path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
88086039/cell_46
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv(dirname + '/train.csv') test = pd.read_csv(dirname + '/test.csv') pid_test = test['PassengerId'] pct_missing = round(train.isnull().sum() / train.isnull().count() * 100, 1) pct_missing.sort_values(ascending=False).head() plt.figure(figsize=(16, 4)) sns.countplot(x='Embarked', data=train, hue='Pclass') plt.legend(loc=1)
code
88086039/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv(dirname + '/train.csv') test = pd.read_csv(dirname + '/test.csv') pid_test = test['PassengerId'] pct_missing = round(train.isnull().sum() / train.isnull().count() * 100, 1) pct_missing.sort_values(ascending=False).head() plt.figure(figsize=(16, 6)) sns.heatmap(data=train.isnull())
code
88086039/cell_14
[ "text_plain_output_1.png" ]
train = pd.read_csv(dirname + '/train.csv') test = pd.read_csv(dirname + '/test.csv') pid_test = test['PassengerId'] train.head(2)
code
88086039/cell_22
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
train = pd.read_csv(dirname + '/train.csv') test = pd.read_csv(dirname + '/test.csv') pid_test = test['PassengerId'] print('<< % of missing data >>') pct_missing = round(train.isnull().sum() / train.isnull().count() * 100, 1) pct_missing.sort_values(ascending=False).head()
code
88086039/cell_36
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns train = pd.read_csv(dirname + '/train.csv') test = pd.read_csv(dirname + '/test.csv') pid_test = test['PassengerId'] pct_missing = round(train.isnull().sum() / train.isnull().count() * 100, 1) pct_missing.sort_values(ascending=False).head() train['Pclass'].unique()
code
106205745/cell_9
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a b = np.array([1, 2, 3]) b d = np.array([[1], [0], [1]]) d e = np.array([1, 2, 3]) e f = e[:, np.newaxis] f e + f
code
106205745/cell_4
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a b = np.array([1, 2, 3]) b
code
106205745/cell_6
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a b = np.array([1, 2, 3]) b d = np.array([[1], [0], [1]]) d
code
106205745/cell_11
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a b = np.array([1, 2, 3]) b d = np.array([[1], [0], [1]]) d e = np.array([1, 2, 3]) e f = e[:, np.newaxis] f h = np.array([1, 1, 0]) g = np.array([[1], [2], [1]]) h + g
code
106205745/cell_7
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a b = np.array([1, 2, 3]) b d = np.array([[1], [0], [1]]) d e = np.array([1, 2, 3]) e
code
106205745/cell_8
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a b = np.array([1, 2, 3]) b d = np.array([[1], [0], [1]]) d e = np.array([1, 2, 3]) e f = e[:, np.newaxis] f
code
106205745/cell_3
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a
code
106205745/cell_5
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a b = np.array([1, 2, 3]) b c = a + b c
code
90118434/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() import warnings warnings.filterwarnings('ignore') raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.describe(include='all').T x1 = raw_data.drop(['price', 'date', 'street', 'city', 'statezip', 'country'], axis=1) y = raw_data['price'] x = sm.add_constant(x1) results = sm.OLS(y, x).fit() results.summary() raw_data.isnull().sum() zero_price = raw_data[raw_data['price'] == 0] zero_price.describe().T #In order to decide what to do with the null values in the price, #it is helpful to know the corelations between features. corr_matrix = raw_data.corr() fig, ax = plt.subplots(figsize = (15,6)) sns.heatmap(corr_matrix, annot = True) low_price_data = raw_data[(raw_data['sqft_living'] < zero_price['sqft_living'].median()) & (raw_data['bathrooms'] < zero_price['bathrooms'].median()) & (raw_data['sqft_above'] < zero_price['sqft_above'].median())] low_price = low_price_data.price.median() high_price_data = raw_data[(raw_data['sqft_living'] > zero_price['sqft_living'].median()) & (raw_data['bathrooms'] > zero_price['bathrooms'].median()) & (raw_data['sqft_above'] > zero_price['sqft_above'].median())] high_price = high_price_data.price.median() data_prc = raw_data.copy() data_prc['price'] = np.where((data_prc['price'] == 0) & (data_prc['sqft_living'] > zero_price['sqft_living'].median()), high_price, data_prc.price) data_prc['price'] = np.where((data_prc['price'] == 0) & (data_prc['sqft_living'] <= zero_price['sqft_living'].median()), low_price, data_prc.price) data_prc.price[data_prc.price == 0].count()
code
90118434/cell_13
[ "text_html_output_1.png" ]
import pandas as pd raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.describe(include='all').T
code
90118434/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() import warnings warnings.filterwarnings('ignore') raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.describe(include='all').T x1 = raw_data.drop(['price', 'date', 'street', 'city', 'statezip', 'country'], axis=1) y = raw_data['price'] x = sm.add_constant(x1) results = sm.OLS(y, x).fit() results.summary() raw_data.isnull().sum() zero_price = raw_data[raw_data['price'] == 0] zero_price.describe().T #In order to decide what to do with the null values in the price, #it is helpful to know the corelations between features. corr_matrix = raw_data.corr() fig, ax = plt.subplots(figsize = (15,6)) sns.heatmap(corr_matrix, annot = True) low_price_data = raw_data[(raw_data['sqft_living'] < zero_price['sqft_living'].median()) & (raw_data['bathrooms'] < zero_price['bathrooms'].median()) & (raw_data['sqft_above'] < zero_price['sqft_above'].median())] low_price = low_price_data.price.median() high_price_data = raw_data[(raw_data['sqft_living'] > zero_price['sqft_living'].median()) & (raw_data['bathrooms'] > zero_price['bathrooms'].median()) & (raw_data['sqft_above'] > zero_price['sqft_above'].median())] high_price = high_price_data.price.median() data_prc = raw_data.copy() data_prc['price'] = np.where((data_prc['price'] == 0) & (data_prc['sqft_living'] > zero_price['sqft_living'].median()), high_price, data_prc.price) data_prc['price'] = np.where((data_prc['price'] == 0) & (data_prc['sqft_living'] <= zero_price['sqft_living'].median()), low_price, data_prc.price) data_prc.price[data_prc.price == 0].count() #I will print the distrubution plots to decide #which method to use fill in the unknown zero values in the bedrooms and batromms columns. #As you may notice, there is some skewness that will affect the mean of both features. #I will use the median imputation for replacing zero values. fig, ax = plt.subplots(1,2, figsize = (20,6)) sns.distplot(ax = ax[0], x= data_prc.bedrooms, color='darkmagenta') ax[0].set_title('Bedrooms', size = 18) sns.distplot(ax = ax[1], x = data_prc.bathrooms, color='darkmagenta') ax[1].set_title('Bathrooms', size = 18) data_prc['bedrooms'] = data_prc['bedrooms'].replace(0, np.NaN) data_prc['bedrooms'] = data_prc['bedrooms'].fillna(data_prc.bedrooms.median()) data_prc.bedrooms[data_prc.bedrooms == 0].count()
code
90118434/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() import warnings warnings.filterwarnings('ignore') raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.describe(include='all').T x1 = raw_data.drop(['price', 'date', 'street', 'city', 'statezip', 'country'], axis=1) y = raw_data['price'] x = sm.add_constant(x1) results = sm.OLS(y, x).fit() results.summary() raw_data.isnull().sum() corr_matrix = raw_data.corr() fig, ax = plt.subplots(figsize=(15, 6)) sns.heatmap(corr_matrix, annot=True)
code
90118434/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() import warnings warnings.filterwarnings('ignore') raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.describe(include='all').T x1 = raw_data.drop(['price', 'date', 'street', 'city', 'statezip', 'country'], axis=1) y = raw_data['price'] x = sm.add_constant(x1) results = sm.OLS(y, x).fit() results.summary() raw_data.isnull().sum() zero_price = raw_data[raw_data['price'] == 0] zero_price.describe().T #In order to decide what to do with the null values in the price, #it is helpful to know the corelations between features. corr_matrix = raw_data.corr() fig, ax = plt.subplots(figsize = (15,6)) sns.heatmap(corr_matrix, annot = True) low_price_data = raw_data[(raw_data['sqft_living'] < zero_price['sqft_living'].median()) & (raw_data['bathrooms'] < zero_price['bathrooms'].median()) & (raw_data['sqft_above'] < zero_price['sqft_above'].median())] low_price = low_price_data.price.median() high_price_data = raw_data[(raw_data['sqft_living'] > zero_price['sqft_living'].median()) & (raw_data['bathrooms'] > zero_price['bathrooms'].median()) & (raw_data['sqft_above'] > zero_price['sqft_above'].median())] high_price = high_price_data.price.median() data_prc = raw_data.copy() data_prc['price'] = np.where((data_prc['price'] == 0) & (data_prc['sqft_living'] > zero_price['sqft_living'].median()), high_price, data_prc.price) data_prc['price'] = np.where((data_prc['price'] == 0) & (data_prc['sqft_living'] <= zero_price['sqft_living'].median()), low_price, data_prc.price) data_prc.price[data_prc.price == 0].count() #I will print the distrubution plots to decide #which method to use fill in the unknown zero values in the bedrooms and batromms columns. #As you may notice, there is some skewness that will affect the mean of both features. #I will use the median imputation for replacing zero values. fig, ax = plt.subplots(1,2, figsize = (20,6)) sns.distplot(ax = ax[0], x= data_prc.bedrooms, color='darkmagenta') ax[0].set_title('Bedrooms', size = 18) sns.distplot(ax = ax[1], x = data_prc.bathrooms, color='darkmagenta') ax[1].set_title('Bathrooms', size = 18) data_prc['bedrooms'] = data_prc['bedrooms'].replace(0, np.NaN) data_prc['bedrooms'] = data_prc['bedrooms'].fillna(data_prc.bedrooms.median()) data_prc.bedrooms[data_prc.bedrooms == 0].count() data_prc['bathrooms'].replace(to_replace=0, value=data_prc.bathrooms.median(), inplace=True) data_prc.bathrooms[data_prc.bathrooms == 0].count() sns.catplot(x='price', data=data_prc, kind='box', height=3, aspect=3)
code
90118434/cell_11
[ "text_html_output_1.png" ]
import pandas as pd raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.head()
code
90118434/cell_19
[ "text_html_output_1.png" ]
import pandas as pd import statsmodels.api as sm raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.describe(include='all').T x1 = raw_data.drop(['price', 'date', 'street', 'city', 'statezip', 'country'], axis=1) y = raw_data['price'] x = sm.add_constant(x1) results = sm.OLS(y, x).fit() results.summary() raw_data.isnull().sum() zero_price = raw_data[raw_data['price'] == 0] zero_price.describe().T
code
90118434/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import statsmodels.api as sm raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.describe(include='all').T x1 = raw_data.drop(['price', 'date', 'street', 'city', 'statezip', 'country'], axis=1) y = raw_data['price'] x = sm.add_constant(x1) results = sm.OLS(y, x).fit() results.summary() raw_data.isnull().sum() raw_data[raw_data == 0].count()
code
90118434/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import statsmodels.api as sm raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.describe(include='all').T x1 = raw_data.drop(['price', 'date', 'street', 'city', 'statezip', 'country'], axis=1) y = raw_data['price'] x = sm.add_constant(x1) results = sm.OLS(y, x).fit() results.summary() raw_data.isnull().sum()
code
90118434/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() import warnings warnings.filterwarnings('ignore') raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.describe(include='all').T x1 = raw_data.drop(['price', 'date', 'street', 'city', 'statezip', 'country'], axis=1) y = raw_data['price'] x = sm.add_constant(x1) results = sm.OLS(y, x).fit() results.summary() raw_data.isnull().sum() zero_price = raw_data[raw_data['price'] == 0] zero_price.describe().T #In order to decide what to do with the null values in the price, #it is helpful to know the corelations between features. corr_matrix = raw_data.corr() fig, ax = plt.subplots(figsize = (15,6)) sns.heatmap(corr_matrix, annot = True) low_price_data = raw_data[(raw_data['sqft_living'] < zero_price['sqft_living'].median()) & (raw_data['bathrooms'] < zero_price['bathrooms'].median()) & (raw_data['sqft_above'] < zero_price['sqft_above'].median())] low_price = low_price_data.price.median() high_price_data = raw_data[(raw_data['sqft_living'] > zero_price['sqft_living'].median()) & (raw_data['bathrooms'] > zero_price['bathrooms'].median()) & (raw_data['sqft_above'] > zero_price['sqft_above'].median())] high_price = high_price_data.price.median() data_prc = raw_data.copy() data_prc['price'] = np.where((data_prc['price'] == 0) & (data_prc['sqft_living'] > zero_price['sqft_living'].median()), high_price, data_prc.price) data_prc['price'] = np.where((data_prc['price'] == 0) & (data_prc['sqft_living'] <= zero_price['sqft_living'].median()), low_price, data_prc.price) data_prc.price[data_prc.price == 0].count() #I will print the distrubution plots to decide #which method to use fill in the unknown zero values in the bedrooms and batromms columns. #As you may notice, there is some skewness that will affect the mean of both features. #I will use the median imputation for replacing zero values. fig, ax = plt.subplots(1,2, figsize = (20,6)) sns.distplot(ax = ax[0], x= data_prc.bedrooms, color='darkmagenta') ax[0].set_title('Bedrooms', size = 18) sns.distplot(ax = ax[1], x = data_prc.bathrooms, color='darkmagenta') ax[1].set_title('Bathrooms', size = 18) data_prc['bedrooms'] = data_prc['bedrooms'].replace(0, np.NaN) data_prc['bedrooms'] = data_prc['bedrooms'].fillna(data_prc.bedrooms.median()) data_prc.bedrooms[data_prc.bedrooms == 0].count() data_prc['bathrooms'].replace(to_replace=0, value=data_prc.bathrooms.median(), inplace=True) data_prc.bathrooms[data_prc.bathrooms == 0].count()
code
90118434/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import statsmodels.api as sm raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.describe(include='all').T x1 = raw_data.drop(['price', 'date', 'street', 'city', 'statezip', 'country'], axis=1) y = raw_data['price'] x = sm.add_constant(x1) results = sm.OLS(y, x).fit() results.summary()
code
90118434/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() import warnings warnings.filterwarnings('ignore') raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.describe(include='all').T x1 = raw_data.drop(['price', 'date', 'street', 'city', 'statezip', 'country'], axis=1) y = raw_data['price'] x = sm.add_constant(x1) results = sm.OLS(y, x).fit() results.summary() raw_data.isnull().sum() zero_price = raw_data[raw_data['price'] == 0] zero_price.describe().T #In order to decide what to do with the null values in the price, #it is helpful to know the corelations between features. corr_matrix = raw_data.corr() fig, ax = plt.subplots(figsize = (15,6)) sns.heatmap(corr_matrix, annot = True) low_price_data = raw_data[(raw_data['sqft_living'] < zero_price['sqft_living'].median()) & (raw_data['bathrooms'] < zero_price['bathrooms'].median()) & (raw_data['sqft_above'] < zero_price['sqft_above'].median())] low_price = low_price_data.price.median() high_price_data = raw_data[(raw_data['sqft_living'] > zero_price['sqft_living'].median()) & (raw_data['bathrooms'] > zero_price['bathrooms'].median()) & (raw_data['sqft_above'] > zero_price['sqft_above'].median())] high_price = high_price_data.price.median() data_prc = raw_data.copy() data_prc['price'] = np.where((data_prc['price'] == 0) & (data_prc['sqft_living'] > zero_price['sqft_living'].median()), high_price, data_prc.price) data_prc['price'] = np.where((data_prc['price'] == 0) & (data_prc['sqft_living'] <= zero_price['sqft_living'].median()), low_price, data_prc.price) data_prc.price[data_prc.price == 0].count() fig, ax = plt.subplots(1, 2, figsize=(20, 6)) sns.distplot(ax=ax[0], x=data_prc.bedrooms, color='darkmagenta') ax[0].set_title('Bedrooms', size=18) sns.distplot(ax=ax[1], x=data_prc.bathrooms, color='darkmagenta') ax[1].set_title('Bathrooms', size=18)
code
90118434/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd raw_data = pd.read_csv('../input/housedata/data.csv') raw_data.info()
code
74052486/cell_6
[ "text_plain_output_1.png" ]
from torch.utils.data import DataLoader from torchvision.datasets import ImageFolder from torchvision.transforms import Compose, CenterCrop, ToTensor,ColorJitter import glob import os import shutil import os import glob import shutil train_data_dir = '/kaggle/input/1056lab-covid19-chest-xray-recognit/train' working_dir = '/kaggle/working' os.makedirs(working_dir + '/train') os.makedirs(working_dir + '/train/COVID/') os.makedirs(working_dir + '/train/Not_COVID/') path_list = glob.glob(train_data_dir + '/COVID/*.png') for path in path_list: shutil.copy(path, working_dir + '/train/COVID/') for dir in ['Lung_Opacity', 'Normal', 'Viral_Pneumonia']: path_list = glob.glob(train_data_dir + '/' + dir + '/*.png') for path in path_list: shutil.copy(path, working_dir + '/train/Not_COVID/') from torchvision.transforms import Compose, CenterCrop, ToTensor, ColorJitter from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader train_data_dir = '/kaggle/working/train' transform = Compose([CenterCrop(224), ToTensor()]) transforms = ColorJitter(contrast=1) train_data = ImageFolder(train_data_dir, transform=transform) train_loader = DataLoader(train_data, batch_size=32, shuffle=True) class_names = train_data.classes print(class_names)
code
74052486/cell_2
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import torch import torch use_cuda = torch.cuda.is_available() print('Use CUDA:', use_cuda) if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu')
code
74052486/cell_8
[ "text_html_output_1.png" ]
!pip install efficientnet_pytorch from efficientnet_pytorch import EfficientNet from torch import nn, optim model_ft = EfficientNet.from_pretrained('efficientnet-b0', num_classes=len(class_names)) print("======== Fine-funing netowrk architecutre ========\n") print(model_ft) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() criterion = criterion.to(device) optimizer = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
code
74052486/cell_16
[ "text_plain_output_1.png" ]
from time import time from torch.nn.functional import softmax from torch.utils.data import DataLoader from torch.utils.data import DataLoader from torchvision.datasets import ImageFolder from torchvision.datasets import ImageFolder from torchvision.transforms import Compose, CenterCrop, ToTensor from torchvision.transforms import Compose, CenterCrop, ToTensor,ColorJitter import glob import glob import numpy as np # linear algebra import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import shutil import shutil import torch import torch use_cuda = torch.cuda.is_available() if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') import os import glob import shutil train_data_dir = '/kaggle/input/1056lab-covid19-chest-xray-recognit/train' working_dir = '/kaggle/working' os.makedirs(working_dir + '/train') os.makedirs(working_dir + '/train/COVID/') os.makedirs(working_dir + '/train/Not_COVID/') path_list = glob.glob(train_data_dir + '/COVID/*.png') for path in path_list: shutil.copy(path, working_dir + '/train/COVID/') for dir in ['Lung_Opacity', 'Normal', 'Viral_Pneumonia']: path_list = glob.glob(train_data_dir + '/' + dir + '/*.png') for path in path_list: shutil.copy(path, working_dir + '/train/Not_COVID/') from torchvision.transforms import Compose, CenterCrop, ToTensor, ColorJitter from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader train_data_dir = '/kaggle/working/train' transform = Compose([CenterCrop(224), ToTensor()]) transforms = ColorJitter(contrast=1) train_data = ImageFolder(train_data_dir, transform=transform) train_loader = DataLoader(train_data, batch_size=32, shuffle=True) class_names = train_data.classes from time import time epoch_num = 10 start = time() for epoch in range(1, epoch_num + 1): model_ft.train() sum_loss = 0.0 count = 0 optimizer.step() scheduler.step() for image, label in train_loader: if torch.cuda.is_available(): image = image.cuda() label = label.cuda() y = model_ft(image) _, preds = torch.max(y, 1) loss = criterion(y, label) model_ft.zero_grad() loss.backward() optimizer.step() sum_loss += loss.item() * image.size(0) count += torch.sum(preds == label.data) train_loss = sum_loss / len(train_data) train_acc = float(count) / len(train_data) t = time() - start import os import glob import shutil test_data_dir = '/kaggle/input/1056lab-covid19-chest-xray-recognit/test' working_dir = '/kaggle/working' os.makedirs(working_dir + '/test') os.makedirs(working_dir + '/test/COVID/') os.makedirs(working_dir + '/test/Not_COVID/') path_list = glob.glob(test_data_dir + '/*.png') for path in path_list: shutil.copy(path, working_dir + '/test/COVID/') from torchvision.transforms import Compose, CenterCrop, ToTensor from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader test_data_dir = '/kaggle/working/test' test_data = ImageFolder(test_data_dir, transform=transform) test_loader = DataLoader(test_data, batch_size=32, shuffle=False) from torch.nn.functional import softmax torch.no_grad() y_pred = [] for image, label in test_loader: if torch.cuda.is_available(): image = image.cuda() label = label.cuda() y = model_ft(image) y = softmax(y, dim=1).to('cpu') y_pred = np.concatenate([y_pred, y.detach().numpy()[:, 0]]) submit_df = pd.read_csv('/kaggle/input/1056lab-covid19-chest-xray-recognit/sampleSubmission.csv', index_col=0) submit_df['COVID'] = y_pred submit_df.to_csv('submission.csv') submit_df
code
74052486/cell_10
[ "text_plain_output_1.png" ]
from time import time from torch.utils.data import DataLoader from torchvision.datasets import ImageFolder from torchvision.transforms import Compose, CenterCrop, ToTensor,ColorJitter import glob import os import shutil import torch import torch use_cuda = torch.cuda.is_available() if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') import os import glob import shutil train_data_dir = '/kaggle/input/1056lab-covid19-chest-xray-recognit/train' working_dir = '/kaggle/working' os.makedirs(working_dir + '/train') os.makedirs(working_dir + '/train/COVID/') os.makedirs(working_dir + '/train/Not_COVID/') path_list = glob.glob(train_data_dir + '/COVID/*.png') for path in path_list: shutil.copy(path, working_dir + '/train/COVID/') for dir in ['Lung_Opacity', 'Normal', 'Viral_Pneumonia']: path_list = glob.glob(train_data_dir + '/' + dir + '/*.png') for path in path_list: shutil.copy(path, working_dir + '/train/Not_COVID/') from torchvision.transforms import Compose, CenterCrop, ToTensor, ColorJitter from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader train_data_dir = '/kaggle/working/train' transform = Compose([CenterCrop(224), ToTensor()]) transforms = ColorJitter(contrast=1) train_data = ImageFolder(train_data_dir, transform=transform) train_loader = DataLoader(train_data, batch_size=32, shuffle=True) class_names = train_data.classes from time import time epoch_num = 10 start = time() for epoch in range(1, epoch_num + 1): model_ft.train() sum_loss = 0.0 count = 0 optimizer.step() scheduler.step() for image, label in train_loader: if torch.cuda.is_available(): image = image.cuda() label = label.cuda() y = model_ft(image) _, preds = torch.max(y, 1) loss = criterion(y, label) model_ft.zero_grad() loss.backward() optimizer.step() sum_loss += loss.item() * image.size(0) count += torch.sum(preds == label.data) train_loss = sum_loss / len(train_data) train_acc = float(count) / len(train_data) t = time() - start print(f'epoch: {epoch}, mean loss: {train_loss:.4f}, train accuracy: {train_acc:.4f}, elapsed_time :{t:.4f}')
code
105182335/cell_9
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/salary-prediction-polynomial-linear-regression/Position_Salaries.csv') X = data.iloc[:, 1:2].values y = data.iloc[:, 2].values from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) lin_reg.predict([[6.5]])
code
105182335/cell_4
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/salary-prediction-polynomial-linear-regression/Position_Salaries.csv') X = data.iloc[:, 1:2].values y = data.iloc[:, 2].values from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y)
code
105182335/cell_6
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/salary-prediction-polynomial-linear-regression/Position_Salaries.csv') X = data.iloc[:, 1:2].values y = data.iloc[:, 2].values from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) plt.scatter(X, y, color='red') plt.plot(X, lin_reg.predict(X), color='blue') plt.title('Truth or Bluff (Linear Regression)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show()
code
105182335/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105182335/cell_7
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/salary-prediction-polynomial-linear-regression/Position_Salaries.csv') X = data.iloc[:, 1:2].values y = data.iloc[:, 2].values from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(X) poly_reg.fit(X_poly, y) lin_reg_2 = LinearRegression() lin_reg_2.fit(X_poly, y) plt.scatter(X, y, color='red') plt.plot(X, lin_reg_2.predict(poly_reg.fit_transform(X)), color='blue') plt.title('Truth or Bluff (Polynomial Regression)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show()
code
105182335/cell_8
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/salary-prediction-polynomial-linear-regression/Position_Salaries.csv') X = data.iloc[:, 1:2].values y = data.iloc[:, 2].values from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(X) poly_reg.fit(X_poly, y) lin_reg_2 = LinearRegression() lin_reg_2.fit(X_poly, y) X_grid = np.arange(min(X), max(X), 0.1) X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(X, y, color='red') plt.plot(X_grid, lin_reg_2.predict(poly_reg.fit_transform(X_grid)), color='blue') plt.title('Truth or Bluff (Polynomial Regression)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show()
code
105182335/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/salary-prediction-polynomial-linear-regression/Position_Salaries.csv') print(data) X = data.iloc[:, 1:2].values y = data.iloc[:, 2].values
code
105182335/cell_10
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/salary-prediction-polynomial-linear-regression/Position_Salaries.csv') X = data.iloc[:, 1:2].values y = data.iloc[:, 2].values from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(X) poly_reg.fit(X_poly, y) lin_reg_2 = LinearRegression() lin_reg_2.fit(X_poly, y) X_grid = np.arange(min(X), max(X), 0.1) X_grid = X_grid.reshape((len(X_grid), 1)) lin_reg_2.predict(poly_reg.fit_transform([[6.5]]))
code
105182335/cell_5
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/salary-prediction-polynomial-linear-regression/Position_Salaries.csv') X = data.iloc[:, 1:2].values y = data.iloc[:, 2].values from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(X) poly_reg.fit(X_poly, y) lin_reg_2 = LinearRegression() lin_reg_2.fit(X_poly, y)
code
34133814/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.columns df.isnull().sum() plt.rcParams['figure.figsize'] = (10, 5) labels = ['1', '2', '3', '4', '5'] sizes = df['International Reputation'].value_counts() colors = plt.cm.copper(np.linspace(0, 1, 5)) explode = [0.1, 0.1, 0.2, 0.5, 0.9] plt.rcParams['figure.figsize'] = (9, 9) p = sns.countplot(x='Position', data=df) _ = plt.setp(p.get_xticklabels(), rotation=90)
code
34133814/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.columns def club(x): return df[df['Club'] == x][['Name', 'Position', 'Overall', 'Nationality', 'Age']] club('Tottenham Hotspur') x = club('Tottenham Hotspur') x.shape
code
34133814/cell_9
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.info()
code
34133814/cell_23
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.columns def club(x): return df[df['Club'] == x][['Name', 'Position', 'Overall', 'Nationality', 'Age']] club('Tottenham Hotspur') x = club('Tottenham Hotspur') x.shape df.isnull().sum() plt.rcParams['figure.figsize'] = (10, 5) labels = ['1', '2', '3', '4', '5'] sizes = df['International Reputation'].value_counts() colors = plt.cm.copper(np.linspace(0, 1, 5)) explode = [0.1, 0.1, 0.2, 0.5, 0.9] plt.rcParams['figure.figsize'] = (9, 9) #Используем диаграмму countplot и выводим данные p = sns.countplot(x='Position', data=df) _ = plt.setp(p.get_xticklabels(), rotation=90) #Используем диаграмму countplot и выводим данные fig = plt.figure(figsize=(25, 10)) p = sns.countplot(x='Nationality', data=df) _ = plt.setp(p.get_xticklabels(), rotation=90) x = df.Age plt.figure(figsize=(15, 8)) ax = sns.distplot(x, bins=58, kde=False, color='g') ax.set_xlabel(xlabel='Возраст футболистов', fontsize=16) ax.set_ylabel(ylabel='Количество футболистов', fontsize=16) ax.set_title(label='Гистограмма возраста футболистов', fontsize=20) plt.show()
code
34133814/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.columns df.isnull().sum() plt.rcParams['figure.figsize'] = (10, 5) labels = ['1', '2', '3', '4', '5'] sizes = df['International Reputation'].value_counts() colors = plt.cm.copper(np.linspace(0, 1, 5)) explode = [0.1, 0.1, 0.2, 0.5, 0.9] plt.rcParams['figure.figsize'] = (9, 9) plt.pie(sizes, labels=labels, colors=colors, explode=explode, shadow=True) plt.title('Международная репутация футболистов', fontsize=20) plt.legend() plt.show()
code
34133814/cell_6
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa19/data.csv') df.head(10)
code
34133814/cell_2
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34133814/cell_11
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.columns def country(x): return df[df['Nationality'] == x][['Name', 'Overall', 'Potential', 'Position']] country('Russia')
code
34133814/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.columns df.isnull().sum() plt.rcParams['figure.figsize'] = (10, 5) sns.countplot(df['Preferred Foot'], palette='Reds') plt.title('Предпочитаемая нога игрока', fontsize=20) plt.show()
code
34133814/cell_8
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape
code
34133814/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.columns df.isnull().sum()
code
34133814/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.columns def club(x): return df[df['Club'] == x][['Name', 'Position', 'Overall', 'Nationality', 'Age']] club('Tottenham Hotspur') x = club('Tottenham Hotspur') x.shape df.isnull().sum() plt.rcParams['figure.figsize'] = (10, 5) labels = ['1', '2', '3', '4', '5'] sizes = df['International Reputation'].value_counts() colors = plt.cm.copper(np.linspace(0, 1, 5)) explode = [0.1, 0.1, 0.2, 0.5, 0.9] plt.rcParams['figure.figsize'] = (9, 9) #Используем диаграмму countplot и выводим данные p = sns.countplot(x='Position', data=df) _ = plt.setp(p.get_xticklabels(), rotation=90) #Используем диаграмму countplot и выводим данные fig = plt.figure(figsize=(25, 10)) p = sns.countplot(x='Nationality', data=df) _ = plt.setp(p.get_xticklabels(), rotation=90) # To show that there are people having same age # Histogram: number of players's age x = df.Age plt.figure(figsize = (15,8)) ax = sns.distplot(x, bins = 58, kde = False, color = 'g') ax.set_xlabel(xlabel = "Возраст футболистов", fontsize = 16) ax.set_ylabel(ylabel = 'Количество футболистов', fontsize = 16) ax.set_title(label = 'Гистограмма возраста футболистов', fontsize = 20) plt.show() x = df.Potential plt.figure(figsize=(12, 8)) plt.style.use('seaborn-paper') ax = sns.distplot(x, bins=58, kde=False, color='y') ax.set_xlabel(xlabel='Очки потенциала футболиста', fontsize=16) ax.set_ylabel(ylabel='Количество игроков', fontsize=16) ax.set_title(label='Гистограмма очков потенциала футболиста', fontsize=20) plt.show()
code
34133814/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.columns df.isnull().sum() plt.rcParams['figure.figsize'] = (10, 5) labels = ['1', '2', '3', '4', '5'] sizes = df['International Reputation'].value_counts() colors = plt.cm.copper(np.linspace(0, 1, 5)) explode = [0.1, 0.1, 0.2, 0.5, 0.9] plt.rcParams['figure.figsize'] = (9, 9) #Используем диаграмму countplot и выводим данные p = sns.countplot(x='Position', data=df) _ = plt.setp(p.get_xticklabels(), rotation=90) fig = plt.figure(figsize=(25, 10)) p = sns.countplot(x='Nationality', data=df) _ = plt.setp(p.get_xticklabels(), rotation=90)
code
34133814/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.columns
code
34133814/cell_12
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa19/data.csv') df.drop(df.columns.difference(['ID', 'Name', 'Age', 'Photo', 'Nationality', 'Position', 'Overall', 'Potential', 'Club', 'Composure', 'Dribbling', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes', 'Joined', 'Wage', 'Preferred Foot', 'International Reputation']), 1, inplace=True) df.shape df.columns def club(x): return df[df['Club'] == x][['Name', 'Position', 'Overall', 'Nationality', 'Age']] club('Tottenham Hotspur')
code
34133814/cell_5
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/fifa19/data.csv') df.head(10)
code
34148707/cell_15
[ "text_html_output_1.png" ]
val_fold
code
88085268/cell_20
[ "application_vnd.jupyter.stderr_output_1.png" ]
from mlxtend.preprocessing import minmax_scaling from sklearn.cluster import KMeans from sklearn.impute import SimpleImputer from sklearn.model_selection import cross_val_score from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder from xgboost import XGBRegressor import pandas as pd import seaborn as sns import pandas as pd import seaborn as sns from xgboost import XGBRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer import numpy as np from matplotlib import pyplot as plt data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') data.dropna(subset=['SalePrice'], inplace=True) y = data.SalePrice X = data.drop('SalePrice', axis=1) test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') X_test = test_data.drop('Id', axis=1) test_id = test_data['Id'] def proc_data_ordinal(X, test_X=None): numerical_data = X[X.select_dtypes(exclude=['object']).columns] categorical_data = X[X.select_dtypes('object').columns] if test_X is not None: t_numerical_data = test_X[test_X.select_dtypes(exclude=['object']).columns] t_categorical_data = test_X[test_X.select_dtypes('object').columns] imputer = SimpleImputer(strategy='constant') imputed_num = pd.DataFrame(imputer.fit_transform(numerical_data)) imputed_num.columns = numerical_data.columns if test_X is not None: t_imputed_num = pd.DataFrame(imputer.transform(t_numerical_data)) t_imputed_num.columns = t_numerical_data.columns imputer = SimpleImputer(strategy='most_frequent') imputed_cat = pd.DataFrame(imputer.fit_transform(categorical_data)) imputed_cat.columns = categorical_data.columns if test_X is not None: t_imputed_cat = pd.DataFrame(imputer.transform(t_categorical_data)) t_imputed_cat.columns = t_categorical_data.columns ordinal_encoder = OrdinalEncoder() ord_X_train = imputed_cat.copy() ord_X_train[imputed_cat.columns] = ordinal_encoder.fit_transform(imputed_cat) if test_X is not None: t_ord_X_train = t_imputed_cat.copy() t_ord_X_train[t_imputed_cat.columns] = ordinal_encoder.transform(t_imputed_cat) processed_X = pd.concat([imputed_num, ord_X_train], axis=1) t_processed_X = None if test_X is not None: t_processed_X = pd.concat([t_imputed_num, t_ord_X_train], axis=1) return (processed_X, t_processed_X) xgb_params = dict(max_depth=6, learning_rate=0.01, n_estimators=5000, min_child_weight=1, colsample_bytree=0.7, subsample=0.7, reg_alpha=0.5, reg_lambda=1.0, num_parallel_tree=1) baseline_X, _ = proc_data_ordinal(X, X_test) baseline_model = XGBRegressor(**xgb_params, random_state=1722) previous_scores = -1 * cross_val_score(baseline_model, baseline_X, y, cv=5, scoring='neg_mean_absolute_error') previous_scores.mean() neighborhood_averages = data.groupby('Neighborhood')['SalePrice'].transform('mean') neighborhood_map = pd.DataFrame({'Neighborhood': data['Neighborhood'], 'avg': neighborhood_averages}) data['Neighborhood'] = neighborhood_averages neighborhood_map.groupby(['Neighborhood', 'avg']).size() nbd_dict = {'Blmngtn': 194870.882353, 'Blueste': 137500.0, 'BrDale': 104493.75, 'BrkSide': 124834.051724, 'ClearCr': 212565.428571, 'CollgCr': 197965.773333, 'Crawfor': 210624.72549, 'Edwards': 128219.7, 'Gilbert': 192854.506329, 'IDOTRR': 100123.783784, 'MeadowV': 98576.470588, 'Mitchel': 156270.122449, 'NAmes': 145847.08, 'NPkVill': 142694.444444, 'NWAmes': 189050.068493, 'NoRidge': 335295.317073, 'NridgHt': 316270.623377, 'OldTown': 128225.300885, 'SWISU': 142591.36, 'Sawyer': 136793.135135, 'SawyerW': 186555.79661, 'Somerst': 225379.837209, 'StoneBr': 310499.0, 'Timber': 242247.447368, 'Veenker': 238772.727273} y = data.SalePrice X = data.drop('SalePrice', axis=1) new_X, _ = proc_data_ordinal(X, None) new_model = XGBRegressor(**xgb_params, random_state=1722) previous_scores = -1 * cross_val_score(new_model, new_X, y, cv=5, scoring='neg_mean_absolute_error') previous_scores.mean() test_data['Neighborhood'] = test_data.Neighborhood.map(lambda n: nbd_dict[n]) y = data.SalePrice X = data.drop('SalePrice', axis=1) new_X, test_X = proc_data_ordinal(X, test_data.drop('Id', axis=1)) new_model = XGBRegressor(**xgb_params, random_state=1722) new_model.fit(new_X, y) preds = new_model.predict(test_X) output = pd.DataFrame({'Id': test_data.Id, 'SalePrice': preds}) output.to_csv('submission.csv', index=False) from sklearn.cluster import KMeans from mlxtend.preprocessing import minmax_scaling g = pd.DataFrame(data.GrLivArea) d = minmax_scaling(g, columns=['GrLivArea']) data['GrLivArea_scaled'] = d * 10 comparative_features = ['OverallCond', 'OverallQual'] nbs = list(data.Neighborhood.unique()) ks = dict() for n in nbs: cluster_data = data.loc[data.Neighborhood == n][comparative_features] if len(cluster_data) > 40: k = KMeans(n_clusters=3, n_init=10) cluster_data['nbd_comp_label'] = k.fit_predict(cluster_data) else: k = KMeans(n_clusters=1, n_init=10) cluster_data['nbd_comp_label'] = k.fit_predict(cluster_data) ks[n] = k
code
88085268/cell_16
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.model_selection import cross_val_score from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder from xgboost import XGBRegressor import pandas as pd import seaborn as sns import pandas as pd import seaborn as sns from xgboost import XGBRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer import numpy as np from matplotlib import pyplot as plt data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') data.dropna(subset=['SalePrice'], inplace=True) y = data.SalePrice X = data.drop('SalePrice', axis=1) test_data = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') X_test = test_data.drop('Id', axis=1) test_id = test_data['Id'] def proc_data_ordinal(X, test_X=None): numerical_data = X[X.select_dtypes(exclude=['object']).columns] categorical_data = X[X.select_dtypes('object').columns] if test_X is not None: t_numerical_data = test_X[test_X.select_dtypes(exclude=['object']).columns] t_categorical_data = test_X[test_X.select_dtypes('object').columns] imputer = SimpleImputer(strategy='constant') imputed_num = pd.DataFrame(imputer.fit_transform(numerical_data)) imputed_num.columns = numerical_data.columns if test_X is not None: t_imputed_num = pd.DataFrame(imputer.transform(t_numerical_data)) t_imputed_num.columns = t_numerical_data.columns imputer = SimpleImputer(strategy='most_frequent') imputed_cat = pd.DataFrame(imputer.fit_transform(categorical_data)) imputed_cat.columns = categorical_data.columns if test_X is not None: t_imputed_cat = pd.DataFrame(imputer.transform(t_categorical_data)) t_imputed_cat.columns = t_categorical_data.columns ordinal_encoder = OrdinalEncoder() ord_X_train = imputed_cat.copy() ord_X_train[imputed_cat.columns] = ordinal_encoder.fit_transform(imputed_cat) if test_X is not None: t_ord_X_train = t_imputed_cat.copy() t_ord_X_train[t_imputed_cat.columns] = ordinal_encoder.transform(t_imputed_cat) processed_X = pd.concat([imputed_num, ord_X_train], axis=1) t_processed_X = None if test_X is not None: t_processed_X = pd.concat([t_imputed_num, t_ord_X_train], axis=1) return (processed_X, t_processed_X) xgb_params = dict(max_depth=6, learning_rate=0.01, n_estimators=5000, min_child_weight=1, colsample_bytree=0.7, subsample=0.7, reg_alpha=0.5, reg_lambda=1.0, num_parallel_tree=1) baseline_X, _ = proc_data_ordinal(X, X_test) baseline_model = XGBRegressor(**xgb_params, random_state=1722) previous_scores = -1 * cross_val_score(baseline_model, baseline_X, y, cv=5, scoring='neg_mean_absolute_error') previous_scores.mean() neighborhood_averages = data.groupby('Neighborhood')['SalePrice'].transform('mean') neighborhood_map = pd.DataFrame({'Neighborhood': data['Neighborhood'], 'avg': neighborhood_averages}) data['Neighborhood'] = neighborhood_averages neighborhood_map.groupby(['Neighborhood', 'avg']).size() nbd_dict = {'Blmngtn': 194870.882353, 'Blueste': 137500.0, 'BrDale': 104493.75, 'BrkSide': 124834.051724, 'ClearCr': 212565.428571, 'CollgCr': 197965.773333, 'Crawfor': 210624.72549, 'Edwards': 128219.7, 'Gilbert': 192854.506329, 'IDOTRR': 100123.783784, 'MeadowV': 98576.470588, 'Mitchel': 156270.122449, 'NAmes': 145847.08, 'NPkVill': 142694.444444, 'NWAmes': 189050.068493, 'NoRidge': 335295.317073, 'NridgHt': 316270.623377, 'OldTown': 128225.300885, 'SWISU': 142591.36, 'Sawyer': 136793.135135, 'SawyerW': 186555.79661, 'Somerst': 225379.837209, 'StoneBr': 310499.0, 'Timber': 242247.447368, 'Veenker': 238772.727273} y = data.SalePrice X = data.drop('SalePrice', axis=1) new_X, _ = proc_data_ordinal(X, None) new_model = XGBRegressor(**xgb_params, random_state=1722) previous_scores = -1 * cross_val_score(new_model, new_X, y, cv=5, scoring='neg_mean_absolute_error') previous_scores.mean() test_data['Neighborhood'] = test_data.Neighborhood.map(lambda n: nbd_dict[n]) y = data.SalePrice X = data.drop('SalePrice', axis=1) new_X, test_X = proc_data_ordinal(X, test_data.drop('Id', axis=1)) new_model = XGBRegressor(**xgb_params, random_state=1722) new_model.fit(new_X, y)
code
16158815/cell_13
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns heart = pd.read_csv('../input/heart.csv') heart.nunique() heart.columns = ['Age', 'Gender', 'ChestPain', 'RestingBloodPressure', 'Cholestrol', 'FastingBloodSugar', 'RestingECG', 'MaxHeartRateAchivied', 'ExerciseIndusedAngina', 'Oldpeak', 'Slope', 'MajorVessels', 'Thalassemia', 'Target'] bg_color = (0.25, 0.25, 0.25) sns.set(rc={'font.style': 'normal', 'axes.facecolor': bg_color, 'figure.facecolor': bg_color, 'text.color': 'white', 'xtick.color': 'white', 'ytick.color': 'white', 'axes.labelcolor': 'white', 'axes.grid': False, 'axes.labelsize': 25, 'figure.figsize': (10.0, 5.0), 'xtick.labelsize': 15, 'ytick.labelsize': 15}) result = [] for i in heart['ChestPain']: if i == 0: result.append('Typical Angina') if i == 1: result.append('Atypical Angina') if i == 2: result.append('Non-Anginal') if i == 3: result.append('Asymptomatic') heart['ChestPainType'] = result ax = sns.countplot(hue=result, x='Gender', data=heart, palette='husl') plt.title('Chest Pain Type Vs Gender') plt.ylabel('') plt.yticks([]) plt.xlabel('') ax.set_xticklabels(['Female', 'Male']) print(ax.patches)
code
16158815/cell_9
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns heart = pd.read_csv('../input/heart.csv') heart.nunique() heart.columns = ['Age', 'Gender', 'ChestPain', 'RestingBloodPressure', 'Cholestrol', 'FastingBloodSugar', 'RestingECG', 'MaxHeartRateAchivied', 'ExerciseIndusedAngina', 'Oldpeak', 'Slope', 'MajorVessels', 'Thalassemia', 'Target'] bg_color = (0.25, 0.25, 0.25) sns.set(rc={'font.style': 'normal', 'axes.facecolor': bg_color, 'figure.facecolor': bg_color, 'text.color': 'white', 'xtick.color': 'white', 'ytick.color': 'white', 'axes.labelcolor': 'white', 'axes.grid': False, 'axes.labelsize': 25, 'figure.figsize': (10.0, 5.0), 'xtick.labelsize': 15, 'ytick.labelsize': 15}) sns.swarmplot(heart['Age'])
code
16158815/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) heart = pd.read_csv('../input/heart.csv') print('unique entries in each column') heart.nunique()
code
16158815/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) heart = pd.read_csv('../input/heart.csv') print(heart.shape) heart.head()
code
16158815/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) heart = pd.read_csv('../input/heart.csv') heart.nunique() heart.columns = ['Age', 'Gender', 'ChestPain', 'RestingBloodPressure', 'Cholestrol', 'FastingBloodSugar', 'RestingECG', 'MaxHeartRateAchivied', 'ExerciseIndusedAngina', 'Oldpeak', 'Slope', 'MajorVessels', 'Thalassemia', 'Target'] heart.head()
code
16158815/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import os print(os.listdir('../input'))
code
16158815/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) heart = pd.read_csv('../input/heart.csv') heart.nunique() heart.columns = ['Age', 'Gender', 'ChestPain', 'RestingBloodPressure', 'Cholestrol', 'FastingBloodSugar', 'RestingECG', 'MaxHeartRateAchivied', 'ExerciseIndusedAngina', 'Oldpeak', 'Slope', 'MajorVessels', 'Thalassemia', 'Target'] heart['Age'].hist(grid=False)
code
16158815/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) heart = pd.read_csv('../input/heart.csv') heart.info()
code
16158815/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns heart = pd.read_csv('../input/heart.csv') heart.nunique() heart.columns = ['Age', 'Gender', 'ChestPain', 'RestingBloodPressure', 'Cholestrol', 'FastingBloodSugar', 'RestingECG', 'MaxHeartRateAchivied', 'ExerciseIndusedAngina', 'Oldpeak', 'Slope', 'MajorVessels', 'Thalassemia', 'Target'] bg_color = (0.25, 0.25, 0.25) sns.set(rc={'font.style': 'normal', 'axes.facecolor': bg_color, 'figure.facecolor': bg_color, 'text.color': 'white', 'xtick.color': 'white', 'ytick.color': 'white', 'axes.labelcolor': 'white', 'axes.grid': False, 'axes.labelsize': 25, 'figure.figsize': (10.0, 5.0), 'xtick.labelsize': 15, 'ytick.labelsize': 15}) result = [] for i in heart['ChestPain']: if i == 0: result.append('Typical Angina') if i == 1: result.append('Atypical Angina') if i == 2: result.append('Non-Anginal') if i == 3: result.append('Asymptomatic') heart['ChestPainType'] = result # do a gender comparison ax = sns.countplot(hue=result,x='Gender',data=heart,palette='husl') plt.title("Chest Pain Type Vs Gender") plt.ylabel("") plt.yticks([]) plt.xlabel("") ax.set_xticklabels(['Female','Male']) print(ax.patches) ax = sns.regplot(x='RestingBloodPressure', y='Cholestrol', data=heart, color='g')
code
16158815/cell_10
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns heart = pd.read_csv('../input/heart.csv') heart.nunique() heart.columns = ['Age', 'Gender', 'ChestPain', 'RestingBloodPressure', 'Cholestrol', 'FastingBloodSugar', 'RestingECG', 'MaxHeartRateAchivied', 'ExerciseIndusedAngina', 'Oldpeak', 'Slope', 'MajorVessels', 'Thalassemia', 'Target'] bg_color = (0.25, 0.25, 0.25) sns.set(rc={'font.style': 'normal', 'axes.facecolor': bg_color, 'figure.facecolor': bg_color, 'text.color': 'white', 'xtick.color': 'white', 'ytick.color': 'white', 'axes.labelcolor': 'white', 'axes.grid': False, 'axes.labelsize': 25, 'figure.figsize': (10.0, 5.0), 'xtick.labelsize': 15, 'ytick.labelsize': 15}) result = [] for i in heart['ChestPain']: if i == 0: result.append('Typical Angina') if i == 1: result.append('Atypical Angina') if i == 2: result.append('Non-Anginal') if i == 3: result.append('Asymptomatic') heart['ChestPainType'] = result sns.swarmplot(x='ChestPainType', y='Age', data=heart)
code
128049382/cell_4
[ "text_html_output_4.png", "text_html_output_6.png", "text_html_output_2.png", "text_html_output_5.png", "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png", "text_html_output_3.png" ]
from torchsummary import summary import torch from torchvision import models from torchsummary import summary device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = RN_BCNN().to(device) summary(model, (3, 224, 224))
code
128049382/cell_20
[ "text_plain_output_1.png" ]
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score,cohen_kappa_score from torchsummary import summary from tqdm import tqdm import numpy as np import torch import torch import torch.nn as nn import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import tqdm import wandb import torch import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = nn.Sequential() if stride != 1 or in_channels != out_channels: self.downsample = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels)) def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += self.downsample(identity) out = self.relu(out) return out class RN_BCNN(nn.Module): def __init__(self): super(RN_BCNN, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.res_block1 = self._make_res_block(64, 32, 128, 3) self.res_block2 = self._make_res_block(128, 64, 256, 4) self.res_block3 = self._make_res_block(256, 128, 512, 6) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, 5) self.softmax = nn.Softmax(dim=1) def _make_res_block(self, in_channels, mid_channels, out_channels, num_blocks): layers = [] layers.append(ResidualBlock(in_channels, mid_channels, stride=1)) for i in range(num_blocks - 1): layers.append(ResidualBlock(mid_channels, mid_channels, stride=1)) layers.append(ResidualBlock(mid_channels, out_channels, stride=2)) return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.res_block1(out) out = self.res_block2(out) out = self.res_block3(out) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.fc(out) out = self.softmax(out) return out from torchvision import models from torchsummary import summary device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = RN_BCNN().to(device) summary(model, (3, 224, 224)) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') transform = transforms.Compose([transforms.ToPILImage(), transforms.Resize(size=(224, 224)), transforms.ToTensor()]) path_data = '/kaggle/input/img-process/img_process/' train_file = '/kaggle/input/vindr-birads/train_data_final.csv' test_file = '/kaggle/input/vindr-birads/test_data_final.csv' import cv2 from torch.utils.data import DataLoader data_breast = {'train': CustomImageDataset(train_file, path_data, transform), 'test': CustomImageDataset(test_file, path_data, transform)} dm = Datamodule(16, data_breast['train'], data_breast['test']) import torchvision.models as models dataloaders = {'train': torch.utils.data.DataLoader(data_breast['train'], batch_size=16, shuffle=True, num_workers=0), 'test': torch.utils.data.DataLoader(data_breast['test'], batch_size=16, shuffle=True, num_workers=0)} from tqdm import tqdm from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, cohen_kappa_score def train_model(model, criterion, optimizer, num_epochs=3): for epoch in range(num_epochs): for phase in ['train', 'test']: if phase == 'train': model.train() else: model.eval() y_label = [] y_predict = [] running_loss = 0.0 running_corrects = 0 for inputs, labels in tqdm(dataloaders[phase]): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) if phase == 'train': optimizer.zero_grad() loss.backward() optimizer.step() _, preds = torch.max(outputs, 1) running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) y_label.extend(labels.cpu().numpy()) y_predict.extend(np.squeeze(preds.cpu().numpy().T)) epoch_loss = running_loss / len(data_breast[phase]) epoch_acc = running_corrects.double() / len(data_breast[phase]) confusion_mtx = confusion_matrix(y_label, y_predict) f1_scores = f1_score(y_label, y_predict, average=None) precision_scores = precision_score(y_label, y_predict, average=None) recall_scores = recall_score(y_label, y_predict, average=None) kappas = cohen_kappa_score(y_label, y_predict) wandb.log({'epoch': epoch, phase + 'loss': epoch_loss, phase + 'acc': epoch_acc, 'f1_score_0': f1_scores[0], 'f1_score_1': f1_scores[1], 'f1_score_2': f1_scores[2], 'f1_score_3': f1_scores[3], 'f1_score_4': f1_scores[4], 'precision_score_0': precision_scores[0], 'precision_score_1': precision_scores[1], 'precision_score_2': precision_scores[2], 'precision_score_3': precision_scores[3], 'precision_score_4': precision_scores[4], 'recall_0': recall_scores[0], 'recall_1': recall_scores[1], 'recall_2': recall_scores[2], 'recall_3': recall_scores[3], 'recall_4': recall_scores[4], 'kappa': kappas}) return model import wandb run = wandb.init(project='Breast-density-classification', reinit=True) wandb.run.name = 'RN-BCNN' model = RN_BCNN().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.05) train_model(model, criterion, optimizer, num_epochs=100) run.finish()
code
128049382/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_1.png" ]
from torchsummary import summary import torch import torch from torchvision import models from torchsummary import summary device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = RN_BCNN().to(device) summary(model, (3, 224, 224)) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print(device)
code
128049382/cell_16
[ "text_plain_output_1.png" ]
from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score,cohen_kappa_score from torchsummary import summary from tqdm import tqdm import numpy as np import torch import torch import torchvision.transforms as transforms import tqdm import wandb from torchvision import models from torchsummary import summary device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = RN_BCNN().to(device) summary(model, (3, 224, 224)) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') transform = transforms.Compose([transforms.ToPILImage(), transforms.Resize(size=(224, 224)), transforms.ToTensor()]) path_data = '/kaggle/input/img-process/img_process/' train_file = '/kaggle/input/vindr-birads/train_data_final.csv' test_file = '/kaggle/input/vindr-birads/test_data_final.csv' import cv2 from torch.utils.data import DataLoader data_breast = {'train': CustomImageDataset(train_file, path_data, transform), 'test': CustomImageDataset(test_file, path_data, transform)} dm = Datamodule(16, data_breast['train'], data_breast['test']) import torchvision.models as models dataloaders = {'train': torch.utils.data.DataLoader(data_breast['train'], batch_size=16, shuffle=True, num_workers=0), 'test': torch.utils.data.DataLoader(data_breast['test'], batch_size=16, shuffle=True, num_workers=0)} from tqdm import tqdm from sklearn.metrics import confusion_matrix, precision_score, recall_score, f1_score, cohen_kappa_score def train_model(model, criterion, optimizer, num_epochs=3): for epoch in range(num_epochs): for phase in ['train', 'test']: if phase == 'train': model.train() else: model.eval() y_label = [] y_predict = [] running_loss = 0.0 running_corrects = 0 for inputs, labels in tqdm(dataloaders[phase]): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) if phase == 'train': optimizer.zero_grad() loss.backward() optimizer.step() _, preds = torch.max(outputs, 1) running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) y_label.extend(labels.cpu().numpy()) y_predict.extend(np.squeeze(preds.cpu().numpy().T)) epoch_loss = running_loss / len(data_breast[phase]) epoch_acc = running_corrects.double() / len(data_breast[phase]) confusion_mtx = confusion_matrix(y_label, y_predict) f1_scores = f1_score(y_label, y_predict, average=None) precision_scores = precision_score(y_label, y_predict, average=None) recall_scores = recall_score(y_label, y_predict, average=None) kappas = cohen_kappa_score(y_label, y_predict) wandb.log({'epoch': epoch, phase + 'loss': epoch_loss, phase + 'acc': epoch_acc, 'f1_score_0': f1_scores[0], 'f1_score_1': f1_scores[1], 'f1_score_2': f1_scores[2], 'f1_score_3': f1_scores[3], 'f1_score_4': f1_scores[4], 'precision_score_0': precision_scores[0], 'precision_score_1': precision_scores[1], 'precision_score_2': precision_scores[2], 'precision_score_3': precision_scores[3], 'precision_score_4': precision_scores[4], 'recall_0': recall_scores[0], 'recall_1': recall_scores[1], 'recall_2': recall_scores[2], 'recall_3': recall_scores[3], 'recall_4': recall_scores[4], 'kappa': kappas}) return model import wandb run = wandb.init(project='Breast-density-classification', reinit=True) wandb.run.name = 'RN-BCNN'
code
128049382/cell_3
[ "text_plain_output_1.png" ]
pip install torchsummary
code
1008057/cell_4
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from subprocess import check_output import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_num = train.shape[0] full = train.append(test, ignore_index=True) titanic = full[:train_num] from sklearn.preprocessing import LabelEncoder sex = pd.Series(np.where(full.Sex == 'male', 1, 0), name='Sex') embarked = pd.get_dummies(full.Embarked, prefix='Embarked') le = LabelEncoder() imputed = pd.DataFrame() imputed['Age'] = full.Age.fillna(full.Age.mean()) imputed['Fare'] = full.Fare.fillna(full.Fare.mean()) imputed['Parch'] = full.Parch.fillna(full.Parch.mean()) imputed['SibSp'] = full.SibSp.fillna(full.SibSp.mean()) title = pd.DataFrame() title['Title'] = full['Name'].map(lambda name: name.split(',')[1].split('.')[0].strip()) Title_Dictionary = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} title['Title'] = title.Title.map(Title_Dictionary) title = pd.get_dummies(title.Title) cabin = pd.DataFrame() cabin['Cabin'] = full.Cabin.fillna('U') cabin['Cabin'] = cabin.Cabin.map(lambda c: c[0]) cabin = pd.get_dummies(cabin.Cabin, prefix='Cabin') from sklearn.model_selection import train_test_split full_X = pd.concat([imputed, embarked, cabin, sex], axis=1) train_valid_X = full_X[:train_num] train_valid_y = titanic.Survived test_X = full_X[train_num:] train_X, valid_X, train_y, valid_y = train_test_split(train_valid_X, train_valid_y, train_size=0.8) print(full_X.shape, train_X.shape, valid_X.shape, train_y.shape, valid_y.shape, test_X.shape)
code
1008057/cell_6
[ "text_plain_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import VotingClassifier, GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from subprocess import check_output import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_num = train.shape[0] full = train.append(test, ignore_index=True) titanic = full[:train_num] from sklearn.preprocessing import LabelEncoder sex = pd.Series(np.where(full.Sex == 'male', 1, 0), name='Sex') embarked = pd.get_dummies(full.Embarked, prefix='Embarked') le = LabelEncoder() imputed = pd.DataFrame() imputed['Age'] = full.Age.fillna(full.Age.mean()) imputed['Fare'] = full.Fare.fillna(full.Fare.mean()) imputed['Parch'] = full.Parch.fillna(full.Parch.mean()) imputed['SibSp'] = full.SibSp.fillna(full.SibSp.mean()) title = pd.DataFrame() title['Title'] = full['Name'].map(lambda name: name.split(',')[1].split('.')[0].strip()) Title_Dictionary = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} title['Title'] = title.Title.map(Title_Dictionary) title = pd.get_dummies(title.Title) cabin = pd.DataFrame() cabin['Cabin'] = full.Cabin.fillna('U') cabin['Cabin'] = cabin.Cabin.map(lambda c: c[0]) cabin = pd.get_dummies(cabin.Cabin, prefix='Cabin') from sklearn.model_selection import train_test_split full_X = pd.concat([imputed, embarked, cabin, sex], axis=1) train_valid_X = full_X[:train_num] train_valid_y = titanic.Survived test_X = full_X[train_num:] train_X, valid_X, train_y, valid_y = train_test_split(train_valid_X, train_valid_y, train_size=0.8) from sklearn.ensemble import GradientBoostingClassifier import matplotlib.pyplot as plt train_X, valid_X, train_y, valid_y = train_test_split(train_valid_X, train_valid_y, train_size=0.8) tree_num = 20 train_score_list = [] valid_score_list = [] x_range = range(1, tree_num) for trees in x_range: model = GradientBoostingClassifier(n_estimators=trees, max_depth=10, min_samples_split=2, learning_rate=0.1, subsample=0.8, max_features=0.8) model.fit(train_X, train_y) train_score = model.score(train_X, train_y) valid_score = model.score(valid_X, valid_y) train_score_list.append(train_score) valid_score_list.append(valid_score) from sklearn.ensemble import VotingClassifier, GradientBoostingClassifier import numpy as np train_loop_num = 100 model_list = [] weight = [] for idx in range(0, train_loop_num): train_X, valid_X, train_y, valid_y = train_test_split(train_valid_X, train_valid_y, train_size=0.8) model = GradientBoostingClassifier(n_estimators=10, max_depth=10, min_samples_split=2, learning_rate=0.1, subsample=0.8, max_features=0.8) model.fit(train_X, train_y) train_score = model.score(train_X, train_y) valid_score = model.score(valid_X, valid_y) model_name = 'model_' + str(idx) print('%s, train_score:%f, valid_score:%f' % (model_name, train_score, valid_score)) weight.append(valid_score) model_list.append((model_name, model)) sum_of_weight = sum(weight) weight = [x / sum_of_weight for x in weight] pred = [] for name, model in model_list: test_Y = [int(x) for x in model.predict(test_X)] pred.append(test_Y) test_Y = [] for idx in range(0, test_X.shape[0]): pred_result = [x[idx] for x in pred] test_Y.append(int(np.dot(pred_result, weight))) print(test_Y)
code
1008057/cell_2
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_num = train.shape[0] full = train.append(test, ignore_index=True) titanic = full[:train_num] print('train_size = %s, test_size=%s' % (train.shape, test.shape)) full.head(10)
code
1008057/cell_7
[ "text_plain_output_1.png" ]
""" from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier , GradientBoostingClassifier, AdaBoostClassifier, VotingClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB model_list = { "random_forest": RandomForestClassifier(n_estimators=100, max_depth=10,min_samples_split=2), "SVC": SVC(), "GBDT": GradientBoostingClassifier(n_estimators=10, learning_rate=0.3, max_depth=4, random_state=0), "KNN": KNeighborsClassifier(n_neighbors = 3), "GaussianNB": GaussianNB(), "LR": LogisticRegression() }.items() weight = [] for (name, model) in model_list: model.fit(train_X, train_y) train_score = model.score( train_X , train_y ) valid_score = model.score( valid_X , valid_y ) weight.append(valid_score) print ("%s, train_score:%f, valid_score:%f" % (name, train_score , valid_score) ) # voting ensemble eclf = VotingClassifier(estimators=model_list, weights=weight) eclf.fit(train_X, train_y) print (eclf.score(train_X, train_y)) print (eclf.score(valid_X, valid_y)) test_Y = [int(x) for x in eclf.predict(test_X)] print (len(test_Y)) """
code
1008057/cell_3
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder from subprocess import check_output import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_num = train.shape[0] full = train.append(test, ignore_index=True) titanic = full[:train_num] from sklearn.preprocessing import LabelEncoder sex = pd.Series(np.where(full.Sex == 'male', 1, 0), name='Sex') embarked = pd.get_dummies(full.Embarked, prefix='Embarked') le = LabelEncoder() imputed = pd.DataFrame() imputed['Age'] = full.Age.fillna(full.Age.mean()) imputed['Fare'] = full.Fare.fillna(full.Fare.mean()) imputed['Parch'] = full.Parch.fillna(full.Parch.mean()) imputed['SibSp'] = full.SibSp.fillna(full.SibSp.mean()) title = pd.DataFrame() title['Title'] = full['Name'].map(lambda name: name.split(',')[1].split('.')[0].strip()) Title_Dictionary = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} title['Title'] = title.Title.map(Title_Dictionary) title = pd.get_dummies(title.Title) cabin = pd.DataFrame() cabin['Cabin'] = full.Cabin.fillna('U') cabin['Cabin'] = cabin.Cabin.map(lambda c: c[0]) cabin = pd.get_dummies(cabin.Cabin, prefix='Cabin') cabin.head()
code
1008057/cell_5
[ "image_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from subprocess import check_output import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_num = train.shape[0] full = train.append(test, ignore_index=True) titanic = full[:train_num] from sklearn.preprocessing import LabelEncoder sex = pd.Series(np.where(full.Sex == 'male', 1, 0), name='Sex') embarked = pd.get_dummies(full.Embarked, prefix='Embarked') le = LabelEncoder() imputed = pd.DataFrame() imputed['Age'] = full.Age.fillna(full.Age.mean()) imputed['Fare'] = full.Fare.fillna(full.Fare.mean()) imputed['Parch'] = full.Parch.fillna(full.Parch.mean()) imputed['SibSp'] = full.SibSp.fillna(full.SibSp.mean()) title = pd.DataFrame() title['Title'] = full['Name'].map(lambda name: name.split(',')[1].split('.')[0].strip()) Title_Dictionary = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} title['Title'] = title.Title.map(Title_Dictionary) title = pd.get_dummies(title.Title) cabin = pd.DataFrame() cabin['Cabin'] = full.Cabin.fillna('U') cabin['Cabin'] = cabin.Cabin.map(lambda c: c[0]) cabin = pd.get_dummies(cabin.Cabin, prefix='Cabin') from sklearn.model_selection import train_test_split full_X = pd.concat([imputed, embarked, cabin, sex], axis=1) train_valid_X = full_X[:train_num] train_valid_y = titanic.Survived test_X = full_X[train_num:] train_X, valid_X, train_y, valid_y = train_test_split(train_valid_X, train_valid_y, train_size=0.8) from sklearn.ensemble import GradientBoostingClassifier import matplotlib.pyplot as plt train_X, valid_X, train_y, valid_y = train_test_split(train_valid_X, train_valid_y, train_size=0.8) tree_num = 20 train_score_list = [] valid_score_list = [] x_range = range(1, tree_num) for trees in x_range: model = GradientBoostingClassifier(n_estimators=trees, max_depth=10, min_samples_split=2, learning_rate=0.1, subsample=0.8, max_features=0.8) model.fit(train_X, train_y) train_score = model.score(train_X, train_y) valid_score = model.score(valid_X, valid_y) train_score_list.append(train_score) valid_score_list.append(valid_score) plt.plot(x_range, train_score_list, '-r') plt.plot(x_range, valid_score_list, '-b') plt.show()
code
1009991/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os type_1 = os.listdir('../input/train/Type_1') type_1.shape
code
1009991/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input/train/']).decode('utf8'))
code
34144217/cell_4
[ "image_output_4.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dates = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/calendar.csv') data = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sales_train_validation.csv') sale_data = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sell_prices.csv') submission = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sample_submission.csv') last_date = 1913 original_features = ['id', 'item_id', 'dept_id', 'cat_id', 'store_id', 'state_id'] total_sales = data.mean() x_data = np.array([int(x[2:]) for x in total_sales.index]) y_data = np.array(total_sales.array) m, b = np.polyfit(x_data, y_data, 1) plt.pyplot.scatter(x_data, total_sales, s=1) plt.pyplot.plot([0, last_date], [b, m * last_date + b], linewidth=3) print('Gradient: ', m, 'Intercept:', b) plt.pyplot.figure() plt.pyplot.scatter(x_data[400:1250], total_sales.iloc[400:1250], s=5)
code
34144217/cell_6
[ "image_output_4.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dates = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/calendar.csv') data = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sales_train_validation.csv') sale_data = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sell_prices.csv') submission = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sample_submission.csv') last_date = 1913 original_features = ['id', 'item_id', 'dept_id', 'cat_id', 'store_id', 'state_id'] total_sales = data.mean() x_data = np.array([int(x[2:]) for x in total_sales.index]) y_data = np.array(total_sales.array) m, b = np.polyfit(x_data, y_data, 1) state_groups = data.groupby('state_id') state_data = state_groups.mean() print(state_data) x_data = range(1, last_date + 1) for i, g in enumerate(state_groups.groups.keys()): y_data = [state_data['d_' + str(x)].iloc[i] for x in x_data] plt.pyplot.scatter(x_data, y_data, s=5, alpha=0.3) m, b = np.polyfit(x_data, y_data, 1) print('Group ' + str(i) + ':', g, 'Gradient:', m, 'Intercept:', b) plt.pyplot.plot([0, last_date], [b, m * last_date + b], linewidth=4, label=g) plt.pyplot.legend(loc='upper left')
code
34144217/cell_2
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dates = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/calendar.csv') data = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sales_train_validation.csv') sale_data = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sell_prices.csv') submission = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sample_submission.csv') print(dates.head()) print(data.head()) print(sale_data.head()) print(submission.head())
code
34144217/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34144217/cell_8
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dates = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/calendar.csv') data = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sales_train_validation.csv') sale_data = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sell_prices.csv') submission = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sample_submission.csv') last_date = 1913 original_features = ['id', 'item_id', 'dept_id', 'cat_id', 'store_id', 'state_id'] total_sales = data.mean() x_data = np.array([int(x[2:]) for x in total_sales.index]) y_data = np.array(total_sales.array) m, b = np.polyfit(x_data, y_data, 1) state_groups = data.groupby('state_id') state_data = state_groups.mean() x_data = range(1, last_date + 1) for i, g in enumerate(state_groups.groups.keys()): y_data = [state_data['d_' + str(x)].iloc[i] for x in x_data] m, b = np.polyfit(x_data, y_data, 1) category_groups = data.groupby('cat_id') category_data = category_groups.mean() x_data = range(1, last_date + 1) for i, c in enumerate(category_groups.groups.keys()): y_data = [category_data['d_' + str(x)].iloc[i] for x in x_data] plt.pyplot.scatter(x_data, y_data, s=5, alpha=0.3) m, b = np.polyfit(x_data, y_data, 1) print('Category ', c, 'Gradient:', m, 'Intercept:', b) plt.pyplot.plot([0, last_date], [b, m * last_date + b], linewidth=4, label=c) plt.pyplot.legend(loc='upper left') cs_group = data.groupby(['state_id', 'cat_id']).mean().reset_index() colours = ['blue', 'darkorange', 'green'] for state in state_groups.groups.keys(): plt.pyplot.figure(figsize=(20, 12)) for i, c in enumerate(category_groups.groups.keys()): plt.pyplot.subplot(int('33' + str(i + 1))) y_data = cs_group[(cs_group.state_id == state) & (cs_group.cat_id == c)].iloc[0].tail(last_date).to_list() plt.pyplot.scatter(x_data, y_data, s=5, alpha=0.3, c=colours[i]) m, b = np.polyfit(x_data, y_data, 1) print('State: ' + state, 'Category: ' + c, 'Gradient:', m, 'Intercept:', b) plt.pyplot.plot([0, last_date], [b, m * last_date + b], linewidth=4, label=c, c=colours[i]) plt.pyplot.legend(loc='upper left') plt.pyplot.title(state)
code
34144217/cell_10
[ "text_plain_output_1.png" ]
import matplotlib as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dates = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/calendar.csv') data = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sales_train_validation.csv') sale_data = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sell_prices.csv') submission = pd.read_csv('/kaggle/input/m5-forecasting-accuracy/sample_submission.csv') last_date = 1913 original_features = ['id', 'item_id', 'dept_id', 'cat_id', 'store_id', 'state_id'] total_sales = data.mean() x_data = np.array([int(x[2:]) for x in total_sales.index]) y_data = np.array(total_sales.array) m, b = np.polyfit(x_data, y_data, 1) state_groups = data.groupby('state_id') state_data = state_groups.mean() x_data = range(1, last_date + 1) for i, g in enumerate(state_groups.groups.keys()): y_data = [state_data['d_' + str(x)].iloc[i] for x in x_data] m, b = np.polyfit(x_data, y_data, 1) category_groups = data.groupby('cat_id') category_data = category_groups.mean() x_data = range(1, last_date+1) for i, c in enumerate(category_groups.groups.keys()): y_data = [category_data['d_' + str(x)].iloc[i] for x in x_data] plt.pyplot.scatter(x_data, y_data, s=5, alpha=0.3) m, b = np.polyfit(x_data, y_data, 1) print("Category ", c, "Gradient:", m, "Intercept:", b) plt.pyplot.plot([0, last_date], [b, m*last_date + b], linewidth=4, label=c) plt.pyplot.legend(loc="upper left") cs_group = data.groupby(['state_id','cat_id']).mean().reset_index() colours = ['blue', 'darkorange', 'green'] for state in state_groups.groups.keys(): plt.pyplot.figure(figsize=(20, 12)) for i, c in enumerate(category_groups.groups.keys()): plt.pyplot.subplot(int('33' + str(i+1))) y_data = cs_group[(cs_group.state_id == state) & (cs_group.cat_id == c)].iloc[0].tail(last_date).to_list() plt.pyplot.scatter(x_data, y_data, s=5, alpha=0.3, c=colours[i]) m, b = np.polyfit(x_data, y_data, 1) print("State: " + state, "Category: " + c, "Gradient:", m, "Intercept:", b) plt.pyplot.plot([0, last_date], [b, m*last_date + b], linewidth=4, label=c, c=colours[i]) plt.pyplot.legend(loc="upper left") plt.pyplot.title(state) ss_group = data.groupby(['state_id', 'store_id']).mean().reset_index() for state in state_groups.groups.keys(): store_group = ss_group[ss_group.state_id == state].groupby('store_id') plt.pyplot.figure(figsize=(16, 4)) for i, s in enumerate(store_group.groups.keys()): y_data = ss_group[ss_group.store_id == s].iloc[0].tail(last_date).to_list() plt.pyplot.scatter(x_data, y_data, s=6, alpha=0.4) m, b = np.polyfit(x_data, y_data, 1) print('State: ' + state, 'Store: ' + c, 'Gradient:', m, 'Intercept:', b) plt.pyplot.plot([0, last_date], [b, m * last_date + b], linewidth=4, label=s) plt.pyplot.legend(loc='upper left') plt.pyplot.title(state) plt.pyplot.figure(figsize=(16, 4)) plt.pyplot.subplot(121) y_data = ss_group[ss_group.store_id == 'WI_1'].iloc[0].tail(last_date).to_list() plt.pyplot.scatter(x_data, y_data, s=6, alpha=0.4, label='WI_1') plt.pyplot.legend(loc='upper left') plt.pyplot.title('WI_1 Anomaly at day 700') plt.pyplot.subplot(122) y_data = ss_group[ss_group.store_id == 'WI_2'].iloc[0].tail(last_date).to_list() plt.pyplot.scatter(x_data, y_data, s=6, alpha=0.4, label='WI_2', c='darkorange') plt.pyplot.legend(loc='upper left') plt.pyplot.title('WI_2 Anomaly at day 500')
code
106213616/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/split-experiment-aggregated-data/ab_test_results_aggregated_views_clicks_5.csv') df.info()
code
106213616/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/split-experiment-aggregated-data/ab_test_results_aggregated_views_clicks_5.csv') df.shape
code
106213616/cell_2
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/split-experiment-aggregated-data/ab_test_results_aggregated_views_clicks_5.csv') df.head()
code
106213616/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/split-experiment-aggregated-data/ab_test_results_aggregated_views_clicks_5.csv') df.shape df.isnull().sum()
code
106213616/cell_8
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/split-experiment-aggregated-data/ab_test_results_aggregated_views_clicks_5.csv') df.shape df.isnull().sum() df.describe()
code
106213616/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/split-experiment-aggregated-data/ab_test_results_aggregated_views_clicks_5.csv') df['clicks'].hist()
code
106213616/cell_5
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/split-experiment-aggregated-data/ab_test_results_aggregated_views_clicks_5.csv') print('First 3 rows of data:\n') df.head()
code
32063375/cell_8
[ "image_output_1.png" ]
import pandas as pd hp = pd.read_csv('../input/london-house-prices/hpdemo.csv') hp scaler = SS() scaler.fit(hp[['east', 'north', 'fl_area']]) hp_sc = scaler.transform(hp[['east', 'north', 'fl_area']]) mod1 = NN(n_neighbors=6, weights='uniform', p=2) price = hp['price'] / 1000.0 mod1.fit(hp_sc, price)
code
32063375/cell_15
[ "text_plain_output_1.png" ]
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plot import numpy as np import pandas as pd import sklearn as sk def print_summary(opt_reg_object): params = opt_reg_object.best_estimator_.get_params() score = -opt_reg_object.best_score_ return hp = pd.read_csv('../input/london-house-prices/hpdemo.csv') hp scaler = SS() scaler.fit(hp[['east', 'north', 'fl_area']]) hp_sc = scaler.transform(hp[['east', 'north', 'fl_area']]) mod1 = NN(n_neighbors=6, weights='uniform', p=2) price = hp['price'] / 1000.0 mod1.fit(hp_sc, price) mae = sk.metrics.make_scorer(sk.metrics.mean_absolute_error, greater_is_better=False) mod_list = sk.model_selection.GridSearchCV(estimator=NN(), scoring=mae, param_grid={'n_neighbors': range(1, 35), 'weights': ['uniform', 'distance'], 'p': [1, 2]}) mod_list.fit(hp[['east', 'north', 'fl_area']], price) east_mesh, north_mesh = np.meshgrid(np.linspace(505000, 555800, 100), np.linspace(158400, 199900, 100)) fl_mesh = np.zeros_like(east_mesh) fl_mesh2 = np.zeros_like(east_mesh) fl_mesh3 = np.zeros_like(east_mesh) fl_mesh[:, :] = np.mean(hp['fl_area']) fl_mesh2[:, :] = 75 fl_mesh3[:, :] = 125 regressor_df = np.array([np.ravel(east_mesh), np.ravel(north_mesh), np.ravel(fl_mesh)]).T regressor_df2 = np.array([np.ravel(east_mesh), np.ravel(north_mesh), np.ravel(fl_mesh2)]).T regressor_df3 = np.array([np.ravel(east_mesh), np.ravel(north_mesh), np.ravel(fl_mesh3)]).T hp_pred = mod_list.predict(regressor_df) hp_pred2 = mod_list.predict(regressor_df2) hp_pred3 = mod_list.predict(regressor_df3) hp_mesh = hp_pred.reshape(east_mesh.shape) hp_mesh2 = hp_pred2.reshape(east_mesh.shape) hp_mesh3 = hp_pred3.reshape(east_mesh.shape) #Plot1 fig = plot.figure() ax = Axes3D(fig) ax.plot_surface(east_mesh, north_mesh, hp_mesh, rstride=1, cstride=1, cmap='YlOrBr',lw=0.01) plot.title('London House Prices') ax.set_xlabel('Easting') ax.set_ylabel('Northing') ax.set_zlabel('Price at Mean Floor Area') plot.show() fig = plot.figure() ax = Axes3D(fig) ax.plot_surface(east_mesh, north_mesh, hp_mesh2, rstride=1, cstride=1, cmap='YlOrBr', lw=0.01) plot.title('London House Prices') ax.set_xlabel('Easting') ax.set_ylabel('Northing') ax.set_zlabel('Price at 75m Floor Area') plot.show()
code
32063375/cell_16
[ "image_output_1.png" ]
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plot import numpy as np import pandas as pd import sklearn as sk def print_summary(opt_reg_object): params = opt_reg_object.best_estimator_.get_params() score = -opt_reg_object.best_score_ return hp = pd.read_csv('../input/london-house-prices/hpdemo.csv') hp scaler = SS() scaler.fit(hp[['east', 'north', 'fl_area']]) hp_sc = scaler.transform(hp[['east', 'north', 'fl_area']]) mod1 = NN(n_neighbors=6, weights='uniform', p=2) price = hp['price'] / 1000.0 mod1.fit(hp_sc, price) mae = sk.metrics.make_scorer(sk.metrics.mean_absolute_error, greater_is_better=False) mod_list = sk.model_selection.GridSearchCV(estimator=NN(), scoring=mae, param_grid={'n_neighbors': range(1, 35), 'weights': ['uniform', 'distance'], 'p': [1, 2]}) mod_list.fit(hp[['east', 'north', 'fl_area']], price) east_mesh, north_mesh = np.meshgrid(np.linspace(505000, 555800, 100), np.linspace(158400, 199900, 100)) fl_mesh = np.zeros_like(east_mesh) fl_mesh2 = np.zeros_like(east_mesh) fl_mesh3 = np.zeros_like(east_mesh) fl_mesh[:, :] = np.mean(hp['fl_area']) fl_mesh2[:, :] = 75 fl_mesh3[:, :] = 125 regressor_df = np.array([np.ravel(east_mesh), np.ravel(north_mesh), np.ravel(fl_mesh)]).T regressor_df2 = np.array([np.ravel(east_mesh), np.ravel(north_mesh), np.ravel(fl_mesh2)]).T regressor_df3 = np.array([np.ravel(east_mesh), np.ravel(north_mesh), np.ravel(fl_mesh3)]).T hp_pred = mod_list.predict(regressor_df) hp_pred2 = mod_list.predict(regressor_df2) hp_pred3 = mod_list.predict(regressor_df3) hp_mesh = hp_pred.reshape(east_mesh.shape) hp_mesh2 = hp_pred2.reshape(east_mesh.shape) hp_mesh3 = hp_pred3.reshape(east_mesh.shape) #Plot1 fig = plot.figure() ax = Axes3D(fig) ax.plot_surface(east_mesh, north_mesh, hp_mesh, rstride=1, cstride=1, cmap='YlOrBr',lw=0.01) plot.title('London House Prices') ax.set_xlabel('Easting') ax.set_ylabel('Northing') ax.set_zlabel('Price at Mean Floor Area') plot.show() #Plot2 fig = plot.figure() ax = Axes3D(fig) ax.plot_surface(east_mesh, north_mesh, hp_mesh2, rstride=1, cstride=1, cmap='YlOrBr',lw=0.01) plot.title('London House Prices') ax.set_xlabel('Easting') ax.set_ylabel('Northing') ax.set_zlabel('Price at 75m Floor Area') plot.show() fig = plot.figure() ax = Axes3D(fig) ax.plot_surface(east_mesh, north_mesh, hp_mesh3, rstride=1, cstride=1, cmap='YlOrBr', lw=0.01) plot.title('London House Prices') ax.set_xlabel('Easting') ax.set_ylabel('Northing') ax.set_zlabel('Price at 125m Floor Area') plot.show()
code
32063375/cell_14
[ "text_plain_output_1.png" ]
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plot import numpy as np import pandas as pd import sklearn as sk def print_summary(opt_reg_object): params = opt_reg_object.best_estimator_.get_params() score = -opt_reg_object.best_score_ return hp = pd.read_csv('../input/london-house-prices/hpdemo.csv') hp scaler = SS() scaler.fit(hp[['east', 'north', 'fl_area']]) hp_sc = scaler.transform(hp[['east', 'north', 'fl_area']]) mod1 = NN(n_neighbors=6, weights='uniform', p=2) price = hp['price'] / 1000.0 mod1.fit(hp_sc, price) mae = sk.metrics.make_scorer(sk.metrics.mean_absolute_error, greater_is_better=False) mod_list = sk.model_selection.GridSearchCV(estimator=NN(), scoring=mae, param_grid={'n_neighbors': range(1, 35), 'weights': ['uniform', 'distance'], 'p': [1, 2]}) mod_list.fit(hp[['east', 'north', 'fl_area']], price) east_mesh, north_mesh = np.meshgrid(np.linspace(505000, 555800, 100), np.linspace(158400, 199900, 100)) fl_mesh = np.zeros_like(east_mesh) fl_mesh2 = np.zeros_like(east_mesh) fl_mesh3 = np.zeros_like(east_mesh) fl_mesh[:, :] = np.mean(hp['fl_area']) fl_mesh2[:, :] = 75 fl_mesh3[:, :] = 125 regressor_df = np.array([np.ravel(east_mesh), np.ravel(north_mesh), np.ravel(fl_mesh)]).T regressor_df2 = np.array([np.ravel(east_mesh), np.ravel(north_mesh), np.ravel(fl_mesh2)]).T regressor_df3 = np.array([np.ravel(east_mesh), np.ravel(north_mesh), np.ravel(fl_mesh3)]).T hp_pred = mod_list.predict(regressor_df) hp_pred2 = mod_list.predict(regressor_df2) hp_pred3 = mod_list.predict(regressor_df3) hp_mesh = hp_pred.reshape(east_mesh.shape) hp_mesh2 = hp_pred2.reshape(east_mesh.shape) hp_mesh3 = hp_pred3.reshape(east_mesh.shape) fig = plot.figure() ax = Axes3D(fig) ax.plot_surface(east_mesh, north_mesh, hp_mesh, rstride=1, cstride=1, cmap='YlOrBr', lw=0.01) plot.title('London House Prices') ax.set_xlabel('Easting') ax.set_ylabel('Northing') ax.set_zlabel('Price at Mean Floor Area') plot.show()
code
32063375/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import sklearn as sk def print_summary(opt_reg_object): params = opt_reg_object.best_estimator_.get_params() score = -opt_reg_object.best_score_ return hp = pd.read_csv('../input/london-house-prices/hpdemo.csv') hp scaler = SS() scaler.fit(hp[['east', 'north', 'fl_area']]) hp_sc = scaler.transform(hp[['east', 'north', 'fl_area']]) mod1 = NN(n_neighbors=6, weights='uniform', p=2) price = hp['price'] / 1000.0 mod1.fit(hp_sc, price) mae = sk.metrics.make_scorer(sk.metrics.mean_absolute_error, greater_is_better=False) mod_list = sk.model_selection.GridSearchCV(estimator=NN(), scoring=mae, param_grid={'n_neighbors': range(1, 35), 'weights': ['uniform', 'distance'], 'p': [1, 2]}) mod_list.fit(hp[['east', 'north', 'fl_area']], price) print_summary(mod_list)
code