code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
def get_wave_form(self): ''' getter ''' if isinstance(self.__wave_form, WaveFormInterface) is False: raise TypeError() return self.__wave_form
getter
null
null
null
def set_wave_form(self, value): ''' setter ''' if isinstance(value, WaveFormInterface) is False: raise TypeError() self.__wave_form = value
setter
null
null
null
def play_beat( self, frequencys, play_time, sample_rate=44100, volume=0.01 ): ''' 引数で指定した条件でビートを鳴らす Args: frequencys: (左の周波数(Hz), 右の周波数(Hz))のtuple play_time: 再生時間(秒) sample_rate: サンプルレート volume: 音量 Returns: void ''' # 依存するライブラリの基底オブジェクト audio = pyaudio.PyAudio() # ストリーム stream = audio.open( format=pyaudio.paFloat32, channels=2, rate=sample_rate, output=1 ) left_frequency, right_frequency = frequencys left_chunk = self.__create_chunk(left_frequency, play_time, sample_rate) right_chunk = self.__create_chunk(right_frequency, play_time, sample_rate) self.write_stream(stream, left_chunk, right_chunk, volume) stream.stop_stream() stream.close() audio.terminate()
引数で指定した条件でビートを鳴らす Args: frequencys: (左の周波数(Hz), 右の周波数(Hz))のtuple play_time: 再生時間(秒) sample_rate: サンプルレート volume: 音量 Returns: void
null
null
null
def save_beat( self, output_file_name, frequencys, play_time, sample_rate=44100, volume=0.01 ): ''' 引数で指定した条件でビートを鳴らす Args: frequencys: (左の周波数(Hz), 右の周波数(Hz))のtuple play_time: 再生時間(秒) sample_rate: サンプルレート volume: 音量 Returns: void ''' left_frequency, right_frequency = frequencys left_chunk = self.__create_chunk(left_frequency, play_time, sample_rate) right_chunk = self.__create_chunk(right_frequency, play_time, sample_rate) frame_list = self.read_stream(left_chunk, right_chunk, volume) wf = wave.open(output_file_name, 'wb') wf.setparams((2, 2, sample_rate, 0, 'NONE', 'not compressed')) wf.writeframes(b''.join(frame_list)) wf.close()
引数で指定した条件でビートを鳴らす Args: frequencys: (左の周波数(Hz), 右の周波数(Hz))のtuple play_time: 再生時間(秒) sample_rate: サンプルレート volume: 音量 Returns: void
null
null
null
def __create_chunk(self, frequency, play_time, sample_rate): ''' チャンクを生成する Args: frequency: 周波数 play_time: 再生時間(秒) sample_rate: サンプルレート Returns: チャンクのnumpy配列 ''' chunks = [] wave_form = self.wave_form.create(frequency, play_time, sample_rate) chunks.append(wave_form) chunk = numpy.concatenate(chunks) return chunk
チャンクを生成する Args: frequency: 周波数 play_time: 再生時間(秒) sample_rate: サンプルレート Returns: チャンクのnumpy配列
null
null
null
def draw(self): ''' Draws samples from the `true` distribution. Returns: `np.ndarray` of samples. ''' observed_arr = self.__image_true_sampler.draw() observed_arr = self.add_condition(observed_arr) return observed_arr
Draws samples from the `true` distribution. Returns: `np.ndarray` of samples.
null
null
null
def add_condition(self, observed_arr): ''' Add condtion. Args: observed_arr: `np.ndarray` of samples. Returns: `np.ndarray` of samples. ''' condition_arr = self.__image_true_sampler.draw() return np.concatenate((observed_arr, condition_arr), axis=1)
Add condtion. Args: observed_arr: `np.ndarray` of samples. Returns: `np.ndarray` of samples.
null
null
null
def create(self, frequency, play_time, sample_rate): ''' 音の波形を生成する Args: frequency: 周波数 play_time: 再生時間 sample_rate: サンプルレート Returns: 波形要素を格納した配列 ''' length = int(play_time * sample_rate) factor = float(frequency) * (math.pi * 2) / sample_rate return numpy.sin(numpy.arange(length) * factor)
音の波形を生成する Args: frequency: 周波数 play_time: 再生時間 sample_rate: サンプルレート Returns: 波形要素を格納した配列
null
null
null
''' Infernce. Args: state_arr: `np.ndarray` of state. limit: The number of inferencing. Returns: `list of `np.ndarray` of an optimal route. ''' agent_x, agent_y = np.where(state_arr[0] == 1) agent_x, agent_y = agent_x[0], agent_y[0] result_list = [(agent_x, agent_y, 0.0)] self.t = 1 while self.t <= limit: next_action_arr = self.extract_possible_actions(state_arr) next_q_arr = self.function_approximator.inference_q(next_action_arr) action_arr, q = self.select_action(next_action_arr, next_q_arr) agent_x, agent_y = np.where(action_arr[0] == 1) agent_x, agent_y = agent_x[0], agent_y[0] result_list.append((agent_x, agent_y, q[0])) # Update State. state_arr = self.update_state(state_arr, action_arr) # Epsode. self.t += 1 # Check. end_flag = self.check_the_end_flag(state_arr) if end_flag is True: break return result_list
def inference(self, state_arr, limit=1000)
Infernce. Args: state_arr: `np.ndarray` of state. limit: The number of inferencing. Returns: `list of `np.ndarray` of an optimal route.
2.885467
2.305627
1.251489
''' Compute the reward value. Args: state_arr: `np.ndarray` of state. action_arr: `np.ndarray` of action. Returns: Reward value. ''' if self.__check_goal_flag(action_arr) is True: return 1.0 else: x, y = np.where(action_arr[-1] == 1) x, y = x[0], y[0] goal_x, goal_y = self.__goal_pos if x == goal_x and y == goal_y: distance = 0.0 else: distance = np.sqrt(((x - goal_x) ** 2) + (y - goal_y) ** 2) if (x, y) in self.__route_long_memory_list: repeating_penalty = self.__repeating_penalty else: repeating_penalty = 0.0 return 1.0 - distance - repeating_penalty
def observe_reward_value(self, state_arr, action_arr)
Compute the reward value. Args: state_arr: `np.ndarray` of state. action_arr: `np.ndarray` of action. Returns: Reward value.
2.977922
2.567071
1.160047
''' Extract now map state. Returns: `np.ndarray` of state. ''' x, y = self.__agent_pos state_arr = np.zeros(self.__map_arr.shape) state_arr[x, y] = 1 return np.expand_dims(state_arr, axis=0)
def extract_now_state(self)
Extract now map state. Returns: `np.ndarray` of state.
4.906692
2.91364
1.684042
''' Update state. Override. Args: state_arr: `np.ndarray` of state in `self.t`. action_arr: `np.ndarray` of action in `self.t`. Returns: `np.ndarray` of state in `self.t+1`. ''' x, y = np.where(action_arr[-1] == 1) self.__agent_pos = (x[0], y[0]) self.__route_memory_list.append((x[0], y[0])) self.__route_long_memory_list.append((x[0], y[0])) self.__route_long_memory_list = list(set(self.__route_long_memory_list)) while len(self.__route_memory_list) > self.__memory_num: self.__route_memory_list = self.__route_memory_list[1:] return self.extract_now_state()
def update_state(self, state_arr, action_arr)
Update state. Override. Args: state_arr: `np.ndarray` of state in `self.t`. action_arr: `np.ndarray` of action in `self.t`. Returns: `np.ndarray` of state in `self.t+1`.
3.149595
2.289489
1.375676
''' Create map. References: - https://qiita.com/kusano_t/items/487eec15d42aace7d685 ''' import random import numpy as np from itertools import product news = ['n', 'e', 'w', 's'] m, n = map_size SPACE = self.SPACE WALL = self.WALL START = self.START GOAL = self.GOAL memo = np.array([i for i in range(n * m)]) memo = memo.reshape(m, n) # 迷路を初期化 maze = [[SPACE for _ in range(2 * n + 1)] for _ in range(2 * m + 1)] maze[self.START_POS[0]][self.START_POS[1]] = START self.__goal_pos = (2 * m - 1, 2 * n - 1) maze[2 * m - 1][2 * n - 1] = GOAL for i, j in product(range(2 * m + 1), range(2 * n + 1)): if i % 2 == 0 or j % 2 == 0: maze[i][j] = WALL while (memo != 0).any(): x1 = random.choice(range(m)) y1 = random.choice(range(n)) direction = random.choice(news) if direction == 'e': x2, y2 = x1, y1 + 1 elif direction == 'w': x2, y2 = x1, y1 - 1 elif direction == 'n': x2, y2 = x1 - 1, y1 elif direction == 's': x2, y2 = x1 + 1, y1 # 範囲外の場合はcontinue if (x2 < 0) or (x2 >= m) or (y2 < 0) or (y2 >= n): continue if memo[x1, y1] != memo[x2, y2]: tmp_min = min(memo[x1, y1], memo[x2, y2]) tmp_max = max(memo[x1, y1], memo[x2, y2]) # メモの更新 memo[memo == tmp_max] = tmp_min # 壁を壊す maze[x1 + x2 + 1][y1 + y2 + 1] = SPACE maze_arr = np.array(maze) return maze_arr
def __create_map(self, map_size)
Create map. References: - https://qiita.com/kusano_t/items/487eec15d42aace7d685
2.410153
2.051404
1.17488
''' Args: sentence_list: The list of tokenized sentences. [[`token`, `token`, `token`, ...], [`token`, `token`, `token`, ...], [`token`, `token`, `token`, ...]] Returns: `np.ndarray` of tokens. [vector of token, vector of token, vector of token] ''' test_observed_arr = self.__setup_dataset(sentence_list, self.__token_master_list, self.__seq_len) inferenced_arr = self.__rbm.inference( test_observed_arr, training_count=1, r_batch_size=-1 ) return inferenced_arr
def vectorize(self, sentence_list)
Args: sentence_list: The list of tokenized sentences. [[`token`, `token`, `token`, ...], [`token`, `token`, `token`, ...], [`token`, `token`, `token`, ...]] Returns: `np.ndarray` of tokens. [vector of token, vector of token, vector of token]
6.458496
3.516561
1.836594
''' Init. Args: sentence_list: The `list` of sentences. token_master_list: Unique `list` of tokens. hidden_neuron_count: The number of units in hidden layer. training_count: The number of training. bath_size: Batch size of Mini-batch. learning_rate: Learning rate. seq_len: The length of one sequence. ''' observed_arr = self.__setup_dataset(sentence_list, token_master_list, seq_len) visible_num = observed_arr.shape[-1] # `Builder` in `Builder Pattern` for LSTM-RTRBM. rnnrbm_builder = LSTMRTRBMSimpleBuilder() # Learning rate. rnnrbm_builder.learning_rate = learning_rate # Set units in visible layer. rnnrbm_builder.visible_neuron_part(LogisticFunction(), visible_num) # Set units in hidden layer. rnnrbm_builder.hidden_neuron_part(LogisticFunction(), hidden_neuron_count) # Set units in RNN layer. rnnrbm_builder.rnn_neuron_part(TanhFunction()) # Set graph and approximation function, delegating `SGD` which is-a `OptParams`. rnnrbm_builder.graph_part(LSTMRTRBMCD(opt_params=SGD())) # Building. rbm = rnnrbm_builder.get_result() # Learning. rbm.learn( # The `np.ndarray` of observed data points. observed_arr, # Training count. training_count=training_count, # Batch size. batch_size=batch_size ) self.__rbm = rbm self.__token_master_list = token_master_list self.__seq_len = seq_len
def learn( self, sentence_list, token_master_list, hidden_neuron_count=1000, training_count=1, batch_size=100, learning_rate=1e-03, seq_len=5 )
Init. Args: sentence_list: The `list` of sentences. token_master_list: Unique `list` of tokens. hidden_neuron_count: The number of units in hidden layer. training_count: The number of training. bath_size: Batch size of Mini-batch. learning_rate: Learning rate. seq_len: The length of one sequence.
4.41785
3.591484
1.230091
def inference(self, observed_arr): ''' Draws samples from the `true` distribution. Args: observed_arr: `np.ndarray` of observed data points. Returns: `np.ndarray` of inferenced. ''' if observed_arr.ndim < 4: # Add rank for channel. observed_arr = np.expand_dims(observed_arr, axis=1) self.__add_channel_flag = True else: self.__add_channel_flag = False return super().inference(observed_arr)
Draws samples from the `true` distribution. Args: observed_arr: `np.ndarray` of observed data points. Returns: `np.ndarray` of inferenced.
null
null
null
def learn(self, grad_arr, fix_opt_flag=False): ''' Update this Discriminator by ascending its stochastic gradient. Args: grad_arr: `np.ndarray` of gradients. fix_opt_flag: If `False`, no optimization in this model will be done. Returns: `np.ndarray` of delta or gradients. ''' delta_arr = super().learn(grad_arr, fix_opt_flag) if self.__add_channel_flag is True: return delta_arr[:, 0] else: return delta_arr
Update this Discriminator by ascending its stochastic gradient. Args: grad_arr: `np.ndarray` of gradients. fix_opt_flag: If `False`, no optimization in this model will be done. Returns: `np.ndarray` of delta or gradients.
null
null
null
''' Calculate similarity with the so-called Cosine similarity of Tf-Idf vectors. Concrete method. Args: token_list_x: [token, token, token, ...] token_list_y: [token, token, token, ...] Returns: Similarity. ''' if len(token_list_x) == 0 or len(token_list_y) == 0: return 0.0 document_list = token_list_x.copy() [document_list.append(v) for v in token_list_y] document_list = list(set(document_list)) tfidf_vectorizer = TfidfVectorizer(document_list) vector_list_x = tfidf_vectorizer.vectorize(token_list_x) vector_list_y = tfidf_vectorizer.vectorize(token_list_y) if len(vector_list_x) > len(vector_list_y): [vector_list_y.append(0.0) for _ in range(len(vector_list_x) - len(vector_list_y))] elif len(vector_list_y) > len(vector_list_x): [vector_list_x.append(0.0) for _ in range(len(vector_list_y) - len(vector_list_x))] dot_prod = np.dot(vector_list_x, vector_list_y) norm_x = np.linalg.norm(vector_list_x) norm_y = np.linalg.norm(vector_list_y) try: result = dot_prod / (norm_x * norm_y) if np.isnan(result) is True: return 0.0 else: return result except ZeroDivisionError: return 0.0
def calculate(self, token_list_x, token_list_y)
Calculate similarity with the so-called Cosine similarity of Tf-Idf vectors. Concrete method. Args: token_list_x: [token, token, token, ...] token_list_y: [token, token, token, ...] Returns: Similarity.
1.928501
1.553854
1.241109
''' Compute distance. Args: x: Data point. y: Data point. Returns: Distance. ''' if x in self.__memo_dict: x_v = self.__memo_dict[x] else: x_v = self.__cost_functionable.compute(self.__params_arr[x, :]) self.__memo_dict.setdefault(x, x_v) if y in self.__memo_dict: y_v = self.__memo_dict[y] else: y_v = self.__cost_functionable.compute(self.__params_arr[y, :]) self.__memo_dict.setdefault(y, y_v) return abs(x_v - y_v)
def compute(self, x, y)
Compute distance. Args: x: Data point. y: Data point. Returns: Distance.
2.600338
2.284029
1.138487
''' Initialize map of maze and setup reward value. Args: map_arr: Map. the 2d- `np.ndarray`. start_point_label: Label of start point. end_point_label: Label of end point. wall_label: Label of wall. agent_label: Label of agent. ''' np.set_printoptions(threshold=np.inf) self.__agent_label = agent_label self.__map_arr = map_arr self.__start_point_label = start_point_label start_arr_tuple = np.where(self.__map_arr == self.__start_point_label) x_arr, y_arr = start_arr_tuple self.__start_point_tuple = (x_arr[0], y_arr[0]) end_arr_tuple = np.where(self.__map_arr == self.__end_point_label) x_arr, y_arr = end_arr_tuple self.__end_point_tuple = (x_arr[0], y_arr[0]) self.__wall_label = wall_label for x in range(self.__map_arr.shape[1]): for y in range(self.__map_arr.shape[0]): if (x, y) == self.__start_point_tuple or (x, y) == self.__end_point_tuple: continue arr_value = self.__map_arr[y][x] if arr_value == self.__wall_label: continue self.save_r_df((x, y), float(arr_value))
def initialize(self, map_arr, start_point_label="S", end_point_label="G", wall_label="#", agent_label="@")
Initialize map of maze and setup reward value. Args: map_arr: Map. the 2d- `np.ndarray`. start_point_label: Label of start point. end_point_label: Label of end point. wall_label: Label of wall. agent_label: Label of agent.
2.204092
1.722513
1.279579
''' Concreat method. Args: state_key The key of state. this value is point in map. Returns: [(x, y)] ''' x, y = state_key if self.__map_arr[y][x] == self.__wall_label: raise ValueError("It is the wall. (x, y)=(%d, %d)" % (x, y)) around_map = [(x, y-1), (x, y+1), (x-1, y), (x+1, y)] possible_actoins_list = [(_x, _y) for _x, _y in around_map if self.__map_arr[_y][_x] != self.__wall_label and self.__map_arr[_y][_x] != self.__start_point_label] return possible_actoins_list
def extract_possible_actions(self, state_key)
Concreat method. Args: state_key The key of state. this value is point in map. Returns: [(x, y)]
3.552593
2.309149
1.538486
''' Compute the reward value. Args: state_key: The key of state. action_key: The key of action. Returns: Reward value. ''' x, y = state_key if self.__map_arr[y][x] == self.__end_point_label: return 100.0 elif self.__map_arr[y][x] == self.__start_point_label: return 0.0 elif self.__map_arr[y][x] == self.__wall_label: raise ValueError("It is the wall. (x, y)=(%d, %d)" % (x, y)) else: reward_value = float(self.__map_arr[y][x]) self.save_r_df(state_key, reward_value) return reward_value
def observe_reward_value(self, state_key, action_key)
Compute the reward value. Args: state_key: The key of state. action_key: The key of action. Returns: Reward value.
2.910432
2.569662
1.132613
''' Visualize learning result. ''' x, y = state_key map_arr = copy.deepcopy(self.__map_arr) goal_point_tuple = np.where(map_arr == self.__end_point_label) goal_x, goal_y = goal_point_tuple map_arr[y][x] = "@" self.__map_arr_list.append(map_arr) if goal_x == x and goal_y == y: for i in range(10): key = len(self.__map_arr_list) - (10 - i) print("Number of searches: " + str(key)) print(self.__map_arr_list[key]) print("Total number of searches: " + str(self.t)) print(self.__map_arr_list[-1]) print("Goal !!")
def visualize_learning_result(self, state_key)
Visualize learning result.
3.526369
3.391422
1.039791
''' Check the end flag. If this return value is `True`, the learning is end. Args: state_key: The key of state in `self.t`. Returns: bool ''' # As a rule, the learning can not be stopped. x, y = state_key end_point_tuple = np.where(self.__map_arr == self.__end_point_label) end_point_x_arr, end_point_y_arr = end_point_tuple if x == end_point_x_arr[0] and y == end_point_y_arr[0]: return True else: return False
def check_the_end_flag(self, state_key)
Check the end flag. If this return value is `True`, the learning is end. Args: state_key: The key of state in `self.t`. Returns: bool
4.925272
2.859365
1.722505
''' Normalize q-value. Override. This method is called in each learning steps. For example: self.q_df.q_value = self.q_df.q_value / self.q_df.q_value.sum() ''' if self.q_df is not None and self.q_df.shape[0]: # min-max normalization self.q_df.q_value = (self.q_df.q_value - self.q_df.q_value.min()) / (self.q_df.q_value.max() - self.q_df.q_value.min())
def normalize_q_value(self)
Normalize q-value. Override. This method is called in each learning steps. For example: self.q_df.q_value = self.q_df.q_value / self.q_df.q_value.sum()
2.686361
1.565006
1.716518
''' Normalize r-value. Override. This method is called in each learning steps. For example: self.r_df = self.r_df.r_value / self.r_df.r_value.sum() ''' if self.r_df is not None and self.r_df.shape[0]: # z-score normalization. self.r_df.r_value = (self.r_df.r_value - self.r_df.r_value.mean()) / self.r_df.r_value.std()
def normalize_r_value(self)
Normalize r-value. Override. This method is called in each learning steps. For example: self.r_df = self.r_df.r_value / self.r_df.r_value.sum()
3.523053
1.694832
2.078703
''' Inference route. Args: limit: the number of inferencing. Returns: [(x_1, y_1), (x_2, y_2), ...] ''' route_list = [] memory_list = [] state_key = self.__start_point_tuple x, y = state_key end_x, end_y = self.__end_point_tuple for i in range(limit): q_df = self.q_df[self.q_df.state_key == state_key] if len(memory_list): q_df = q_df[~q_df.action_key.isin(memory_list)] if q_df.shape[0] > 1: q_df = q_df.sort_values(by=["q_value"], ascending=False) action_key = q_df.iloc[0, :]["action_key"] q_value = q_df.iloc[0, :]["q_value"] elif q_df.shape[0] == 1: action_key = q_df.action_key.values[0] q_value = q_df.q_value.values[0] else: action_key_list = self.extract_possible_actions(state_key) action_key_list = [v for v in action_key_list if v not in memory_list] q_value = 0.0 if len(action_key_list): action_key = random.choice(action_key_list) _q_df = q_df[q_df.action_key == action_key] if _q_df.shape[0]: q_value = _q_df.q_value.values[0] state_key = self.update_state( state_key=state_key, action_key=action_key ) x, y = state_key route_list.append((x, y, q_value)) memory_list.append(state_key) if self.check_the_end_flag(state_key) is True: break return route_list
def inference(self, limit=1000)
Inference route. Args: limit: the number of inferencing. Returns: [(x_1, y_1), (x_2, y_2), ...]
2.282689
2.043472
1.117064
def draw(self): ''' Draws samples from the `fake` distribution. Returns: `np.ndarray` of samples. ''' observed_arr = self.noise_sampler.generate() _ = self.__encoder_decoder_controller.encoder.inference(observed_arr) arr = self.__encoder_decoder_controller.encoder.get_feature_points() return arr
Draws samples from the `fake` distribution. Returns: `np.ndarray` of samples.
null
null
null
def learn(self, grad_arr): ''' Update this Discriminator by ascending its stochastic gradient. Args: grad_arr: `np.ndarray` of gradients. Returns: `np.ndarray` of delta or gradients. ''' encoder_delta_arr, _, encoder_grads_list = self.__encoder_decoder_controller.encoder.hidden_back_propagate( grad_arr[:, -1] ) encoder_grads_list.insert(0, None) encoder_grads_list.insert(0, None) self.__encoder_decoder_controller.encoder.optimize( encoder_grads_list, self.__learning_rate, 1 ) return encoder_delta_arr
Update this Discriminator by ascending its stochastic gradient. Args: grad_arr: `np.ndarray` of gradients. Returns: `np.ndarray` of delta or gradients.
null
null
null
def update(self): ''' Update the encoder and the decoder to minimize the reconstruction error of the inputs. Returns: `np.ndarray` of the reconstruction errors. ''' observed_arr = self.noise_sampler.generate() inferenced_arr = self.inference(observed_arr) error_arr = self.__encoder_decoder_controller.computable_loss.compute_loss( observed_arr, inferenced_arr ) delta_arr = self.__encoder_decoder_controller.computable_loss.compute_delta( observed_arr, inferenced_arr ) decoder_grads_list, encoder_delta_arr, encoder_grads_list = self.__encoder_decoder_controller.back_propagation( delta_arr ) self.__encoder_decoder_controller.optimize( decoder_grads_list, encoder_grads_list, self.__learning_rate, 1 ) return error_arr
Update the encoder and the decoder to minimize the reconstruction error of the inputs. Returns: `np.ndarray` of the reconstruction errors.
null
null
null
''' Learning and searching the optimal solution. Args: state_arr: `np.ndarray` of initial state. limit: The maximum number of iterative updates based on value iteration algorithms. ''' while self.t <= limit: # Draw samples of next possible actions from any distribution. next_action_arr = self.extract_possible_actions(state_arr) # Inference Q-Values. predicted_q_arr = self.__function_approximator.inference_q(next_action_arr) # Set `np.ndarray` of rewards and next Q-Values. reward_value_arr = np.empty((next_action_arr.shape[0], 1)) next_max_q_arr = np.empty((next_action_arr.shape[0], 1)) for i in range(reward_value_arr.shape[0]): # Observe reward values. reward_value_arr[i] = self.observe_reward_value(state_arr, next_action_arr[i]) # Inference the Max-Q-Value in next action time. next_next_action_arr = self.extract_possible_actions(next_action_arr[i]) next_max_q_arr[i] = self.__function_approximator.inference_q(next_next_action_arr).max() # Select action. action_arr, predicted_q = self.select_action(next_action_arr, predicted_q_arr) # Update real Q-Values. real_q_arr = self.update_q( predicted_q_arr, reward_value_arr, next_max_q_arr ) # Maximum of predicted and real Q-Values. real_q = real_q_arr[np.where(predicted_q_arr == predicted_q)[0][0]] if self.__q_logs_arr.shape[0] > 0: self.__q_logs_arr = np.r_[ self.__q_logs_arr, np.array([predicted_q, real_q]).reshape(1, 2) ] else: self.__q_logs_arr = np.array([predicted_q, real_q]).reshape(1, 2) # Learn Q-Values. self.learn_q(predicted_q_arr, real_q_arr) # Update State. state_arr = self.update_state(state_arr, action_arr) # Epsode. self.t += 1 # Check. end_flag = self.check_the_end_flag(state_arr) if end_flag is True: break
def learn(self, state_arr, limit=1000)
Learning and searching the optimal solution. Args: state_arr: `np.ndarray` of initial state. limit: The maximum number of iterative updates based on value iteration algorithms.
3.03488
2.594694
1.169649
''' Update Q. Args: predicted_q_arr: `np.ndarray` of predicted Q-Values. reward_value_arr: `np.ndarray` of reward values. next_max_q_arr: `np.ndarray` of maximum Q-Values in next time step. Returns: `np.ndarray` of real Q-Values. ''' # Update Q-Value. return predicted_q_arr + (self.alpha_value * (reward_value_arr + (self.gamma_value * next_max_q_arr) - predicted_q_arr))
def update_q(self, predicted_q_arr, reward_value_arr, next_max_q_arr)
Update Q. Args: predicted_q_arr: `np.ndarray` of predicted Q-Values. reward_value_arr: `np.ndarray` of reward values. next_max_q_arr: `np.ndarray` of maximum Q-Values in next time step. Returns: `np.ndarray` of real Q-Values.
2.500705
1.572955
1.589813
''' getter Learning rate. ''' if isinstance(self.__alpha_value, float) is False: raise TypeError("The type of __alpha_value must be float.") return self.__alpha_value
def get_alpha_value(self)
getter Learning rate.
6.542418
4.765373
1.372908
''' setter Learning rate. ''' if isinstance(value, float) is False: raise TypeError("The type of __alpha_value must be float.") self.__alpha_value = value
def set_alpha_value(self, value)
setter Learning rate.
6.900826
4.846196
1.423968
''' getter Gamma value. ''' if isinstance(self.__gamma_value, float) is False: raise TypeError("The type of __gamma_value must be float.") return self.__gamma_value
def get_gamma_value(self)
getter Gamma value.
6.025335
4.685174
1.286043
''' setter Gamma value. ''' if isinstance(value, float) is False: raise TypeError("The type of __gamma_value must be float.") self.__gamma_value = value
def set_gamma_value(self, value)
setter Gamma value.
6.066525
4.859278
1.248442
def compute(self, x_arr, y_arr): ''' Compute distance. Args: x_arr: `np.ndarray` of vectors. y_arr: `np.ndarray` of vectors. Retruns: `np.ndarray` of distances. ''' x_arr = x_arr / np.linalg.norm(x_arr, ord=1) y_arr = y_arr / np.linalg.norm(y_arr, ord=1) mixture_arr = 0.5 * (x_arr + y_arr) return 0.5 * (super().compute(x_arr, mixture_arr) + super().compute(y_arr, mixture_arr))
Compute distance. Args: x_arr: `np.ndarray` of vectors. y_arr: `np.ndarray` of vectors. Retruns: `np.ndarray` of distances.
null
null
null
''' getter ''' if isinstance(self.__top_n, int) is False: raise TypeError("The type of __top_n must be int.") return self.__top_n
def get_top_n(self)
getter
4.948498
4.39662
1.125523
''' setter ''' if isinstance(value, int) is False: raise TypeError("The type of __top_n must be int.") self.__top_n = value
def set_top_n(self, value)
setter
5.0008
4.919115
1.016606
''' Filtering with top-n ranking. Args: scored_list: The list of scoring. Retruns: The list of filtered result. ''' top_n_key = -1 * self.top_n top_n_list = sorted(scored_list, key=lambda x: x[1])[top_n_key:] result_list = sorted(top_n_list, key=lambda x: x[0]) return result_list
def filter(self, scored_list)
Filtering with top-n ranking. Args: scored_list: The list of scoring. Retruns: The list of filtered result.
3.859987
2.254371
1.712223
''' setter ''' if isinstance(value, Ngram): self.__n_gram = value else: raise TypeError("The type of n_gram must be Ngram.")
def set_n_gram(self, value)
setter
4.257233
4.226194
1.007344
''' setter ''' if isinstance(value, int): self.__n = value else: raise TypeError("The type of n must be int.")
def set_n(self, value)
setter
4.703194
4.663164
1.008584
''' Tokenize sentence. Args: [n-gram, n-gram, n-gram, ...] ''' super().tokenize(data) token_tuple_zip = self.n_gram.generate_tuple_zip(self.token, self.n) token_list = [] self.token = ["".join(list(token_tuple)) for token_tuple in token_tuple_zip]
def tokenize(self, data)
Tokenize sentence. Args: [n-gram, n-gram, n-gram, ...]
6.007915
4.058803
1.480218
''' getter ''' if isinstance(self.__q_df, pd.DataFrame) is False and self.__q_df is not None: raise TypeError("The type of `__q_df` must be `pd.DataFrame`.") return self.__q_df
def get_q_df(self)
getter
4.092517
3.711332
1.102709
''' setter ''' if isinstance(value, pd.DataFrame) is False and value is not None: raise TypeError("The type of `__q_df` must be `pd.DataFrame`.") self.__q_df = value
def set_q_df(self, value)
setter
4.274619
4.079512
1.047826
''' Extract Q-Value from `self.q_df`. Args: state_key: The key of state. action_key: The key of action. Returns: Q-Value. ''' q = 0.0 if self.q_df is None: self.save_q_df(state_key, action_key, q) return q q_df = self.q_df[self.q_df.state_key == state_key] q_df = q_df[q_df.action_key == action_key] if q_df.shape[0]: q = float(q_df["q_value"]) else: self.save_q_df(state_key, action_key, q) return q
def extract_q_df(self, state_key, action_key)
Extract Q-Value from `self.q_df`. Args: state_key: The key of state. action_key: The key of action. Returns: Q-Value.
2.238453
1.854255
1.207198
''' Insert or update Q-Value in `self.q_df`. Args: state_key: State. action_key: Action. q_value: Q-Value. Exceptions: TypeError: If the type of `q_value` is not float. ''' if isinstance(q_value, float) is False: raise TypeError("The type of q_value must be float.") new_q_df = pd.DataFrame([(state_key, action_key, q_value)], columns=["state_key", "action_key", "q_value"]) if self.q_df is not None: self.q_df = pd.concat([new_q_df, self.q_df]) self.q_df = self.q_df.drop_duplicates(["state_key", "action_key"]) else: self.q_df = new_q_df
def save_q_df(self, state_key, action_key, q_value)
Insert or update Q-Value in `self.q_df`. Args: state_key: State. action_key: Action. q_value: Q-Value. Exceptions: TypeError: If the type of `q_value` is not float.
2.132175
1.540309
1.384252
''' getter ''' if isinstance(self.__r_df, pd.DataFrame) is False and self.__r_df is not None: raise TypeError("The type of `__r_df` must be `pd.DataFrame`.") return self.__r_df
def get_r_df(self)
getter
3.992925
3.666411
1.089056
''' setter ''' if isinstance(value, pd.DataFrame) is False and self.__r_df is not None: raise TypeError("The type of `__r_df` must be `pd.DataFrame`.") self.__r_df = value
def set_r_df(self, value)
setter
4.034322
4.000531
1.008447
''' Insert or update R-Value in `self.r_df`. Args: state_key: The key of state. r_value: R-Value(Reward). action_key: The key of action if it is nesesary for the parametar of value function. Exceptions: TypeError: If the type of `r_value` is not float. ''' if isinstance(r_value, float) is False: raise TypeError("The type of r_value must be float.") r = 0.0 if self.r_df is None: self.save_r_df(state_key, r, action_key) return r r_df = self.r_df[self.r_df.state_key == state_key] if action_key is not None: r_df = r_df[r_df.action_key == action_key] if r_df.shape[0]: r = float(r_df["r_value"]) else: self.save_r_df(state_key, r, action_key) return r
def extract_r_df(self, state_key, r_value, action_key=None)
Insert or update R-Value in `self.r_df`. Args: state_key: The key of state. r_value: R-Value(Reward). action_key: The key of action if it is nesesary for the parametar of value function. Exceptions: TypeError: If the type of `r_value` is not float.
2.867949
1.615207
1.775592
''' Insert or update R-Value in `self.r_df`. Args: state_key: The key of state. r_value: R-Value(Reward). action_key: The key of action if it is nesesary for the parametar of value function. Exceptions: TypeError: If the type of `r_value` is not float. ''' if action_key is not None: add_r_df = pd.DataFrame([(state_key, action_key, r_value)], columns=["state_key", "action_key", "r_value"]) else: add_r_df = pd.DataFrame([(state_key, r_value)], columns=["state_key", "r_value"]) if self.r_df is not None: self.r_df = pd.concat([add_r_df, self.r_df]) if action_key is not None: self.r_df = self.r_df.drop_duplicates(["state_key", "action_key"]) else: self.r_df = self.r_df.drop_duplicates(["state_key"]) else: self.r_df = add_r_df
def save_r_df(self, state_key, r_value, action_key=None)
Insert or update R-Value in `self.r_df`. Args: state_key: The key of state. r_value: R-Value(Reward). action_key: The key of action if it is nesesary for the parametar of value function. Exceptions: TypeError: If the type of `r_value` is not float.
2.344772
1.404932
1.668957
''' getter Time. ''' if isinstance(self.__t, int) is False: raise TypeError("The type of __t must be int.") return self.__t
def get_t(self)
getter Time.
8.619627
6.698241
1.286849
''' setter Time. ''' if isinstance(value, int) is False: raise TypeError("The type of __t must be int.") self.__t = value
def set_t(self, value)
setter Time.
8.11944
6.126404
1.325319
''' Learning and searching the optimal solution. Args: state_key: Initial state. limit: The maximum number of iterative updates based on value iteration algorithms. ''' self.t = 1 while self.t <= limit: next_action_list = self.extract_possible_actions(state_key) if len(next_action_list): action_key = self.select_action( state_key=state_key, next_action_list=next_action_list ) reward_value = self.observe_reward_value(state_key, action_key) if len(next_action_list): # Max-Q-Value in next action time. next_state_key = self.update_state( state_key=state_key, action_key=action_key ) next_next_action_list = self.extract_possible_actions(next_state_key) next_action_key = self.predict_next_action(next_state_key, next_next_action_list) next_max_q = self.extract_q_df(next_state_key, next_action_key) # Update Q-Value. self.update_q( state_key=state_key, action_key=action_key, reward_value=reward_value, next_max_q=next_max_q ) # Update State. state_key = next_state_key # Normalize. self.normalize_q_value() self.normalize_r_value() # Vis. self.visualize_learning_result(state_key) # Check. if self.check_the_end_flag(state_key) is True: break # Epsode. self.t += 1
def learn(self, state_key, limit=1000)
Learning and searching the optimal solution. Args: state_key: Initial state. limit: The maximum number of iterative updates based on value iteration algorithms.
3.107916
2.532455
1.227234
''' Update Q-Value. Args: state_key: The key of state. action_key: The key of action. reward_value: R-Value(Reward). next_max_q: Maximum Q-Value. ''' # Now Q-Value. q = self.extract_q_df(state_key, action_key) # Update Q-Value. new_q = q + self.alpha_value * (reward_value + (self.gamma_value * next_max_q) - q) # Save updated Q-Value. self.save_q_df(state_key, action_key, new_q)
def update_q(self, state_key, action_key, reward_value, next_max_q)
Update Q-Value. Args: state_key: The key of state. action_key: The key of action. reward_value: R-Value(Reward). next_max_q: Maximum Q-Value.
2.815524
2.145821
1.312097
''' Predict next action by Q-Learning. Args: state_key: The key of state in `self.t+1`. next_action_list: The possible action in `self.t+1`. Returns: The key of action. ''' if self.q_df is not None: next_action_q_df = self.q_df[self.q_df.state_key == state_key] next_action_q_df = next_action_q_df[next_action_q_df.action_key.isin(next_action_list)] if next_action_q_df.shape[0] == 0: return random.choice(next_action_list) else: if next_action_q_df.shape[0] == 1: max_q_action = next_action_q_df["action_key"].values[0] else: next_action_q_df = next_action_q_df.sort_values(by=["q_value"], ascending=False) max_q_action = next_action_q_df.iloc[0, :]["action_key"] return max_q_action else: return random.choice(next_action_list)
def predict_next_action(self, state_key, next_action_list)
Predict next action by Q-Learning. Args: state_key: The key of state in `self.t+1`. next_action_list: The possible action in `self.t+1`. Returns: The key of action.
2.000741
1.56735
1.276512
''' Pull arms. Args: arm_id: Arms master id. success: The number of success. failure: The number of failure. ''' self.__beta_dist_dict[arm_id].observe(success, failure)
def pull(self, arm_id, success, failure)
Pull arms. Args: arm_id: Arms master id. success: The number of success. failure: The number of failure.
8.233379
3.839128
2.144596
''' Listup arms and expected value. Args: limit: Length of the list. Returns: [Tuple(`Arms master id`, `expected value`)] ''' expected_list = [(arm_id, beta_dist.expected_value()) for arm_id, beta_dist in self.__beta_dist_dict.items()] expected_list = sorted(expected_list, key=lambda x: x[1], reverse=True) return expected_list[:limit]
def recommend(self, limit=10)
Listup arms and expected value. Args: limit: Length of the list. Returns: [Tuple(`Arms master id`, `expected value`)]
5.137337
2.201284
2.333791
def calculate(self, token_list_x, token_list_y): ''' Calculate similarity with the Tanimoto coefficient. Concrete method. Args: token_list_x: [token, token, token, ...] token_list_y: [token, token, token, ...] Returns: Similarity. ''' match_list = [tanimoto_value for tanimoto_value in token_list_x if tanimoto_value in token_list_y] return float(len(match_list) / (len(token_list_x) + len(token_list_y) - len(match_list)))
Calculate similarity with the Tanimoto coefficient. Concrete method. Args: token_list_x: [token, token, token, ...] token_list_y: [token, token, token, ...] Returns: Similarity.
null
null
null
''' Args: x: Data point. y: Data point. Returns: Distance. ''' return np.sqrt(np.sum((x-y)**2))
def compute(self, x, y)
Args: x: Data point. y: Data point. Returns: Distance.
4.386286
2.318918
1.891522
''' getter Time rate. ''' if isinstance(self.__time_rate, float) is False: raise TypeError("The type of __time_rate must be float.") if self.__time_rate <= 0.0: raise ValueError("The value of __time_rate must be greater than 0.0") return self.__time_rate
def get_time_rate(self)
getter Time rate.
3.376202
3.016621
1.1192
''' setter Time rate. ''' if isinstance(value, float) is False: raise TypeError("The type of __time_rate must be float.") if value <= 0.0: raise ValueError("The value of __time_rate must be greater than 0.0") self.__time_rate = value
def set_time_rate(self, value)
setter Time rate.
3.405307
3.073967
1.107789
''' Select action by Q(state, action). Concreat method for boltzmann distribution. Args: state_key: The key of state. next_action_list: The possible action in `self.t+1`. If the length of this list is 0, all action should be possible. Returns: The key of action. ''' if self.q_df is None or self.q_df.shape[0] == 0: return random.choice(next_action_list) next_action_b_df = self.__calculate_boltzmann_factor(state_key, next_action_list) if next_action_b_df.shape[0] == 1: return next_action_b_df["action_key"].values[0] prob = np.random.random() next_action_b_df = next_action_b_df.sort_values(by=["boltzmann_factor"]) i = 0 while prob > next_action_b_df.iloc[i, :]["boltzmann_factor"] + next_action_b_df.iloc[i + 1, :]["boltzmann_factor"]: i += 1 if i + 1 >= next_action_b_df.shape[0]: break max_b_action_key = next_action_b_df.iloc[i, :]["action_key"] return max_b_action_key
def select_action(self, state_key, next_action_list)
Select action by Q(state, action). Concreat method for boltzmann distribution. Args: state_key: The key of state. next_action_list: The possible action in `self.t+1`. If the length of this list is 0, all action should be possible. Returns: The key of action.
2.824438
1.823801
1.548655
''' Function of temperature. Returns: Sigmoid. ''' sigmoid = 1 / np.log(self.t * self.time_rate + 1.1) return sigmoid
def __calculate_sigmoid(self)
Function of temperature. Returns: Sigmoid.
14.696718
6.994225
2.101265
''' Calculate boltzmann factor. Args: state_key: The key of state. next_action_list: The possible action in `self.t+1`. If the length of this list is 0, all action should be possible. Returns: [(`The key of action`, `boltzmann probability`)] ''' sigmoid = self.__calculate_sigmoid() q_df = self.q_df[self.q_df.state_key == state_key] q_df = q_df[q_df.isin(next_action_list)] q_df["boltzmann_factor"] = q_df["q_value"] / sigmoid q_df["boltzmann_factor"] = q_df["boltzmann_factor"].apply(np.exp) q_df["boltzmann_factor"] = q_df["boltzmann_factor"] / q_df["boltzmann_factor"].sum() return q_df
def __calculate_boltzmann_factor(self, state_key, next_action_list)
Calculate boltzmann factor. Args: state_key: The key of state. next_action_list: The possible action in `self.t+1`. If the length of this list is 0, all action should be possible. Returns: [(`The key of action`, `boltzmann probability`)]
3.267707
1.828348
1.787245
''' getter ''' if isinstance(self.__epsilon_greedy_rate, float) is True: return self.__epsilon_greedy_rate else: raise TypeError("The type of __epsilon_greedy_rate must be float.")
def get_epsilon_greedy_rate(self)
getter
3.433091
3.169922
1.083021
''' setter ''' if isinstance(value, float) is True: self.__epsilon_greedy_rate = value else: raise TypeError("The type of __epsilon_greedy_rate must be float.")
def set_epsilon_greedy_rate(self, value)
setter
3.559043
3.480772
1.022487
''' Select action by Q(state, action). Concreat method. ε-greedy. Args: state_key: The key of state. next_action_list: The possible action in `self.t+1`. If the length of this list is 0, all action should be possible. Returns: The key of action. ''' epsilon_greedy_flag = bool(np.random.binomial(n=1, p=self.epsilon_greedy_rate)) if epsilon_greedy_flag is False: action_key = random.choice(next_action_list) else: action_key = self.predict_next_action(state_key, next_action_list) return action_key
def select_action(self, state_key, next_action_list)
Select action by Q(state, action). Concreat method. ε-greedy. Args: state_key: The key of state. next_action_list: The possible action in `self.t+1`. If the length of this list is 0, all action should be possible. Returns: The key of action.
4.242683
1.771719
2.394671
def draw(self): ''' Draws samples from the `fake` distribution. Returns: `np.ndarray` of samples. ''' observed_arr = self.noise_sampler.generate() arr = self.inference(observed_arr) return arr
Draws samples from the `fake` distribution. Returns: `np.ndarray` of samples.
null
null
null
def inference(self, observed_arr): ''' Draws samples from the `fake` distribution. Args: observed_arr: `np.ndarray` of observed data points. Returns: `np.ndarray` of inferenced. ''' _ = self.__lstm_model.inference(observed_arr) return self.__lstm_model.get_feature_points()
Draws samples from the `fake` distribution. Args: observed_arr: `np.ndarray` of observed data points. Returns: `np.ndarray` of inferenced.
null
null
null
def learn(self, grad_arr): ''' Update this Discriminator by ascending its stochastic gradient. Args: grad_arr: `np.ndarray` of gradients. Returns: `np.ndarray` of delta or gradients. ''' if grad_arr.ndim > 3: grad_arr = grad_arr.reshape(( grad_arr.shape[0], grad_arr.shape[1], -1 )) grad_arr = grad_arr[:, -1] elif grad_arr.ndim == 3: grad_arr = grad_arr[:, -1] delta_arr, _, grads_list = self.__lstm_model.hidden_back_propagate(grad_arr) grads_list.insert(0, None) grads_list.insert(0, None) self.__lstm_model.optimize( grads_list, self.__learning_rate, 1 ) return delta_arr
Update this Discriminator by ascending its stochastic gradient. Args: grad_arr: `np.ndarray` of gradients. Returns: `np.ndarray` of delta or gradients.
null
null
null
''' Infernce Q-Value. Args: predicted_q_arr: `np.ndarray` of predicted Q-Values. real_q_arr: `np.ndarray` of real Q-Values. ''' self.__predicted_q_arr_list.append(predicted_q_arr) while len(self.__predicted_q_arr_list) > self.__seq_len: self.__predicted_q_arr_list = self.__predicted_q_arr_list[1:] while len(self.__predicted_q_arr_list) < self.__seq_len: self.__predicted_q_arr_list.append(self.__predicted_q_arr_list[-1]) predicted_q_arr = np.array(self.__predicted_q_arr_list) predicted_q_arr = predicted_q_arr.transpose((1, 0, 2)) self.__real_q_arr_list.append(real_q_arr) while len(self.__real_q_arr_list) > self.__seq_len: self.__real_q_arr_list = self.__real_q_arr_list[1:] while len(self.__real_q_arr_list) < self.__seq_len: self.__real_q_arr_list.append(self.__real_q_arr_list[-1]) real_q_arr = np.array(self.__real_q_arr_list) real_q_arr = real_q_arr.transpose((1, 0, 2)) loss = self.__computable_loss.compute_loss(predicted_q_arr, real_q_arr) delta_arr = self.__computable_loss.compute_delta(predicted_q_arr, real_q_arr) delta_arr, lstm_output_grads_list = self.__lstm_model.output_back_propagate( predicted_q_arr, delta_arr ) delta_arr, _, lstm_hidden_grads_list = self.__lstm_model.hidden_back_propagate( delta_arr[:, -1] ) lstm_grads_list = lstm_output_grads_list lstm_grads_list.extend(lstm_hidden_grads_list) self.__lstm_model.optimize(lstm_grads_list, self.__learning_rate, 1) self.__loss_list.append(loss)
def learn_q(self, predicted_q_arr, real_q_arr)
Infernce Q-Value. Args: predicted_q_arr: `np.ndarray` of predicted Q-Values. real_q_arr: `np.ndarray` of real Q-Values.
1.79365
1.659383
1.080914
''' Infernce Q-Value. Args: next_action_arr: `np.ndarray` of action. Returns: `np.ndarray` of Q-Values. ''' q_arr = next_action_arr.reshape((next_action_arr.shape[0], -1)) self.__q_arr_list.append(q_arr) while len(self.__q_arr_list) > self.__seq_len: self.__q_arr_list = self.__q_arr_list[1:] while len(self.__q_arr_list) < self.__seq_len: self.__q_arr_list.append(self.__q_arr_list[-1]) q_arr = np.array(self.__q_arr_list) q_arr = q_arr.transpose((1, 0, 2)) q_arr = self.__lstm_model.inference(q_arr) return q_arr[:, -1].reshape((q_arr.shape[0], 1))
def inference_q(self, next_action_arr)
Infernce Q-Value. Args: next_action_arr: `np.ndarray` of action. Returns: `np.ndarray` of Q-Values.
2.300344
1.896264
1.213092
''' `object` of model as a function approximator, which has `lstm_model` whose type is `pydbm.rnn.lstm_model.LSTMModel`. ''' class Model(object): def __init__(self, lstm_model): self.lstm_model = lstm_model return Model(self.__lstm_model)
def get_model(self)
`object` of model as a function approximator, which has `lstm_model` whose type is `pydbm.rnn.lstm_model.LSTMModel`.
8.913895
2.428822
3.670049
def generate(self): ''' Generate noise samples. Returns: `np.ndarray` of samples. ''' generated_arr = np.random.uniform( low=0.1, high=0.9, size=((self.__batch_size, self.__seq_len, self.__dim)) ) if self.noise_sampler is not None: self.noise_sampler.output_shape = generated_arr.shape generated_arr += self.noise_sampler.generate() return generated_arr
Generate noise samples. Returns: `np.ndarray` of samples.
null
null
null
def compute(self, x_arr, y_arr): ''' Compute distance. Args: x_arr: `np.ndarray` of vectors. y_arr: `np.ndarray` of vectors. Retruns: `np.ndarray` of distances. ''' return np.linalg.norm(x_arr - y_arr, axis=-1)
Compute distance. Args: x_arr: `np.ndarray` of vectors. y_arr: `np.ndarray` of vectors. Retruns: `np.ndarray` of distances.
null
null
null
def vectorize(self, token_list): ''' Tokenize token list. Args: token_list: The list of tokens.. Returns: [vector of token, vector of token, vector of token, ...] ''' sentence_list = [token_list] test_observed_arr = self.__setup_dataset(sentence_list, self.__token_master_list) pred_arr = self.__controller.inference(test_observed_arr) return self.__controller.get_feature_points()
Tokenize token list. Args: token_list: The list of tokens.. Returns: [vector of token, vector of token, vector of token, ...]
null
null
null
def learn(self, iter_n=500, k_step=10): ''' Learning. Args: iter_n: The number of training iterations. k_step: The number of learning of the `discriminator`. ''' generative_model, discriminative_model = self.__GAN.train( self.__true_sampler, self.__generative_model, self.__discriminative_model, iter_n=iter_n, k_step=k_step ) self.__generative_model = generative_model self.__discriminative_model = discriminative_model
Learning. Args: iter_n: The number of training iterations. k_step: The number of learning of the `discriminator`.
null
null
null
def compose(self, file_path, velocity_mean=None, velocity_std=None): ''' Compose by learned model. Args: file_path: Path to generated MIDI file. velocity_mean: Mean of velocity. This class samples the velocity from a Gaussian distribution of `velocity_mean` and `velocity_std`. If `None`, the average velocity in MIDI files set to this parameter. velocity_std: Standard deviation(SD) of velocity. This class samples the velocity from a Gaussian distribution of `velocity_mean` and `velocity_std`. If `None`, the SD of velocity in MIDI files set to this parameter. ''' generated_arr = self.__generative_model.draw() channel = generated_arr.shape[1] // 2 generated_arr = generated_arr[:, :channel] # @TODO(chimera0(RUM)): Fix the redundant processings. if velocity_mean is None: velocity_mean = np.array( [self.__midi_df_list[i].velocity.mean() for i in range(len(self.__midi_df_list))] ).mean() if velocity_std is None: velocity_std = np.array( [self.__midi_df_list[i].velocity.std() for i in range(len(self.__midi_df_list))] ).std() generated_list = [] start = 0 end = self.__time_fraction for batch in range(generated_arr.shape[0]): for seq in range(generated_arr.shape[2]): add_flag = False for program_key in range(generated_arr.shape[1]): pitch_key = np.argmax(generated_arr[batch, program_key, seq]) pitch_tuple = self.__bar_gram.pitch_tuple_list[pitch_key] for pitch in pitch_tuple: velocity = np.random.normal( loc=velocity_mean, scale=velocity_std ) velocity = int(velocity) program = self.__noise_sampler.program_list[program_key] generated_list.append((program, start, end, pitch, velocity)) add_flag = True if add_flag is True: start += self.__time_fraction end += self.__time_fraction generated_midi_df = pd.DataFrame( generated_list, columns=[ "program", "start", "end", "pitch", "velocity" ] ) pitch_arr = generated_midi_df.pitch.drop_duplicates() df_list = [] for pitch in pitch_arr: df = generated_midi_df[generated_midi_df.pitch == pitch] df = df.sort_values(by=["start", "end"]) df["next_start"] = df.start.shift(-1) df["next_end"] = df.end.shift(-1) df.loc[df.end == df.next_start, "end"] = df.loc[df.end == df.next_start, "next_end"] df = df.drop_duplicates(["end"]) df_list.append(df) generated_midi_df = pd.concat(df_list) generated_midi_df = generated_midi_df.sort_values(by=["start", "end"]) self.__midi_controller.save( file_path=file_path, note_df=generated_midi_df )
Compose by learned model. Args: file_path: Path to generated MIDI file. velocity_mean: Mean of velocity. This class samples the velocity from a Gaussian distribution of `velocity_mean` and `velocity_std`. If `None`, the average velocity in MIDI files set to this parameter. velocity_std: Standard deviation(SD) of velocity. This class samples the velocity from a Gaussian distribution of `velocity_mean` and `velocity_std`. If `None`, the SD of velocity in MIDI files set to this parameter.
null
null
null
''' Entry Point. Args: url: target url. ''' # The object of Web-Scraping. web_scrape = WebScraping() # Execute Web-Scraping. document = web_scrape.scrape(url) # The object of NLP. nlp_base = NlpBase() # Set tokenizer. This is japanese tokenizer with MeCab. nlp_base.tokenizable_doc = MeCabTokenizer() sentence_list = nlp_base.listup_sentence(document) batch_size = 10 if len(sentence_list) < batch_size: raise ValueError("The number of extracted sentences is insufficient.") all_token_list = [] for i in range(len(sentence_list)): nlp_base.tokenize(sentence_list[i]) all_token_list.extend(nlp_base.token) sentence_list[i] = nlp_base.token vectorlizable_sentence = LSTMRTRBM() vectorlizable_sentence.learn( sentence_list=sentence_list, token_master_list=list(set(all_token_list)), hidden_neuron_count=1000, batch_size=batch_size, learning_rate=1e-03, seq_len=5 ) test_list = sentence_list[:batch_size] feature_points_arr = vectorlizable_sentence.vectorize(test_list) print("Feature points (Top 5 sentences):") print(feature_points_arr)
def Main(url)
Entry Point. Args: url: target url.
4.902741
4.654568
1.053318
def train_discriminator( self, k_step, true_sampler, generative_model, discriminative_model, d_logs_list ): ''' Train the discriminator. Args: k_step: The number of learning of the discriminative_model. true_sampler: Sampler which draws samples from the `true` distribution. generative_model: Generator which draws samples from the `fake` distribution. discriminative_model: Discriminator which discriminates `true` from `fake`. d_logs_list: `list` of probabilities inferenced by the `discriminator` (mean) in the `discriminator`'s update turn. Returns: Tuple data. The shape is... - Discriminator which discriminates `true` from `fake`. - `list` of probabilities inferenced by the `discriminator` (mean) in the `discriminator`'s update turn. ''' for k in range(k_step): true_arr = true_sampler.draw() generated_arr = generative_model.draw() true_posterior_arr = discriminative_model.inference(true_arr) generated_posterior_arr = discriminative_model.inference(generated_arr) grad_arr = self.__gans_value_function.compute_discriminator_reward( true_posterior_arr, generated_posterior_arr ) discriminative_model.learn(grad_arr) self.__logger.debug( "Probability inferenced by the `discriminator` (mean): " + str(generated_posterior_arr.mean()) ) self.__logger.debug( "And update the `discriminator` by descending its stochastic gradient(means): " + str(grad_arr.mean()) ) d_logs_list.append(generated_posterior_arr.mean()) return discriminative_model, d_logs_list
Train the discriminator. Args: k_step: The number of learning of the discriminative_model. true_sampler: Sampler which draws samples from the `true` distribution. generative_model: Generator which draws samples from the `fake` distribution. discriminative_model: Discriminator which discriminates `true` from `fake`. d_logs_list: `list` of probabilities inferenced by the `discriminator` (mean) in the `discriminator`'s update turn. Returns: Tuple data. The shape is... - Discriminator which discriminates `true` from `fake`. - `list` of probabilities inferenced by the `discriminator` (mean) in the `discriminator`'s update turn.
null
null
null
def train_generator( self, generative_model, discriminative_model, g_logs_list ): ''' Train the generator. Args: generative_model: Generator which draws samples from the `fake` distribution. discriminative_model: Discriminator which discriminates `true` from `fake`. g_logs_list: `list` of Probabilities inferenced by the `discriminator` (mean) in the `generator`'s update turn. Returns: Tuple data. The shape is... - Generator which draws samples from the `fake` distribution. - `list` of probabilities inferenced by the `discriminator` (mean) in the `generator`'s update turn. ''' generated_arr = generative_model.draw() generated_posterior_arr = discriminative_model.inference(generated_arr) grad_arr = self.__gans_value_function.compute_generator_reward( generated_posterior_arr ) grad_arr = discriminative_model.learn(grad_arr, fix_opt_flag=True) grad_arr = grad_arr.reshape(generated_arr.shape) generative_model.learn(grad_arr) self.__logger.debug( "Probability inferenced by the `discriminator` (mean): " + str(generated_posterior_arr.mean()) ) self.__logger.debug( "And update the `generator` by descending its stochastic gradient(means): " + str(grad_arr.mean()) ) g_logs_list.append(generated_posterior_arr.mean()) return generative_model, g_logs_list
Train the generator. Args: generative_model: Generator which draws samples from the `fake` distribution. discriminative_model: Discriminator which discriminates `true` from `fake`. g_logs_list: `list` of Probabilities inferenced by the `discriminator` (mean) in the `generator`'s update turn. Returns: Tuple data. The shape is... - Generator which draws samples from the `fake` distribution. - `list` of probabilities inferenced by the `discriminator` (mean) in the `generator`'s update turn.
null
null
null
def generate(self): ''' Generate noise samples. Returns: `np.ndarray` of samples. ''' generated_arr = np.random.uniform(low=self.__low, high=self.__high, size=self.__output_shape) if self.noise_sampler is not None: self.noise_sampler.output_shape = generated_arr.shape generated_arr += self.noise_sampler.generate() return generated_arr
Generate noise samples. Returns: `np.ndarray` of samples.
null
null
null
''' Filtering with std. Args: scored_list: The list of scoring. Retruns: The list of filtered result. ''' if len(scored_list) > 0: avg = np.mean([s[1] for s in scored_list]) std = np.std([s[1] for s in scored_list]) else: avg = 0 std = 0 limiter = avg + 0.5 * std mean_scored = [(sent_idx, score) for (sent_idx, score) in scored_list if score > limiter] return mean_scored
def filter(self, scored_list)
Filtering with std. Args: scored_list: The list of scoring. Retruns: The list of filtered result.
3.353141
2.274919
1.473961
''' Infernce. Args: state_arr: `np.ndarray` of state. limit: The number of inferencing. Returns: `list of `np.ndarray` of an optimal route. ''' self.__inferencing_flag = True agent_x, agent_y = np.where(state_arr[0] == 1) agent_x, agent_y = agent_x[0], agent_y[0] self.__create_enemy(self.__map_arr) result_list = [(agent_x, agent_y, 0.0)] result_val_list = [agent_x, agent_y] for e in range(self.__enemy_num): result_val_list.append(self.__enemy_pos_list[e][0]) result_val_list.append(self.__enemy_pos_list[e][1]) result_val_list.append(0.0) result_list.append(tuple(result_val_list)) self.t = 0 while self.t < limit: next_action_arr = self.extract_possible_actions(state_arr) next_q_arr = self.function_approximator.inference_q(next_action_arr) action_arr, q = self.select_action(next_action_arr, next_q_arr) self.__move_enemy(action_arr) agent_x, agent_y = np.where(action_arr[0] == 1) agent_x, agent_y = agent_x[0], agent_y[0] result_val_list = [agent_x, agent_y] for e in range(self.__enemy_num): result_val_list.append(self.__enemy_pos_list[e][0]) result_val_list.append(self.__enemy_pos_list[e][1]) try: result_val_list.append(q[0]) except IndexError: result_val_list.append(q) result_list.append(tuple(result_val_list)) # Update State. state_arr = self.update_state(state_arr, action_arr) # Epsode. self.t += 1 # Check. end_flag = self.check_the_end_flag(state_arr) if end_flag is True: break return result_list
def inference(self, state_arr, limit=1000)
Infernce. Args: state_arr: `np.ndarray` of state. limit: The number of inferencing. Returns: `list of `np.ndarray` of an optimal route.
2.540078
2.226425
1.140877
''' Extract possible actions. Args: state_arr: `np.ndarray` of state. Returns: `np.ndarray` of actions. The shape is:( `batch size corresponded to each action key`, `channel that is 1`, `feature points1`, `feature points2` ) ''' agent_x, agent_y = np.where(state_arr[-1] == 1) agent_x, agent_y = agent_x[0], agent_y[0] possible_action_arr = None for x, y in [ (-1, 0), (1, 0), (0, -1), (0, 1), (0, 0) ]: next_x = agent_x + x if next_x < 0 or next_x >= state_arr[-1].shape[1]: continue next_y = agent_y + y if next_y < 0 or next_y >= state_arr[-1].shape[0]: continue wall_flag = False if x > 0: for add_x in range(1, x): if self.__map_arr[agent_x + add_x, next_y] == self.WALL: wall_flag = True elif x < 0: for add_x in range(x, 0): if self.__map_arr[agent_x + add_x, next_y] == self.WALL: wall_flag = True if wall_flag is True: continue if y > 0: for add_y in range(1, y): if self.__map_arr[next_x, agent_y + add_y] == self.WALL: wall_flag = True elif y < 0: for add_y in range(y, 0): if self.__map_arr[next_x, agent_y + add_y] == self.WALL: wall_flag = True if wall_flag is True: continue if self.__map_arr[next_x, next_y] == self.WALL: continue if (next_x, next_y) in self.__route_memory_list: continue next_action_arr = np.zeros(( 3 + self.__enemy_num, state_arr[-1].shape[0], state_arr[-1].shape[1] )) next_action_arr[0][agent_x, agent_y] = 1 next_action_arr[1] = self.__map_arr next_action_arr[-1][next_x, next_y] = 1 for e in range(self.__enemy_num): enemy_state_arr = np.zeros(state_arr[0].shape) enemy_state_arr[self.__enemy_pos_list[e][0], self.__enemy_pos_list[e][1]] = 1 next_action_arr[2 + e] = enemy_state_arr next_action_arr = np.expand_dims(next_action_arr, axis=0) if possible_action_arr is None: possible_action_arr = next_action_arr else: possible_action_arr = np.r_[possible_action_arr, next_action_arr] if possible_action_arr is not None: while possible_action_arr.shape[0] < self.__batch_size: key = np.random.randint(low=0, high=possible_action_arr.shape[0]) possible_action_arr = np.r_[ possible_action_arr, np.expand_dims(possible_action_arr[key], axis=0) ] else: # Forget oldest memory and do recuresive executing. self.__route_memory_list = self.__route_memory_list[1:] possible_action_arr = self.extract_possible_actions(state_arr) return possible_action_arr
def extract_possible_actions(self, state_arr)
Extract possible actions. Args: state_arr: `np.ndarray` of state. Returns: `np.ndarray` of actions. The shape is:( `batch size corresponded to each action key`, `channel that is 1`, `feature points1`, `feature points2` )
2.064979
1.75089
1.179388
''' Compute the reward value. Args: state_arr: `np.ndarray` of state. action_arr: `np.ndarray` of action. Returns: Reward value. ''' if self.__check_goal_flag(action_arr) is True: return 1.0 else: self.__move_enemy(action_arr) x, y = np.where(action_arr[-1] == 1) x, y = x[0], y[0] e_dist_sum = 0.0 for e in range(self.__enemy_num): e_dist = np.sqrt( ((x - self.__enemy_pos_list[e][0]) ** 2) + ((y - self.__enemy_pos_list[e][1]) ** 2) ) e_dist_sum += e_dist e_dist_penalty = e_dist_sum / self.__enemy_num goal_x, goal_y = self.__goal_pos if x == goal_x and y == goal_y: distance = 0.0 else: distance = np.sqrt(((x - goal_x) ** 2) + (y - goal_y) ** 2) if (x, y) in self.__route_long_memory_list: repeating_penalty = self.__repeating_penalty else: repeating_penalty = 0.0 return 1.0 - distance - repeating_penalty + e_dist_penalty
def observe_reward_value(self, state_arr, action_arr)
Compute the reward value. Args: state_arr: `np.ndarray` of state. action_arr: `np.ndarray` of action. Returns: Reward value.
2.668907
2.4209
1.102444
''' Check the end flag. If this return value is `True`, the learning is end. As a rule, the learning can not be stopped. This method should be overrided for concreate usecases. Args: state_arr: `np.ndarray` of state in `self.t`. Returns: bool ''' if self.__check_goal_flag(state_arr) is True or self.__check_crash_flag(state_arr): return True else: return False
def check_the_end_flag(self, state_arr)
Check the end flag. If this return value is `True`, the learning is end. As a rule, the learning can not be stopped. This method should be overrided for concreate usecases. Args: state_arr: `np.ndarray` of state in `self.t`. Returns: bool
7.224872
1.792733
4.030088
def calculate(self, token_list_x, token_list_y): ''' Calculate similarity with the Dice coefficient. Concrete method. Args: token_list_x: [token, token, token, ...] token_list_y: [token, token, token, ...] Returns: Similarity. ''' x, y = self.unique(token_list_x, token_list_y) try: result = 2 * len(x & y) / float(sum(map(len, (x, y)))) except ZeroDivisionError: result = 0.0 return result
Calculate similarity with the Dice coefficient. Concrete method. Args: token_list_x: [token, token, token, ...] token_list_y: [token, token, token, ...] Returns: Similarity.
null
null
null
def summarize(self, test_arr, vectorizable_token, sentence_list, limit=5): ''' Summarize input document. Args: test_arr: `np.ndarray` of observed data points.. vectorizable_token: is-a `VectorizableToken`. sentence_list: `list` of all sentences. limit: The number of selected abstract sentence. Returns: `np.ndarray` of scores. ''' if isinstance(vectorizable_token, VectorizableToken) is False: raise TypeError() _ = self.inference(test_arr) score_arr = self.__encoder_decoder_controller.get_reconstruction_error() score_arr = score_arr.reshape(( score_arr.shape[0], -1 )).mean(axis=1) score_list = score_arr.tolist() abstract_list = [] for i in range(limit): if self.__normal_prior_flag is True: key = score_arr.argmin() else: key = score_arr.argmax() score = score_list.pop(key) score_arr = np.array(score_list) seq_arr = test_arr[key] token_arr = vectorizable_token.tokenize(seq_arr.tolist()) s = " ".join(token_arr.tolist()) _s = "".join(token_arr.tolist()) for sentence in sentence_list: if s in sentence or _s in sentence: abstract_list.append(sentence) abstract_list = list(set(abstract_list)) if len(abstract_list) >= limit: break return abstract_list
Summarize input document. Args: test_arr: `np.ndarray` of observed data points.. vectorizable_token: is-a `VectorizableToken`. sentence_list: `list` of all sentences. limit: The number of selected abstract sentence. Returns: `np.ndarray` of scores.
null
null
null
def inference(self, observed_arr): ''' Draws samples from the `fake` distribution. Args: observed_arr: `np.ndarray` of observed data points. Returns: `np.ndarray` of inferenced. ''' if observed_arr.ndim != 2: observed_arr = observed_arr.reshape((observed_arr.shape[0], -1)) pred_arr = self.__nn.inference(observed_arr) return pred_arr
Draws samples from the `fake` distribution. Args: observed_arr: `np.ndarray` of observed data points. Returns: `np.ndarray` of inferenced.
null
null
null
def learn(self, grad_arr, fix_opt_flag=False): ''' Update this Discriminator by ascending its stochastic gradient. Args: grad_arr: `np.ndarray` of gradients. fix_opt_flag: If `False`, no optimization in this model will be done. Returns: `np.ndarray` of delta or gradients. ''' if grad_arr.ndim != 2: grad_arr = grad_arr.reshape((grad_arr.shape[0], -1)) delta_arr = self.__nn.back_propagation(grad_arr) if fix_opt_flag is False: self.__nn.optimize(self.__learning_rate, 1) return delta_arr
Update this Discriminator by ascending its stochastic gradient. Args: grad_arr: `np.ndarray` of gradients. fix_opt_flag: If `False`, no optimization in this model will be done. Returns: `np.ndarray` of delta or gradients.
null
null
null
def draw(self): ''' Draws samples from the `true` distribution. Returns: `np.ndarray` of samples. ''' if self.__conditional_flag is True: return np.concatenate((self.__create_samples(), self.__create_samples()), axis=1) else: return self.__create_samples()
Draws samples from the `true` distribution. Returns: `np.ndarray` of samples.
null
null
null
''' Multi-Agent Learning. Override. Args: initial_state_key: Initial state. limit: Limit of the number of learning. game_n: The number of games. ''' end_flag_list = [False] * len(self.q_learning_list) for game in range(game_n): state_key = copy.copy(initial_state_key) self.t = 1 while self.t <= limit: for i in range(len(self.q_learning_list)): if game + 1 == game_n: self.state_key_list.append((i, copy.copy(state_key))) self.q_learning_list[i].t = self.t next_action_list = self.q_learning_list[i].extract_possible_actions(state_key) if len(next_action_list): action_key = self.q_learning_list[i].select_action( state_key=state_key, next_action_list=next_action_list ) reward_value = self.q_learning_list[i].observe_reward_value(state_key, action_key) # Check. if self.q_learning_list[i].check_the_end_flag(state_key) is True: end_flag_list[i] = True # Max-Q-Value in next action time. next_state_key = self.q_learning_list[i].update_state( state_key=state_key, action_key=action_key ) next_next_action_list = self.q_learning_list[i].extract_possible_actions(next_state_key) if len(next_next_action_list): next_action_key = self.q_learning_list[i].predict_next_action( next_state_key, next_next_action_list ) next_max_q = self.q_learning_list[i].extract_q_df(next_state_key, next_action_key) # Update Q-Value. self.q_learning_list[i].update_q( state_key=state_key, action_key=action_key, reward_value=reward_value, next_max_q=next_max_q ) # Update State. state_key = next_state_key # Epsode. self.t += 1 self.q_learning_list[i].t = self.t if False not in end_flag_list: break
def learn(self, initial_state_key, limit=1000, game_n=1)
Multi-Agent Learning. Override. Args: initial_state_key: Initial state. limit: Limit of the number of learning. game_n: The number of games.
2.335116
2.125395
1.098674
def generate(self): ''' Generate noise samples. Returns: `np.ndarray` of samples. ''' generated_arr = np.random.normal(loc=self.__mu, scale=self.__sigma, size=self.__output_shape) if self.noise_sampler is not None: self.noise_sampler.output_shape = generated_arr.shape generated_arr += self.noise_sampler.generate() return generated_arr
Generate noise samples. Returns: `np.ndarray` of samples.
null
null
null
''' Args: sentence_list: The list of tokenized sentences. [[`token`, `token`, `token`, ...], [`token`, `token`, `token`, ...], [`token`, `token`, `token`, ...]] Returns: `np.ndarray` of tokens. [vector of token, vector of token, vector of token] ''' test_observed_arr, _ = self.__setup_dataset(sentence_list, self.__token_master_list, self.__sentence_mean_len) pred_arr = self.__controller.inference(test_observed_arr) return self.__controller.get_feature_points()
def vectorize(self, sentence_list)
Args: sentence_list: The list of tokenized sentences. [[`token`, `token`, `token`, ...], [`token`, `token`, `token`, ...], [`token`, `token`, `token`, ...]] Returns: `np.ndarray` of tokens. [vector of token, vector of token, vector of token]
6.756166
3.512297
1.923575
''' Init for Adaptive Simulated Annealing. Args: reannealing_per: How often will this model reanneals there per cycles. thermostat: Thermostat. t_min: The minimum temperature. t_default: The default temperature. ''' self.__reannealing_per = reannealing_per self.__thermostat = thermostat self.__t_min = t_min self.__t_default = t_default
def adaptive_set( self, reannealing_per=50, thermostat=0.9, t_min=0.001, t_default=1.0 )
Init for Adaptive Simulated Annealing. Args: reannealing_per: How often will this model reanneals there per cycles. thermostat: Thermostat. t_min: The minimum temperature. t_default: The default temperature.
3.431638
1.362799
2.518081
''' Change temperature. Override. Args: t: Now temperature. Returns: Next temperature. ''' t = super().change_t(t) self.__now_cycles += 1 if self.__now_cycles % self.__reannealing_per == 0: t = t * self.__thermostat if t < self.__t_min: t = self.__t_default return t
def change_t(self, t)
Change temperature. Override. Args: t: Now temperature. Returns: Next temperature.
7.018809
4.53438
1.547909
def inference(self, observed_arr): ''' Infernece by the model. Args: observed_arr: `np.ndarray` of observed data points. Returns: `np.ndarray` of inferenced feature points. ''' decoded_arr = self.__encoder_decoder_controller.inference(observed_arr) encoded_arr = self.__encoder_decoder_controller.get_feature_points() _ = self.__retrospective_encoder.inference(decoded_arr) re_encoded_arr = self.__retrospective_encoder.get_feature_points() self.__inferenced_tuple = (observed_arr, encoded_arr, decoded_arr, re_encoded_arr) return re_encoded_arr
Infernece by the model. Args: observed_arr: `np.ndarray` of observed data points. Returns: `np.ndarray` of inferenced feature points.
null
null
null
def summarize(self, test_arr, vectorizable_token, sentence_list, limit=5): ''' Summarize input document. Args: test_arr: `np.ndarray` of observed data points.. vectorizable_token: is-a `VectorizableToken`. sentence_list: `list` of all sentences. limit: The number of selected abstract sentence. Returns: `list` of `str` of abstract sentences. ''' if isinstance(vectorizable_token, VectorizableToken) is False: raise TypeError() _ = self.inference(test_arr) _, loss_arr, _ = self.compute_retrospective_loss() loss_list = loss_arr.tolist() abstract_list = [] for i in range(limit): key = loss_arr.argmin() _ = loss_list.pop(key) loss_arr = np.array(loss_list) seq_arr = test_arr[key] token_arr = vectorizable_token.tokenize(seq_arr.tolist()) s = " ".join(token_arr.tolist()) _s = "".join(token_arr.tolist()) for sentence in sentence_list: if s in sentence or _s in sentence: abstract_list.append(sentence) abstract_list = list(set(abstract_list)) if len(abstract_list) >= limit: break return abstract_list
Summarize input document. Args: test_arr: `np.ndarray` of observed data points.. vectorizable_token: is-a `VectorizableToken`. sentence_list: `list` of all sentences. limit: The number of selected abstract sentence. Returns: `list` of `str` of abstract sentences.
null
null
null