns) print( "Список полученных для анализа фич:\n{}".format(l) ) for name in l: df=f_low(df_source_time[name].sort_index(axis=0)) display(df.head()) fig,ax = plt.subplots(1,figsize=(12,9)) ax.plot(df[name],'b.',label='Original') #исходный график ax.plot(df[name+'_lo']+k_out*df[name+'_std_first_step'],'g',label='Границы фильтрации выбросов') #Верхняя граница для фильтрации выборосов ax.plot(df[name+'_lo']-k_out*df[name+'_std_first_step'],'g',label='Границы фильтрации выбросов') #Нижняя граница для фильтрации выборосов ax.plot(df[name+'_lo'],'r', label='Восстановленный график на первом шаге') #Восстановленный график методом lowess на первом шаге ax.plot(df[name+'_adj']+k_norm*df[name+'_std'],'k', label='Верхняя граница нормального трафика') #Верхняя граница нормального трафика ax.plot(df[name+'_adj']-k_norm*df[name+'_std'],'k', label='Нижняя граница нормального трафика') #Нижняя граница нормального трафика ax.plot(df[name+'_adj'],'y', label='Восстановленный график на втором шаге') #Восстановленный график методом lowess на втором шаге ax.set_title(name) plt.legend() plt.show() for name in ['NAKA']: df=f_low(df_source_time[name].sort_index(axis=0)) df[name+'_adj_avg'] = DataFrame(df[name+'_adj'].groupby(level=0).mean()) display(df.head()) fig,(ax1,ax2) = plt.subplots(1,2,figsize=(24,9)) ax1.plot(df[name],'b.',label='Original') #исходный график #ax1.plot(df[name+'_lo']+k_out*df[name+'_std_first_step'],'g',label='Границы фильтрации выбросов') #Верхняя граница для фильтрации выборосов #ax1.plot(df[name+'_lo']-k_out*df[name+'_std_first_step'],'g',label='Границы фильтрации выбросов') #Нижняя граница для фильтрации выборосов #ax1.plot(df[name+'_lo'],'r', label='Восстановленный график на первом шаге') #Восстановленный график методом lowess на первом шаге ax1.plot(df[name+'_adj_avg']+k_norm*df[name+'_std'],'k', label='Верхняя граница нормального трафика') #Верхняя граница нормального трафика ax1.plot(df[name+'_adj_avg']-k_norm*df[name+'_std'],'k', label='Нижняя граница нормального трафика') #Нижняя граница нормального трафика #ax1.plot(df[name+'_adj'],'y', label='Восстановленный график на втором шаге') #Восстановленный график методом lowess на втором шаге ax1.plot(df[name+'_adj_avg'],'r', label='Восстановленный график на втором шаге') #Восстановленный график методом lowess на втором шаге ax1.set_title(name) ax1.legend() ax2.plot(df_source[name]) ax2.legend() plt.show() df_s1 = df_source.copy() df_s1['rep_time'] = df_source.index.values df_s1['rep_time'] = df_s1['rep_time'].apply(lambda x: dt.datetime.strptime(x.strftime('%H:%M'), '%H:%M')) df_s2 = pd.merge(df_s1, df, how='left', left_on='rep_time', right_index=True) display(df_s2.head()) df_s2['lower'] = df_s2['NAKA_adj_avg'] - df_s2['NAKA_std'] * k_norm df_s2['upper'] = df_s2['NAKA_adj_avg'] + df_s2['NAKA_std'] * k_norm df_s2[['NAKA_x', 'NAKA_adj_avg', 'lower', 'upper']].plot(figsize=(12, 9)) plt.show()
code
18143474/cell_3
[ "text_html_output_2.png", "text_html_output_1.png", "text_plain_output_1.png" ]
import datetime as dt import pandas as pd df_source = pd.read_csv('../input/periodic-traffic-data/periodic_traffic.csv') df_source['rep_date'] = pd.to_datetime(df_source['_time']) df_source.drop(['_time'], axis=1, inplace=True) df_source_time = df_source.copy() df_source_time['rep_time'] = df_source_time['rep_date'].apply(lambda x: dt.datetime.strptime(x.strftime('%H:%M'), '%H:%M')) df_source_time.drop(['rep_date'], axis=1, inplace=True) df_source = df_source.set_index('rep_date') df_source_time = df_source_time.set_index('rep_time') print('Rows found in the DataFrame:\n{}\n'.format(len(df_source.index))) display(df_source.tail(3)) display(df_source_time.tail(3))
code
18143474/cell_5
[ "image_output_11.png", "text_html_output_10.png", "text_html_output_4.png", "text_html_output_6.png", "text_html_output_2.png", "text_html_output_5.png", "image_output_5.png", "image_output_7.png", "text_html_output_9.png", "image_output_4.png", "image_output_8.png", "text_html_output_1.png", "image_output_6.png", "text_plain_output_1.png", "text_html_output_11.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "text_html_output_8.png", "text_html_output_3.png", "image_output_9.png", "text_html_output_7.png" ]
from pandas import DataFrame import datetime as dt import lowess as lo import matplotlib.pyplot as plt import numpy as np import pandas as pd df_source = pd.read_csv('../input/periodic-traffic-data/periodic_traffic.csv') df_source['rep_date'] = pd.to_datetime(df_source['_time']) df_source.drop(['_time'], axis=1, inplace=True) df_source_time = df_source.copy() df_source_time['rep_time'] = df_source_time['rep_date'].apply(lambda x: dt.datetime.strptime(x.strftime('%H:%M'), '%H:%M')) df_source_time.drop(['rep_date'], axis=1, inplace=True) df_source = df_source.set_index('rep_date') df_source_time = df_source_time.set_index('rep_time') v_window = 8 k_out = 1.5 k_norm = 1.5 i = df_source_time.index.shape[0] x = np.linspace(-10, 10, i) def f_out(x): name = x.index[0] if x[name] > x[name + '_lo'] + k_out * x[name + '_std_first_step']: x[name + '_adj'] = np.nan elif x[name] < x[name + '_lo'] - k_out * x[name + '_std_first_step']: x[name + '_adj'] = np.nan else: x[name + '_adj'] = x[name] return x def f_low(df_x): df_res = DataFrame(df_x) name = df_res.columns[0] i = df_x.index.shape[0] x = np.linspace(-10, 10, i) df_res[name + '_lo'] = lo.lowess(x, df_x.values, x) df_res[name + '_std_first_step'] = df_x.rolling(window=v_window, min_periods=0).std().fillna(method='bfill').shift(-int(v_window / 2)) df_res = df_res.apply(f_out, axis=1) df_res[name + '_adj_first_step'] = df_res[name + '_adj'].fillna(method='bfill') df_res[name + '_adj'] = lo.lowess(x, np.array(df_res[name + '_adj_first_step']), x) df_res[name + '_std'] = df_res[name + '_adj_first_step'].rolling(window=v_window, min_periods=0).std().fillna(method='bfill').shift(-int(v_window / 2)) return df_res l = list(df_source_time.columns) print('Список полученных для анализа фич:\n{}'.format(l)) for name in l: df = f_low(df_source_time[name].sort_index(axis=0)) display(df.head()) fig, ax = plt.subplots(1, figsize=(12, 9)) ax.plot(df[name], 'b.', label='Original') ax.plot(df[name + '_lo'] + k_out * df[name + '_std_first_step'], 'g', label='Границы фильтрации выбросов') ax.plot(df[name + '_lo'] - k_out * df[name + '_std_first_step'], 'g', label='Границы фильтрации выбросов') ax.plot(df[name + '_lo'], 'r', label='Восстановленный график на первом шаге') ax.plot(df[name + '_adj'] + k_norm * df[name + '_std'], 'k', label='Верхняя граница нормального трафика') ax.plot(df[name + '_adj'] - k_norm * df[name + '_std'], 'k', label='Нижняя граница нормального трафика') ax.plot(df[name + '_adj'], 'y', label='Восстановленный график на втором шаге') ax.set_title(name) plt.legend() plt.show()
code
330145/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl df_train.head(2)
code
330145/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl def data_cleanser(data, is_train): def adjust_dates(dates, diff): return dates - diff if is_train: df_dates = data['date_x'] diff = df_dates.max() - df_dates.min() diff2 = df_dates.max() - pd.Timestamp(pd.datetime.now().date()) diffdays = diff + diff2 data['adj_date'] = adjust_dates(data['date_x'], diffdays) return data.drop(['date_x'], axis=1) data_cleanser(df_train, True).head()
code
330145/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl for d in ['date_x', 'date_y']: print('Start of ' + d + ': ' + str(df_train[d].min().date())) print(' End of ' + d + ': ' + str(df_train[d].max().date())) print('Range of ' + d + ': ' + str(df_train[d].max() - df_train[d].min()) + '\n')
code
2020968/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') holdout = pd.read_csv('../input/test.csv') columns = ['SibSp', 'Parch', 'Fare', 'Cabin', 'Embarked'] train[columns].describe(include='all', percentiles=[])
code
2020968/cell_23
[ "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train = pd.read_csv('../input/train.csv') holdout = pd.read_csv('../input/test.csv') chance_survive = len(train[train['Survived'] == 1]) / len(train['Survived']) def plot_survival(df, index, color='blue', use_index=True, num_xticks=0, xticks='', position=0.5, legend=['General probabilty of survival']): df_pivot = df.pivot_table(index=index, values='Survived') if num_xticks > 0: plt.xticks(range(num_xticks), xticks) cut_points = [-1, 0, 5, 12, 18, 35, 60, 100] label_names = ['Missing', 'Infant', 'Child', 'Teenager', 'Young Adult', 'Adult', 'Senior'] def process_age(df, cut_points, label_names): df['Age'] = df['Age'].fillna(-0.5) df['Age_categories'] = pd.cut(df['Age'], cut_points, labels=label_names) return df train = process_age(train, cut_points, label_names) holdout = process_age(holdout, cut_points, label_names) def process_fare(df, cut_points, label_names): df['Fare_categories'] = pd.cut(df['Fare'], cut_points, labels=label_names) return df train = process_fare(train, [0, 12, 50, 100, 1000], ['0-12$', '12-50$', '50-100$', '100+$']) plot_survival(train, 'Fare_categories', use_index=False, num_xticks=len(train['Fare_categories'].unique()) - 1, xticks=train['Fare_categories'].unique().sort_values())
code