code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
def back_propagation(self, delta_arr): ''' Back propagation. Args: delta_output_arr: Delta. Returns: Tuple data. - decoder's `list` of gradations, - encoder's `np.ndarray` of Delta, - encoder's `list` of gradations. ''' re_encoder_delta_arr, delta_hidden_arr, re_encoder_grads_list = self.__retrospective_encoder.hidden_back_propagate( delta_arr[:, -1] ) re_encoder_grads_list.insert(0, None) re_encoder_grads_list.insert(0, None) observed_arr, encoded_arr, decoded_arr, re_encoded_arr = self.__inferenced_tuple delta_arr = self.__encoder_decoder_controller.computable_loss.compute_delta( decoded_arr, observed_arr ) delta_arr[:, -1] += re_encoder_delta_arr[:, -1] decoder_grads_list, encoder_delta_arr, encoder_grads_list = self.__encoder_decoder_controller.back_propagation( delta_arr ) return re_encoder_grads_list, decoder_grads_list, encoder_delta_arr, encoder_grads_list
Back propagation. Args: delta_output_arr: Delta. Returns: Tuple data. - decoder's `list` of gradations, - encoder's `np.ndarray` of Delta, - encoder's `list` of gradations.
null
null
null
def optimize( self, re_encoder_grads_list, decoder_grads_list, encoder_grads_list, learning_rate, epoch ): ''' Back propagation. Args: re_encoder_grads_list: re-encoder's `list` of graduations. decoder_grads_list: decoder's `list` of graduations. encoder_grads_list: encoder's `list` of graduations. learning_rate: Learning rate. epoch: Now epoch. ''' self.__retrospective_encoder.optimize(re_encoder_grads_list, learning_rate, epoch) self.__encoder_decoder_controller.optimize( decoder_grads_list, encoder_grads_list, learning_rate, epoch )
Back propagation. Args: re_encoder_grads_list: re-encoder's `list` of graduations. decoder_grads_list: decoder's `list` of graduations. encoder_grads_list: encoder's `list` of graduations. learning_rate: Learning rate. epoch: Now epoch.
null
null
null
def __change_inferencing_mode(self, inferencing_mode): ''' Change dropout rate in Encoder/Decoder. Args: dropout_rate: The probalibity of dropout. ''' self.__encoder_decoder_controller.decoder.opt_params.inferencing_mode = inferencing_mode self.__encoder_decoder_controller.encoder.opt_params.inferencing_mode = inferencing_mode self.__retrospective_encoder.opt_params.inferencing_mode = inferencing_mode
Change dropout rate in Encoder/Decoder. Args: dropout_rate: The probalibity of dropout.
null
null
null
def __remember_best_params(self, encoder_best_params_list, decoder_best_params_list, re_encoder_best_params_list): ''' Remember best parameters. Args: encoder_best_params_list: `list` of encoder's parameters. decoder_best_params_list: `list` of decoder's parameters. re_encoder_best_params_list: `list` of re-decoder's parameters. ''' if len(encoder_best_params_list) > 0 and len(decoder_best_params_list) > 0: self.__encoder_decoder_controller.encoder.graph.weights_lstm_hidden_arr = encoder_best_params_list[0] self.__encoder_decoder_controller.encoder.graph.weights_lstm_observed_arr = encoder_best_params_list[1] self.__encoder_decoder_controller.encoder.graph.lstm_bias_arr = encoder_best_params_list[2] self.__encoder_decoder_controller.decoder.graph.weights_lstm_hidden_arr = decoder_best_params_list[0] self.__encoder_decoder_controller.decoder.graph.weights_lstm_observed_arr = decoder_best_params_list[1] self.__encoder_decoder_controller.decoder.graph.lstm_bias_arr = decoder_best_params_list[2] self.__retrospective_encoder.graph.weights_lstm_hidden_arr = re_encoder_best_params_list[0] self.__retrospective_encoder.graph.weights_lstm_observed_arr = re_encoder_best_params_list[1] self.__retrospective_encoder.graph.lstm_bias_arr = re_encoder_best_params_list[2] self.__logger.debug("Best params are saved.")
Remember best parameters. Args: encoder_best_params_list: `list` of encoder's parameters. decoder_best_params_list: `list` of decoder's parameters. re_encoder_best_params_list: `list` of re-decoder's parameters.
null
null
null
''' Entry Point. Args: url: PDF url. ''' # The object of Web-scraping. web_scrape = WebScraping() # Set the object of reading PDF files. web_scrape.readable_web_pdf = WebPDFReading() # Execute Web-scraping. document = web_scrape.scrape(url) if similarity_mode == "TfIdfCosine": # The object of `Similarity Filter`. # The similarity observed by this object is so-called cosine similarity of Tf-Idf vectors. similarity_filter = TfIdfCosine() elif similarity_mode == "Dice": # The object of `Similarity Filter`. # The similarity observed by this object is the Dice coefficient. similarity_filter = Dice() elif similarity_mode == "Jaccard": # The object of `Similarity Filter`. # The similarity observed by this object is the Jaccard coefficient. similarity_filter = Jaccard() elif similarity_mode == "Simpson": # The object of `Similarity Filter`. # The similarity observed by this object is the Simpson coefficient. similarity_filter = Simpson() else: raise ValueError() # The object of the NLP. nlp_base = NlpBase() # Set tokenizer. This is japanese tokenizer with MeCab. nlp_base.tokenizable_doc = MeCabTokenizer() # Set the object of NLP. similarity_filter.nlp_base = nlp_base # If the similarity exceeds this value, the sentence will be cut off. similarity_filter.similarity_limit = similarity_limit # The object of automatic sumamrization. auto_abstractor = AutoAbstractor() # Set tokenizer. This is japanese tokenizer with MeCab. auto_abstractor.tokenizable_doc = MeCabTokenizer() # Object of abstracting and filtering document. abstractable_doc = TopNRankAbstractor() # Execute summarization. result_dict = auto_abstractor.summarize(document, abstractable_doc, similarity_filter) # Output summarized sentence. [print(result_dict["summarize_result"][i]) for i in range(len(result_dict["summarize_result"])) if i < 3]
def Main(url, similarity_mode="TfIdfCosine", similarity_limit=0.75)
Entry Point. Args: url: PDF url.
3.909132
3.688243
1.05989
def generate(self): ''' Generate noise samples. Returns: `np.ndarray` of samples. ''' observed_arr = None for row in range(self.__batch_size): arr = None for d in range(self.__dim): _arr = self.__generate_sin( amp=self.__amp, sampling_freq=self.__sampling_freq, freq=self.__freq, sec=self.__sec, seq_len=self.__seq_len ) _arr = np.expand_dims(_arr, axis=0) if arr is None: arr = _arr else: arr = np.r_[arr, _arr] arr = np.expand_dims(arr, axis=0) if observed_arr is None: observed_arr = arr else: observed_arr = np.r_[observed_arr, arr] observed_arr = observed_arr.transpose((0, 2, 1)) gauss_noise = np.random.normal(loc=self.__mu, scale=self.__sigma, size=observed_arr.shape) observed_arr = observed_arr + gauss_noise if self.noise_sampler is not None: self.noise_sampler.output_shape = observed_arr.shape observed_arr += self.noise_sampler.generate() if self.__norm_mode == "z_score": if observed_arr.std() != 0: observed_arr = (observed_arr - observed_arr.mean()) / observed_arr.std() elif self.__norm_mode == "min_max": if (observed_arr.max() - observed_arr.min()) != 0: observed_arr = (observed_arr - observed_arr.min()) / (observed_arr.max() - observed_arr.min()) elif self.__norm_mode == "tanh": observed_arr = np.tanh(observed_arr) return observed_arr
Generate noise samples. Returns: `np.ndarray` of samples.
null
null
null
''' Entry Point. Args: url: target url. ''' # The object of Web-Scraping. web_scrape = WebScraping() # Execute Web-Scraping. document = web_scrape.scrape(url) # The object of NLP. nlp_base = NlpBase() # Set tokenizer. This is japanese tokenizer with MeCab. nlp_base.tokenizable_doc = MeCabTokenizer() sentence_list = nlp_base.listup_sentence(document) all_token_list = [] for i in range(len(sentence_list)): nlp_base.tokenize(sentence_list[i]) all_token_list.extend(nlp_base.token) sentence_list[i] = nlp_base.token vectorlizable_sentence = EncoderDecoder() vectorlizable_sentence.learn( sentence_list=sentence_list, token_master_list=list(set(all_token_list)), epochs=60 ) test_list = sentence_list[:5] feature_points_arr = vectorlizable_sentence.vectorize(test_list) reconstruction_error_arr = vectorlizable_sentence.controller.get_reconstruction_error().mean() print("Feature points (Top 5 sentences):") print(feature_points_arr) print("Reconstruction error(MSE):") print(reconstruction_error_arr)
def Main(url)
Entry Point. Args: url: target url.
5.043251
4.753647
1.060922
''' getter ''' if isinstance(self.__var_arr, np.ndarray): return self.__var_arr else: raise TypeError()
def get_var_arr(self)
getter
5.231487
4.770946
1.09653
''' setter ''' if isinstance(value, np.ndarray): self.__var_arr = value else: raise TypeError()
def set_var_arr(self, value)
setter
5.06493
5.136888
0.985992
''' getter ''' if isinstance(self.__predicted_log_arr, np.ndarray): return self.__predicted_log_arr else: raise TypeError()
def get_predicted_log_arr(self)
getter
4.519621
4.028389
1.121943
''' setter ''' if isinstance(value, np.ndarray): self.__predicted_log_arr = value else: raise TypeError()
def set_predicted_log_arr(self, value)
setter
4.343719
4.297626
1.010725
''' getter ''' if isinstance(self.__var_log_arr, np.ndarray): return self.__var_log_arr else: raise TypeError()
def get_var_log_arr(self)
getter
4.355944
3.946895
1.103638
''' setter ''' if isinstance(value, np.ndarray): self.__var_log_arr = value else: raise TypeError()
def set_var_log_arr(self, value)
setter
4.537316
4.577607
0.991198
''' getter ''' if isinstance(self.__computed_cost_arr, np.ndarray): return self.__computed_cost_arr else: raise TypeError()
def get_computed_cost_arr(self)
getter
4.524843
4.158702
1.088042
''' setter ''' if isinstance(value, np.ndarray): self.__computed_cost_arr = value else: raise TypeError()
def set_computed_cost_arr(self, value)
setter
4.48319
4.518554
0.992174
def tokenize(self, vector_list): ''' Tokenize vector. Args: vector_list: The list of vector of one token. Returns: token ''' if self.computable_distance is None: self.computable_distance = EuclidDistance() vector_arr = np.array(vector_list) distance_arr = np.empty_like(vector_arr) feature_arr = self.__dbm.get_feature_point(layer_number=0) key_arr = np.empty(vector_arr.shape[0], dtype=int) for i in range(vector_arr.shape[0]): distance_arr = self.computable_distance.compute( np.expand_dims(vector_arr[i], axis=0).repeat(feature_arr.shape[0], axis=0), feature_arr ) key_arr[i] = distance_arr.argmin(axis=0) return self.token_arr[key_arr]
Tokenize vector. Args: vector_list: The list of vector of one token. Returns: token
null
null
null
def set_computable_distance(self, value): ''' setter ''' if isinstance(value, ComputableDistance) is False: raise TypeError() self.__computable_distance = value
setter
null
null
null
def write_stream(self, stream, left_chunk, right_chunk, volume): ''' 具象メソッド モノラルビートを生成する Args: stream: PyAudioのストリーム left_chunk: 左音源に対応するチャンク right_chunk: 右音源に対応するチャンク volume: 音量 Returns: void ''' if len(left_chunk) != len(right_chunk): raise ValueError() for i in range(len(left_chunk)): chunk = (left_chunk[i] + right_chunk[i]) * volume data = struct.pack("2f", chunk, chunk) stream.write(data)
具象メソッド モノラルビートを生成する Args: stream: PyAudioのストリーム left_chunk: 左音源に対応するチャンク right_chunk: 右音源に対応するチャンク volume: 音量 Returns: void
null
null
null
def read_stream(self, left_chunk, right_chunk, volume, bit16=32767.0): ''' 具象メソッド wavファイルに保存するモノラルビートを読み込む Args: left_chunk: 左音源に対応するチャンク right_chunk: 右音源に対応するチャンク volume: 音量 bit16: 整数化の条件 Returns: フレームのlist ''' if len(left_chunk) != len(right_chunk): raise ValueError() frame_list = [] for i in range(len(left_chunk)): chunk = int((left_chunk[i] + right_chunk[i]) * bit16 * volume) data = struct.pack("2h", chunk, chunk) frame_list.append(data) return frame_list
具象メソッド wavファイルに保存するモノラルビートを読み込む Args: left_chunk: 左音源に対応するチャンク right_chunk: 右音源に対応するチャンク volume: 音量 bit16: 整数化の条件 Returns: フレームのlist
null
null
null
''' Tokenize str. Args: sentence_str: tokenized string. Returns: [token, token, token, ...] ''' mt = MeCab.Tagger("-Owakati") wordlist = mt.parse(sentence_str) token_list = wordlist.rstrip(" \n").split(" ") return token_list
def tokenize(self, sentence_str)
Tokenize str. Args: sentence_str: tokenized string. Returns: [token, token, token, ...]
4.810791
2.825212
1.702807
def train( self, true_sampler, generative_model, discriminative_model, iter_n=100, k_step=10 ): ''' Train. Args: true_sampler: Sampler which draws samples from the `true` distribution. generative_model: Generator which draws samples from the `fake` distribution. discriminative_model: Discriminator which discriminates `true` from `fake`. iter_n: The number of training iterations. k_step: The number of learning of the discriminative_model. Returns: Tuple data. - trained Generator which is-a `GenerativeModel`. - trained Discriminator which is-a `DiscriminativeModel`. ''' if isinstance(true_sampler, TrueSampler) is False: raise TypeError("The type of `true_sampler` must be `TrueSampler`.") if isinstance(generative_model, AutoEncoderModel) is False: raise TypeError("The type of `generative_model` must be `AutoEncoderModel`.") if isinstance(discriminative_model, DiscriminativeModel) is False: raise TypeError("The type of `discriminative_model` must be `DiscriminativeModel`.") a_logs_list = [] d_logs_list = [] g_logs_list = [] try: for n in range(iter_n): self.__logger.debug("-" * 100) self.__logger.debug("Iterations: (" + str(n+1) + "/" + str(iter_n) + ")") self.__logger.debug("-" * 100) self.__logger.debug( "The `auto_encoder`'s turn." ) self.__logger.debug("-" * 100) generative_model, a_logs_list = self.train_auto_encoder( generative_model, a_logs_list ) self.__logger.debug("-" * 100) self.__logger.debug( "The `discriminator`'s turn." ) self.__logger.debug("-" * 100) discriminative_model, d_logs_list = self.train_discriminator( k_step, true_sampler, generative_model, discriminative_model, d_logs_list ) self.__logger.debug("-" * 100) self.__logger.debug( "The `generator`'s turn." ) self.__logger.debug("-" * 100) generative_model, g_logs_list = self.train_generator( generative_model, discriminative_model, g_logs_list ) except KeyboardInterrupt: print("Keyboard Interrupt.") self.__logs_tuple = (a_logs_list, d_logs_list, g_logs_list) return generative_model, discriminative_model
Train. Args: true_sampler: Sampler which draws samples from the `true` distribution. generative_model: Generator which draws samples from the `fake` distribution. discriminative_model: Discriminator which discriminates `true` from `fake`. iter_n: The number of training iterations. k_step: The number of learning of the discriminative_model. Returns: Tuple data. - trained Generator which is-a `GenerativeModel`. - trained Discriminator which is-a `DiscriminativeModel`.
null
null
null
def train_auto_encoder(self, generative_model, a_logs_list): ''' Train the generative model as the Auto-Encoder. Args: generative_model: Generator which draws samples from the `fake` distribution. a_logs_list: `list` of the reconstruction errors. Returns: The tuple data. The shape is... - Generator which draws samples from the `fake` distribution. - `list` of the reconstruction errors. ''' error_arr = generative_model.update() if error_arr.ndim > 1: error_arr = error_arr.mean() a_logs_list.append(error_arr) self.__logger.debug("The reconstruction error (mean): " + str(error_arr)) return generative_model, a_logs_list
Train the generative model as the Auto-Encoder. Args: generative_model: Generator which draws samples from the `fake` distribution. a_logs_list: `list` of the reconstruction errors. Returns: The tuple data. The shape is... - Generator which draws samples from the `fake` distribution. - `list` of the reconstruction errors.
null
null
null
def compute_discriminator_reward( self, true_posterior_arr, generated_posterior_arr ): ''' Compute discriminator's reward. Args: true_posterior_arr: `np.ndarray` of `true` posterior inferenced by the discriminator. generated_posterior_arr: `np.ndarray` of `fake` posterior inferenced by the discriminator. Returns: `np.ndarray` of Gradients. ''' grad_arr = np.log(true_posterior_arr + 1e-08) + np.log(1 - generated_posterior_arr + 1e-08) return grad_arr
Compute discriminator's reward. Args: true_posterior_arr: `np.ndarray` of `true` posterior inferenced by the discriminator. generated_posterior_arr: `np.ndarray` of `fake` posterior inferenced by the discriminator. Returns: `np.ndarray` of Gradients.
null
null
null
''' Select action by Q(state, action). Args: next_action_arr: `np.ndarray` of actions. next_q_arr: `np.ndarray` of Q-Values. Retruns: Tuple(`np.ndarray` of action., Q-Value) ''' key_arr = self.select_action_key(next_action_arr, next_q_arr) return next_action_arr[key_arr], next_q_arr[key_arr]
def select_action(self, next_action_arr, next_q_arr)
Select action by Q(state, action). Args: next_action_arr: `np.ndarray` of actions. next_q_arr: `np.ndarray` of Q-Values. Retruns: Tuple(`np.ndarray` of action., Q-Value)
3.592827
1.655932
2.169671
''' Select action by Q(state, action). Args: next_action_arr: `np.ndarray` of actions. next_q_arr: `np.ndarray` of Q-Values. Retruns: `np.ndarray` of keys. ''' epsilon_greedy_flag = bool(np.random.binomial(n=1, p=self.epsilon_greedy_rate)) if epsilon_greedy_flag is False: key = np.random.randint(low=0, high=next_action_arr.shape[0]) else: key = next_q_arr.argmax() return key
def select_action_key(self, next_action_arr, next_q_arr)
Select action by Q(state, action). Args: next_action_arr: `np.ndarray` of actions. next_q_arr: `np.ndarray` of Q-Values. Retruns: `np.ndarray` of keys.
2.829847
1.870827
1.512619
if fields is None: fields = [] page = int(page) pages = float('inf') data = { "query": query, "page": page, "fields": fields, "flatten": flatten } count = 0 while page <= pages: payload = self._post(self.search_path, data=data) pages = payload['metadata']['pages'] page += 1 data["page"] = page for result in payload["results"]: yield result count += 1 if max_records and count >= max_records: return
def search(self, query, fields=None, page=1, max_records=None, flatten=True)
returns iterator over all records that match the given query
2.613912
2.659616
0.982815
rp = Game.__color_modes.get(mode, {}) for k, color in self.__colors.items(): self.__colors[k] = rp.get(color, color)
def adjustColors(self, mode='dark')
Change a few colors depending on the mode to use. The default mode doesn't assume anything and avoid using white & black colors. The dark mode use white and avoid dark blue while the light mode use black and avoid yellow, to give a few examples.
6.590861
6.832213
0.964674
try: with open(self.scores_file, 'r') as f: self.best_score = int(f.readline(), 10) except: return False return True
def loadBestScore(self)
load local best score from the default file
3.142979
2.946549
1.066664
if self.score > self.best_score: self.best_score = self.score try: with open(self.scores_file, 'w') as f: f.write(str(self.best_score)) except: return False return True
def saveBestScore(self)
save current best score in the default file
2.278303
2.234459
1.019622
self.score += pts if self.score > self.best_score: self.best_score = self.score
def incScore(self, pts)
update the current score by adding it the specified number of points
2.454606
2.372835
1.034461
size = self.board.SIZE cells = [] for i in range(size): for j in range(size): cells.append(str(self.board.getCell(j, i))) score_str = "%s\n%d" % (' '.join(cells), self.score) try: with open(self.store_file, 'w') as f: f.write(score_str) except: return False return True
def store(self)
save the current game session's score and data for further use
3.251953
2.891113
1.12481
size = self.board.SIZE try: with open(self.store_file, 'r') as f: lines = f.readlines() score_str = lines[0] self.score = int(lines[1]) except: return False score_str_list = score_str.split(' ') count = 0 for i in range(size): for j in range(size): value = score_str_list[count] self.board.setCell(j, i, int(value)) count += 1 return True
def restore(self)
restore the saved game score and data
3.03745
2.680273
1.133261
pause_key = self.board.PAUSE margins = {'left': 4, 'top': 4, 'bottom': 4} atexit.register(self.showCursor) try: self.hideCursor() while True: self.clearScreen() print(self.__str__(margins=margins)) if self.board.won() or not self.board.canMove(): break m = self.readMove() if m == pause_key: self.saveBestScore() if self.store(): print("Game successfully saved. " "Resume it with `term2048 --resume`.") return self.score print("An error ocurred while saving your game.") return None self.incScore(self.board.move(m)) except KeyboardInterrupt: self.saveBestScore() return None self.saveBestScore() print('You won!' if self.board.won() else 'Game Over') return self.score
def loop(self)
main game loop. returns the final score.
5.450699
5.054237
1.078441
return '.' if self.__azmode else ' .' elif self.__azmode: az = {} for i in range(1, int(math.log(self.board.goal(), 2))): az[2 ** i] = chr(i + 96) if c not in az: return '?' s = az[c] elif c == 1024: s = ' 1k' elif c == 2048: s = ' 2k' else: s = '%3d' % c return self.__colors.get(c, Fore.RESET) + s + Style.RESET_ALL
def getCellStr(self, x, y): # TODO: refactor regarding issue #11 c = self.board.getCell(x, y) if c == 0
return a string representation of the cell located at x,y.
4.457158
4.650572
0.958411
if margins is None: margins = {} b = self.board rg = range(b.size()) left = ' '*margins.get('left', 0) s = '\n'.join( [left + ' '.join([self.getCellStr(x, y) for x in rg]) for y in rg]) return s
def boardToString(self, margins=None)
return a string representation of the current board.
4.351248
4.201705
1.035591
if not self.filled(): return True for y in self.__size_range: for x in self.__size_range: c = self.getCell(x, y) if (x < self.__size-1 and c == self.getCell(x+1, y)) \ or (y < self.__size-1 and c == self.getCell(x, y+1)): return True return False
def canMove(self)
test if a move is possible
3.056662
2.892266
1.05684
if choices is None: choices = [2] * 9 + [4] if value: choices = [value] v = random.choice(choices) empty = self.getEmptyCells() if empty: x, y = random.choice(empty) self.setCell(x, y, v)
def addTile(self, value=None, choices=None)
add a random tile in an empty cell value: value of the tile to add. choices: a list of possible choices for the value of the tile. if ``None`` (the default), it uses ``[2, 2, 2, 2, 2, 2, 2, 2, 2, 4]``.
3.884902
3.195222
1.215847
self.cells[y][x] = v
def setCell(self, x, y, v)
set the cell value at x,y
5.320478
4.958828
1.072931
return [self.getCell(x, i) for i in self.__size_range]
def getCol(self, x)
return the x-th column, starting at 0
13.353764
12.779783
1.044913
for i in xrange(0, self.__size): self.setCell(x, i, l[i])
def setCol(self, x, l)
set the x-th column, starting at 0
4.672573
4.908163
0.952
return [(x, y) for x in self.__size_range for y in self.__size_range if self.getCell(x, y) == 0]
def getEmptyCells(self)
return a (x, y) pair for each empty cell
5.057689
3.774974
1.339795
if (d == Board.LEFT or d == Board.UP): inc = 1 rg = xrange(0, self.__size-1, inc) else: inc = -1 rg = xrange(self.__size-1, 0, inc) pts = 0 for i in rg: if line[i] == 0: continue if line[i] == line[i+inc]: v = line[i]*2 if v == self.__goal: self.__won = True line[i] = v line[i+inc] = 0 pts += v return (line, pts)
def __collapseLineOrCol(self, line, d)
Merge tiles in a line or column according to a direction and return a tuple with the new line and the score for the move on this line
3.450751
3.096504
1.114402
nl = [c for c in line if c != 0] if d == Board.UP or d == Board.LEFT: return nl + [0] * (self.__size - len(nl)) return [0] * (self.__size - len(nl)) + nl
def __moveLineOrCol(self, line, d)
Move a line or column to a given direction (d)
3.800576
3.574684
1.063192
if d == Board.LEFT or d == Board.RIGHT: chg, get = self.setLine, self.getLine elif d == Board.UP or d == Board.DOWN: chg, get = self.setCol, self.getCol else: return 0 moved = False score = 0 for i in self.__size_range: # save the original line/col origin = get(i) # move it line = self.__moveLineOrCol(origin, d) # merge adjacent tiles collapsed, pts = self.__collapseLineOrCol(line, d) # move it again (for when tiles are merged, because empty cells are # inserted in the middle of the line/col) new = self.__moveLineOrCol(collapsed, d) # set it back in the board chg(i, new) # did it change? if origin != new: moved = True score += pts # don't add a new tile if nothing changed if moved and add_tile: self.addTile() return score
def move(self, d, add_tile=True)
move and return the move score
4.757124
4.604259
1.033201
parser = argparse.ArgumentParser(description='2048 in your terminal') parser.add_argument('--mode', dest='mode', type=str, default=None, help='colors mode (dark or light)') parser.add_argument('--az', dest='azmode', action='store_true', help='Use the letters a-z instead of numbers') parser.add_argument('--resume', dest='resume', action='store_true', help='restart the game from where you left') parser.add_argument('-v', '--version', action='store_true') parser.add_argument('-r', '--rules', action='store_true') return vars(parser.parse_args())
def parse_cli_args()
parse args from the CLI and return a dict
3.196184
3.125101
1.022746
args = parse_cli_args() if args['version']: print_version_and_exit() if args['rules']: print_rules_and_exit() game = Game(**args) if args['resume']: game.restore() if debug: return game return game.loop()
def start_game(debug=False)
Start a new game. If ``debug`` is set to ``True``, the game object is returned and the game loop isn't fired.
4.530225
4.182133
1.083233
message = ObjectDict(escape.json_decode(message)) if message.command == 'hello': handshake = { 'command': 'hello', 'protocols': [ 'http://livereload.com/protocols/official-7', ], 'serverName': 'livereload-tornado', } self.send_message(handshake) if message.command == 'info' and 'url' in message: logger.info('Browser Connected: %s' % message.url) LiveReloadHandler.waiters.add(self)
def on_message(self, message)
Handshake with livereload.js 1. client send 'hello' 2. server reply 'hello' 3. client send 'info'
4.729206
4.252817
1.112017
stat_result = os.stat(abspath) modified = datetime.datetime.utcfromtimestamp( stat_result[stat.ST_MTIME]) return modified
def get_content_modified_time(cls, abspath)
Returns the time that ``abspath`` was last modified. May be overridden in subclasses. Should return a `~datetime.datetime` object or None.
3.225852
3.226468
0.999809
data = cls.get_content(abspath) hasher = hashlib.md5() mtime_data = format(cls.get_content_modified_time(abspath), "%Y-%m-%d %H:%M:%S") hasher.update(mtime_data.encode()) if isinstance(data, bytes): hasher.update(data) else: for chunk in data: hasher.update(chunk) return hasher.hexdigest()
def get_content_version(cls, abspath)
Returns a version string for the resource at the given path. This class method may be overridden by subclasses. The default implementation is a hash of the file's contents. .. versionadded:: 3.1
2.841367
2.926512
0.970906
_, ext = os.path.splitext(filename) return ext in ['.pyc', '.pyo', '.o', '.swp']
def ignore(self, filename)
Ignore a given filename or not.
3.858968
3.861065
0.999457
self._tasks[path] = { 'func': func, 'delay': delay, 'ignore': ignore, }
def watch(self, path, func=None, delay=0, ignore=None)
Add a task to watcher. :param path: a filepath or directory path or glob pattern :param func: the function to be executed when file changed :param delay: Delay sending the reload message. Use 'forever' to not send it. This is useful to compile sass files to css, but reload on changed css files then only. :param ignore: A function return True to ignore a certain pattern of filepath.
3.060741
3.388331
0.903318
if self._changes: return self._changes.pop() # clean filepath self.filepath = None delays = set() for path in self._tasks: item = self._tasks[path] if self.is_changed(path, item['ignore']): func = item['func'] delay = item['delay'] if delay and isinstance(delay, float): delays.add(delay) if func: name = getattr(func, 'name', None) if not name: name = getattr(func, '__name__', 'anonymous') logger.info( "Running task: {} (delay: {})".format(name, delay)) func() if delays: delay = max(delays) else: delay = None return self.filepath, delay
def examine(self)
Check if there are changes, if true, run the given task.
4.126311
3.724573
1.107861
if not output: output = os.devnull else: folder = os.path.dirname(output) if folder and not os.path.isdir(folder): os.makedirs(folder) if not isinstance(cmd, (list, tuple)) and not shell: cmd = shlex.split(cmd) def run_shell(): try: p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=cwd, shell=shell) except OSError as e: logger.error(e) if e.errno == os.errno.ENOENT: # file (command) not found logger.error("maybe you haven't installed %s", cmd[0]) return e stdout, stderr = p.communicate() if stderr: logger.error(stderr) return stderr #: stdout is bytes, decode for python3 if PY3: stdout = stdout.decode() with open(output, mode) as f: f.write(stdout) return run_shell
def shell(cmd, output=None, mode='w', cwd=None, shell=False)
Execute a shell command. You can add a shell command:: server.watch( 'style.less', shell('lessc style.less', output='style.css') ) :param cmd: a shell command, string or list :param output: output stdout to the given file :param mode: only works with output, mode ``w`` means write, mode ``a`` means append :param cwd: set working directory before command is executed. :param shell: if true, on Unix the executable argument specifies a replacement shell for the default ``/bin/sh``.
2.692058
2.966066
0.907619
if isinstance(func, string_types): cmd = func func = shell(func) func.name = "shell: {}".format(cmd) self.watcher.watch(filepath, func, delay, ignore=ignore)
def watch(self, filepath, func=None, delay=None, ignore=None)
Add the given filepath for watcher list. Once you have intialized a server, watch file changes before serve the server:: server.watch('static/*.stylus', 'make static') def alert(): print('foo') server.watch('foo.txt', alert) server.serve() :param filepath: files to be watched, it can be a filepath, a directory, or a glob pattern :param func: the function to be called, it can be a string of shell command, or any callable object without parameters :param delay: Delay sending the reload message. Use 'forever' to not send it. This is useful to compile sass files to css, but reload on changed css files then only. :param ignore: A function return True to ignore a certain pattern of filepath.
5.80302
6.212649
0.934065
host = host or '127.0.0.1' if root is not None: self.root = root self._setup_logging() logger.info('Serving on http://%s:%s' % (host, port)) self.application( port, host, liveport=liveport, debug=debug, live_css=live_css) # Async open web browser after 5 sec timeout if open_url or open_url_delay: if open_url: logger.warn('Use `open_url_delay` instead of `open_url`') sleep = open_url_delay or 5 def opener(): time.sleep(sleep) webbrowser.open('http://%s:%s' % (host, port)) threading.Thread(target=opener).start() try: self.watcher._changes.append(('__livereload__', restart_delay)) LiveReloadHandler.start_tasks() add_reload_hook(lambda: IOLoop.instance().close(all_fds=True)) IOLoop.instance().start() except KeyboardInterrupt: logger.info('Shutting down...')
def serve(self, port=5500, liveport=None, host=None, root=None, debug=None, open_url=False, restart_delay=2, open_url_delay=None, live_css=True)
Start serve the server with the given port. :param port: serve on this port, default is 5500 :param liveport: live reload on this port :param host: serve on this hostname, default is 127.0.0.1 :param root: serve static on this root directory :param debug: set debug mode, which autoreloads the app on code changes via Tornado (and causes polling). Defaults to True when ``self.app`` is set, otherwise False. :param open_url_delay: open webbrowser after the delay seconds :param live_css: whether to use live css or force reload on css. Defaults to True
3.48
3.651794
0.952956
m = re.search(self.COORD_MATCH, address) return (m != None)
def already_coords(self, address)
test used to see if we have coordinates or address
8.761026
7.372385
1.188357
lat, lon = coords.split(',') return {"lat": lat.strip(), "lon": lon.strip(), "bounds": {}}
def coords_string_parser(self, coords)
Pareses the address string into coordinates to match address_to_coords return object
6.728547
5.677551
1.185114
base_coords = self.BASE_COORDS[self.region] get_cord = self.COORD_SERVERS[self.region] url_options = { "q": address, "lang": "eng", "origin": "livemap", "lat": base_coords["lat"], "lon": base_coords["lon"] } response = requests.get(self.WAZE_URL + get_cord, params=url_options, headers=self.HEADERS) for response_json in response.json(): if response_json.get('city'): lat = response_json['location']['lat'] lon = response_json['location']['lon'] bounds = response_json['bounds'] # sometimes the coords don't match up if bounds is not None: bounds['top'], bounds['bottom'] = max(bounds['top'], bounds['bottom']), min(bounds['top'], bounds['bottom']) bounds['left'], bounds['right'] = min(bounds['left'], bounds['right']), max(bounds['left'], bounds['right']) else: bounds = {} return {"lat": lat, "lon": lon, "bounds": bounds} raise WRCError("Cannot get coords for %s" % address)
def address_to_coords(self, address)
Convert address to coordinates
3.520194
3.451403
1.019931
routing_server = self.ROUTING_SERVERS[self.region] url_options = { "from": "x:%s y:%s" % (self.start_coords["lon"], self.start_coords["lat"]), "to": "x:%s y:%s" % (self.end_coords["lon"], self.end_coords["lat"]), "at": time_delta, "returnJSON": "true", "returnGeometries": "true", "returnInstructions": "true", "timeout": 60000, "nPaths": npaths, "options": "AVOID_TRAILS:t", } if self.vehicle_type: url_options["vehicleType"] = self.vehicle_type response = requests.get(self.WAZE_URL + routing_server, params=url_options, headers=self.HEADERS) response.encoding = 'utf-8' response_json = self._check_response(response) if response_json: if 'error' in response_json: raise WRCError(response_json.get("error")) else: if response_json.get("alternatives"): return [alt['response'] for alt in response_json['alternatives']] if npaths > 1: return [response_json['response']] return response_json['response'] else: raise WRCError("empty response")
def get_route(self, npaths=1, time_delta=0)
Get route data from waze
3.22644
3.228841
0.999256
start_bounds = self.start_coords['bounds'] end_bounds = self.end_coords['bounds'] def between(target, min, max): return target > min and target < max time = 0 distance = 0 for segment in results: if stop_at_bounds and segment.get('path'): x = segment['path']['x'] y = segment['path']['y'] if ( between(x, start_bounds.get('left', 0), start_bounds.get('right', 0)) or between(x, end_bounds.get('left', 0), end_bounds.get('right', 0)) ) and ( between(y, start_bounds.get('bottom', 0), start_bounds.get('top', 0)) or between(y, end_bounds.get('bottom', 0), end_bounds.get('top', 0)) ): continue time += segment['crossTime' if real_time else 'crossTimeWithoutRealTime'] distance += segment['length'] route_time = time / 60.0 route_distance = distance / 1000.0 return route_time, route_distance
def _add_up_route(self, results, real_time=True, stop_at_bounds=False)
Calculate route time and distance.
2.257795
2.139793
1.055146
route = self.get_route(1, time_delta) results = route['results'] route_time, route_distance = self._add_up_route(results, real_time=real_time, stop_at_bounds=stop_at_bounds) self.log.info('Time %.2f minutes, distance %.2f km.', route_time, route_distance) return route_time, route_distance
def calc_route_info(self, real_time=True, stop_at_bounds=False, time_delta=0)
Calculate best route info.
3.471801
3.434102
1.010978
routes = self.get_route(npaths, time_delta) results = {route['routeName']: self._add_up_route(route['results'], real_time=real_time, stop_at_bounds=stop_at_bounds) for route in routes} route_time = [route[0] for route in results.values()] route_distance = [route[1] for route in results.values()] self.log.info('Time %.2f - %.2f minutes, distance %.2f - %.2f km.', min(route_time), max(route_time), min(route_distance), max(route_distance)) return results
def calc_all_routes_info(self, npaths=3, real_time=True, stop_at_bounds=False, time_delta=0)
Calculate all route infos.
3.019667
3.006786
1.004284
self._key_prefix = self._config.get('redis', 'key_prefix') self._job_expire_interval = int( self._config.get('sharq', 'job_expire_interval') ) self._default_job_requeue_limit = int( self._config.get('sharq', 'default_job_requeue_limit') ) # initalize redis redis_connection_type = self._config.get('redis', 'conn_type') db = self._config.get('redis', 'db') if redis_connection_type == 'unix_sock': self._r = redis.StrictRedis( db=db, unix_socket_path=self._config.get('redis', 'unix_socket_path') ) elif redis_connection_type == 'tcp_sock': self._r = redis.StrictRedis( db=db, host=self._config.get('redis', 'host'), port=self._config.get('redis', 'port') ) self._load_lua_scripts()
def _initialize(self)
Read the SharQ configuration and set appropriate variables. Open a redis connection pool and load all the Lua scripts.
2.326581
2.060877
1.128927
self._config = ConfigParser.SafeConfigParser() self._config.read(self.config_path)
def _load_config(self)
Read the configuration file and load it into memory.
3.978996
2.746223
1.448898
# load lua scripts lua_script_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), 'scripts/lua' ) with open(os.path.join( lua_script_path, 'enqueue.lua'), 'r') as enqueue_file: self._lua_enqueue_script = enqueue_file.read() self._lua_enqueue = self._r.register_script( self._lua_enqueue_script) with open(os.path.join( lua_script_path, 'dequeue.lua'), 'r') as dequeue_file: self._lua_dequeue_script = dequeue_file.read() self._lua_dequeue = self._r.register_script( self._lua_dequeue_script) with open(os.path.join( lua_script_path, 'finish.lua'), 'r') as finish_file: self._lua_finish_script = finish_file.read() self._lua_finish = self._r.register_script(self._lua_finish_script) with open(os.path.join( lua_script_path, 'interval.lua'), 'r') as interval_file: self._lua_interval_script = interval_file.read() self._lua_interval = self._r.register_script( self._lua_interval_script) with open(os.path.join( lua_script_path, 'requeue.lua'), 'r') as requeue_file: self._lua_requeue_script = requeue_file.read() self._lua_requeue = self._r.register_script( self._lua_requeue_script) with open(os.path.join( lua_script_path, 'metrics.lua'), 'r') as metrics_file: self._lua_metrics_script = metrics_file.read() self._lua_metrics = self._r.register_script( self._lua_metrics_script)
def _load_lua_scripts(self)
Loads all lua scripts required by SharQ.
1.365237
1.357738
1.005523
# validate all the input if not is_valid_interval(interval): raise BadArgumentException('`interval` has an invalid value.') if not is_valid_identifier(job_id): raise BadArgumentException('`job_id` has an invalid value.') if not is_valid_identifier(queue_id): raise BadArgumentException('`queue_id` has an invalid value.') if not is_valid_identifier(queue_type): raise BadArgumentException('`queue_type` has an invalid value.') if requeue_limit is None: requeue_limit = self._default_job_requeue_limit if not is_valid_requeue_limit(requeue_limit): raise BadArgumentException('`requeue_limit` has an invalid value.') try: serialized_payload = serialize_payload(payload) except TypeError as e: raise BadArgumentException(e.message) timestamp = str(generate_epoch()) keys = [ self._key_prefix, queue_type ] args = [ timestamp, queue_id, job_id, '"%s"' % serialized_payload, interval, requeue_limit ] self._lua_enqueue(keys=keys, args=args) response = { 'status': 'queued' } return response
def enqueue(self, payload, interval, job_id, queue_id, queue_type='default', requeue_limit=None)
Enqueues the job into the specified queue_id of a particular queue_type
2.284425
2.311676
0.988212
if not is_valid_identifier(queue_type): raise BadArgumentException('`queue_type` has an invalid value.') timestamp = str(generate_epoch()) keys = [ self._key_prefix, queue_type ] args = [ timestamp, self._job_expire_interval ] dequeue_response = self._lua_dequeue(keys=keys, args=args) if len(dequeue_response) < 4: response = { 'status': 'failure' } return response queue_id, job_id, payload, requeues_remaining = dequeue_response payload = deserialize_payload(payload[1:-1]) response = { 'status': 'success', 'queue_id': queue_id, 'job_id': job_id, 'payload': payload, 'requeues_remaining': int(requeues_remaining) } return response
def dequeue(self, queue_type='default')
Dequeues a job from any of the ready queues based on the queue_type. If no job is ready, returns a failure status.
3.411391
3.341038
1.021057
if not is_valid_identifier(job_id): raise BadArgumentException('`job_id` has an invalid value.') if not is_valid_identifier(queue_id): raise BadArgumentException('`queue_id` has an invalid value.') if not is_valid_identifier(queue_type): raise BadArgumentException('`queue_type` has an invalid value.') keys = [ self._key_prefix, queue_type ] args = [ queue_id, job_id ] response = { 'status': 'success' } finish_response = self._lua_finish(keys=keys, args=args) if finish_response == 0: # the finish failed. response.update({ 'status': 'failure' }) return response
def finish(self, job_id, queue_id, queue_type='default')
Marks any dequeued job as *completed successfully*. Any job which gets a finish will be treated as complete and will be removed from the SharQ.
2.964988
2.905088
1.020619
# validate all the input if not is_valid_interval(interval): raise BadArgumentException('`interval` has an invalid value.') if not is_valid_identifier(queue_id): raise BadArgumentException('`queue_id` has an invalid value.') if not is_valid_identifier(queue_type): raise BadArgumentException('`queue_type` has an invalid value.') # generate the interval key interval_hmap_key = '%s:interval' % self._key_prefix interval_queue_key = '%s:%s' % (queue_type, queue_id) keys = [ interval_hmap_key, interval_queue_key ] args = [ interval ] interval_response = self._lua_interval(keys=keys, args=args) if interval_response == 0: # the queue with the id and type does not exist. response = { 'status': 'failure' } else: response = { 'status': 'success' } return response
def interval(self, interval, queue_id, queue_type='default')
Updates the interval for a specific queue_id of a particular queue type.
3.18264
3.229463
0.985501
timestamp = str(generate_epoch()) # get all queue_types and requeue one by one. # not recommended to do this entire process # in lua as it might take long and block other # enqueues and dequeues. active_queue_type_list = self._r.smembers( '%s:active:queue_type' % self._key_prefix) for queue_type in active_queue_type_list: # requeue all expired jobs in all queue types. keys = [ self._key_prefix, queue_type ] args = [ timestamp ] job_discard_list = self._lua_requeue(keys=keys, args=args) # discard the jobs if any for job in job_discard_list: queue_id, job_id = job.split(':') # explicitly finishing a job # is nothing but discard. self.finish( job_id=job_id, queue_id=queue_id, queue_type=queue_type )
def requeue(self)
Re-queues any expired job (one which does not get an expire before the job_expiry_interval) back into their respective queue. This function has to be run at specified intervals to ensure the expired jobs are re-queued back.
6.258825
6.170113
1.014378
if queue_id is None or not is_valid_identifier(queue_id): raise BadArgumentException('`queue_id` has an invalid value.') if queue_type is None or not is_valid_identifier(queue_type): raise BadArgumentException('`queue_type` has an invalid value.') response = { 'status': 'Failure', 'message': 'No queued calls found' } # remove from the primary sorted set primary_set = '{}:{}'.format(self._key_prefix, queue_type) queued_status = self._r.zrem(primary_set, queue_id) if queued_status: response.update({'status': 'Success', 'message': 'Successfully removed all queued calls'}) # do a full cleanup of reources # although this is not necessary as we don't remove resources # while dequeue operation job_queue_list = '{}:{}:{}'.format(self._key_prefix, queue_type, queue_id) if queued_status and purge_all: job_list = self._r.lrange(job_queue_list, 0, -1) pipe = self._r.pipeline() # clear the payload data for job_uuid for job_uuid in job_list: if job_uuid is None: continue payload_set = '{}:payload'.format(self._key_prefix) job_payload_key = '{}:{}:{}'.format(queue_type, queue_id, job_uuid) pipe.hdel(payload_set, job_payload_key) # clear jobrequest interval interval_set = '{}:interval'.format(self._key_prefix) job_interval_key = '{}:{}'.format(queue_type, queue_id) pipe.hdel(interval_set, job_interval_key) # clear job_queue_list pipe.delete(job_queue_list) pipe.execute() response.update({'status': 'Success', 'message': 'Successfully removed all queued calls and purged related resources'}) else: # always delete the job queue list self._r.delete(job_queue_list) return response
def clear_queue(self, queue_type=None, queue_id=None, purge_all=False)
clear the all entries in queue with particular queue_id and queue_type. It takes an optional argument, purge_all : if True, then it will remove the related resources from the redis.
3.183539
3.067306
1.037894
if not isinstance(identifier, basestring): return False if len(identifier) > 100 or len(identifier) < 1: return False condensed_form = set(list(identifier.lower())) return condensed_form.issubset(VALID_IDENTIFIER_SET)
def is_valid_identifier(identifier)
Checks if the given identifier is valid or not. A valid identifier may consists of the following characters with a maximum length of 100 characters, minimum of 1 character. Valid characters for an identifier, - A to Z - a to z - 0 to 9 - _ (underscore) - - (hypen)
3.50995
3.750773
0.935794
if not isinstance(interval, (int, long)): return False if interval <= 0: return False return True
def is_valid_interval(interval)
Checks if the given interval is valid. A valid interval is always a positive, non-zero integer value.
3.396055
2.710551
1.252902
if not isinstance(requeue_limit, (int, long)): return False if requeue_limit <= -2: return False return True
def is_valid_requeue_limit(requeue_limit)
Checks if the given requeue limit is valid. A valid requeue limit is always greater than or equal to -1.
3.354657
3.180445
1.054776
parts = re.split('[-_.]', name) if len(parts) == 1: return parts result = set() for i in range(len(parts) - 1, 0, -1): for s1 in '-_.': prefix = s1.join(parts[:i]) for s2 in '-_.': suffix = s2.join(parts[i:]) for s3 in '-_.': result.add(s3.join([prefix, suffix])) return list(result)
def get_search_names(name)
Return a list of values to search on when we are looking for a package with the given name. This is required to search on both pyramid_debugtoolbar and pyramid-debugtoolbar.
2.536337
2.585189
0.981103
# We first need to retrieve the body before accessing POST or FILES since # it can only be read once. body = request.body if request.POST or request.FILES: return new_body = BytesIO() # Split the response in the various parts based on the boundary string content_type, opts = parse_header(request.META['CONTENT_TYPE'].encode('ascii')) parts = body.split(b'\n--' + opts['boundary'] + b'\n') for part in parts: if b'\n\n' not in part: continue headers, content = part.split(b'\n\n', 1) if not headers: continue new_body.write(b'--' + opts['boundary'] + b'\r\n') new_body.write(headers.replace(b'\n', b'\r\n')) new_body.write(b'\r\n\r\n') new_body.write(content) new_body.write(b'\r\n') new_body.write(b'--' + opts['boundary'] + b'--\r\n') request._body = new_body.getvalue() request.META['CONTENT_LENGTH'] = len(request._body) # Clear out _files and _post so that the request object re-parses the body if hasattr(request, '_files'): delattr(request, '_files') if hasattr(request, '_post'): delattr(request, '_post')
def alter_old_distutils_request(request: WSGIRequest)
Alter the request body for compatibility with older distutils clients Due to a bug in the Python distutils library, the request post is sent using \n as a separator instead of the \r\n that the HTTP spec demands. This breaks the Django form parser and therefore we have to write a custom parser. This bug was fixed in the Python 2.7.4 and 3.4: http://bugs.python.org/issue10510
2.677828
2.598912
1.030365
instance = kwargs['instance'] if not hasattr(instance.distribution, 'path'): return if not os.path.exists(instance.distribution.path): return # Check if there are other instances which reference this fle is_referenced = ( instance.__class__.objects .filter(distribution=instance.distribution) .exclude(pk=instance._get_pk_val()) .exists()) if is_referenced: return try: instance.distribution.storage.delete(instance.distribution.path) except Exception: logger.exception( 'Error when trying to delete file %s of package %s:' % ( instance.pk, instance.distribution.path))
def delete_files(sender, **kwargs)
Signal callback for deleting old files when database item is deleted
3.437159
3.373999
1.018719
md5 = hashlib.md5() while True: data = fh.read(8192) if not data: break md5.update(data) return md5.hexdigest()
def md5_hash_file(fh)
Return the md5 hash of the given file-object
1.533907
1.543516
0.993774
module_path = '.'.join(full_class_path.split('.')[0:-1]) class_name = full_class_path.split('.')[-1] try: module = importlib.import_module(module_path) except ImportError: raise RuntimeError('Invalid specified Versio schema {}'.format(full_class_path)) try: return getattr(module, class_name) except AttributeError: raise RuntimeError( 'Could not find Versio schema class {!r} inside {!r} module.'.format( class_name, module_path))
def get_versio_versioning_scheme(full_class_path)
Return a class based on it's full path
2.369908
2.298516
1.03106
field_map = { 'name': 'name__icontains', 'summary': 'releases__summary__icontains', } query_filter = None for field, values in spec.items(): for value in values: if field not in field_map: continue field_filter = Q(**{field_map[field]: value}) if not query_filter: query_filter = field_filter continue if operator == 'and': query_filter &= field_filter else: query_filter |= field_filter result = [] packages = models.Package.objects.filter(query_filter).all()[:20] for package in packages: release = package.releases.all()[0] result.append({ 'name': package.name, 'summary': release.summary, 'version': release.version, '_pypi_ordering': 0, }) return result
def search(spec, operator='and')
Implement xmlrpc search command. This only searches through the mirrored and private packages
2.358917
2.441665
0.96611
@wraps(view_func, assigned=available_attrs(view_func)) def decorator(request, *args, **kwargs): if settings.LOCALSHOP_USE_PROXIED_IP: try: ip_addr = request.META['HTTP_X_FORWARDED_FOR'] except KeyError: return HttpResponseForbidden('No permission') else: # HTTP_X_FORWARDED_FOR can be a comma-separated list of IPs. # The client's IP will be the first one. ip_addr = ip_addr.split(",")[0].strip() else: ip_addr = request.META['REMOTE_ADDR'] if CIDR.objects.has_access(ip_addr, with_credentials=False): return view_func(request, *args, **kwargs) if not CIDR.objects.has_access(ip_addr, with_credentials=True): return HttpResponseForbidden('No permission') # Just return the original view because already logged in if request.user.is_authenticated(): return view_func(request, *args, **kwargs) user = authenticate_user(request) if user is not None: login(request, user) return view_func(request, *args, **kwargs) return HttpResponseUnauthorized(content='Authorization Required') return decorator
def credentials_required(view_func)
This decorator should be used with views that need simple authentication against Django's authentication framework.
2.583453
2.579412
1.001567
@wraps(function) def wrapper(self, *args, **kwargs): key = generate_key(function, *args, **kwargs) try: function(self, *args, **kwargs) finally: logging.info('Removing key %s', key) cache.delete(key) return wrapper
def no_duplicates(function, *args, **kwargs)
Makes sure that no duplicated tasks are enqueued.
2.911433
2.78827
1.044172
release_file = models.ReleaseFile.objects.get(pk=pk) logging.info("Downloading %s", release_file.url) proxies = None if settings.LOCALSHOP_HTTP_PROXY: proxies = settings.LOCALSHOP_HTTP_PROXY response = requests.get(release_file.url, stream=True, proxies=proxies) # Write the file to the django file field filename = os.path.basename(release_file.url) # Setting the size manually since Django can't figure it our from # the raw HTTPResponse if 'content-length' in response.headers: size = int(response.headers['content-length']) else: size = len(response.content) # Setting the content type by first looking at the response header # and falling back to guessing it from the filename default_content_type = 'application/octet-stream' content_type = response.headers.get('content-type') if content_type is None or content_type == default_content_type: content_type = mimetypes.guess_type(filename)[0] or default_content_type # Using Django's temporary file upload system to not risk memory # overflows with TemporaryUploadedFile(name=filename, size=size, charset='utf-8', content_type=content_type) as temp_file: temp_file.write(response.content) temp_file.seek(0) # Validate the md5 hash of the downloaded file md5_hash = md5_hash_file(temp_file) if md5_hash != release_file.md5_digest: logging.error("MD5 hash mismatch: %s (expected: %s)" % ( md5_hash, release_file.md5_digest)) return release_file.distribution.save(filename, temp_file) release_file.save() logging.info("Complete")
def download_file(pk)
Download the file reference in `models.ReleaseFile` with the given pk.
2.712385
2.658842
1.020138
name = post_data.get('name') version = post_data.get('version') if settings.LOCALSHOP_VERSIONING_TYPE: scheme = get_versio_versioning_scheme(settings.LOCALSHOP_VERSIONING_TYPE) try: Version(version, scheme=scheme) except AttributeError: response = HttpResponseBadRequest( reason="Invalid version supplied '{!s}' for '{!s}' scheme.".format( version, settings.LOCALSHOP_VERSIONING_TYPE)) return response if not name or not version: logger.info("Missing name or version for package") return HttpResponseBadRequest('No name or version given') try: condition = Q() for search_name in get_search_names(name): condition |= Q(name__iexact=search_name) package = repository.packages.get(condition) # Error out when we try to override a mirror'ed package for now # not sure what the best thing is if not package.is_local: return HttpResponseBadRequest( '%s is a pypi package!' % package.name) try: release = package.releases.get(version=version) except ObjectDoesNotExist: release = None except ObjectDoesNotExist: package = None release = None # Validate the data form = forms.ReleaseForm(post_data, instance=release) if not form.is_valid(): return HttpResponseBadRequest(reason=form.errors.values()[0][0]) if not package: pkg_form = forms.PackageForm(post_data, repository=repository) if not pkg_form.is_valid(): return HttpResponseBadRequest( reason=six.next(six.itervalues(pkg_form.errors))[0]) package = pkg_form.save() release = form.save(commit=False) release.package = package release.save() # If this is an upload action then process the uploaded file if files: files = { 'distribution': files['content'] } filename = files['distribution']._name try: release_file = release.files.get(filename=filename) if settings.LOCALSHOP_RELEASE_OVERWRITE is False: message = 'That it already released, please bump version.' return HttpResponseBadRequest(message) except ObjectDoesNotExist: release_file = models.ReleaseFile( release=release, filename=filename) form_file = forms.ReleaseFileForm( post_data, files, instance=release_file) if not form_file.is_valid(): return HttpResponseBadRequest('ERRORS %s' % form_file.errors) release_file = form_file.save(commit=False) release_file.save() return HttpResponse()
def handle_register_or_upload(post_data, files, user, repository)
Process a `register` or `upload` comment issued via distutils. This method is called with the authenticated user.
3.36594
3.412494
0.986358
from .tasks import download_file if not settings.LOCALSHOP_ISOLATED: download_file.delay(pk=self.pk) else: download_file(pk=self.pk)
def download(self)
Start a celery task to download the release file from pypi. If `settings.LOCALSHOP_ISOLATED` is True then download the file in-process.
5.902364
2.952648
1.999007
# type: (DataLoader) -> None # Take the current loader queue, replacing it with an empty queue. queue = loader._queue loader._queue = [] # If a maxBatchSize was provided and the queue is longer, then segment the # queue into multiple batches, otherwise treat the queue as a single batch. max_batch_size = loader.max_batch_size if max_batch_size and max_batch_size < len(queue): chunks = get_chunks(queue, max_batch_size) for chunk in chunks: dispatch_queue_batch(loader, chunk) else: dispatch_queue_batch(loader, queue)
def dispatch_queue(loader)
Given the current state of a Loader instance, perform a batch load from its current queue.
3.869473
3.617272
1.069721
# type: (DataLoader, Iterable[Loader], Exception) -> None for l in queue: loader.clear(l.key) l.reject(error)
def failed_dispatch(loader, queue, error)
Do not cache individual loads if the entire batch dispatch fails, but still reject each request so they do not hang.
7.665972
8.738011
0.877313
# type: (Hashable) -> Promise if key is None: raise TypeError( ( "The loader.load() function must be called with a value," + "but got: {}." ).format(key) ) cache_key = self.get_cache_key(key) # If caching and there is a cache-hit, return cached Promise. if self.cache: cached_promise = self._promise_cache.get(cache_key) if cached_promise: return cached_promise # Otherwise, produce a new Promise for this value. promise = Promise(partial(self.do_resolve_reject, key)) # type: ignore # If caching, cache this promise. if self.cache: self._promise_cache[cache_key] = promise return promise
def load(self, key=None)
Loads a key, returning a `Promise` for the value represented by that key.
3.98219
3.953544
1.007246
# type: (Iterable[Hashable]) -> Promise if not isinstance(keys, Iterable): raise TypeError( ( "The loader.loadMany() function must be called with Array<key> " + "but got: {}." ).format(keys) ) return Promise.all([self.load(key) for key in keys])
def load_many(self, keys)
Loads multiple keys, promising an array of values >>> a, b = await my_loader.load_many([ 'a', 'b' ]) This is equivalent to the more verbose: >>> a, b = await Promise.all([ >>> my_loader.load('a'), >>> my_loader.load('b') >>> ])
5.39181
7.234755
0.745265
# type: (Hashable) -> DataLoader cache_key = self.get_cache_key(key) self._promise_cache.pop(cache_key, None) return self
def clear(self, key)
Clears the value at `key` from the cache, if it exists. Returns itself for method chaining.
6.334344
4.909282
1.290279
# type: (Hashable, Any) -> DataLoader cache_key = self.get_cache_key(key) # Only add the key if it does not already exist. if cache_key not in self._promise_cache: # Cache a rejected promise if the value is an Error, in order to match # the behavior of load(key). if isinstance(value, Exception): promise = Promise.reject(value) else: promise = Promise.resolve(value) self._promise_cache[cache_key] = promise return self
def prime(self, key, value)
Adds the provied key and value to the cache. If the key already exists, no change is made. Returns itself for method chaining.
3.930503
3.679384
1.06825
if version is None: from promise import VERSION return VERSION else: assert len(version) == 5 assert version[3] in ("alpha", "beta", "rc", "final") return version
def get_complete_version(version=None)
Returns a tuple of the promise version. If version argument is non-empty, then checks for correctness of the tuple provided.
5.382838
4.596626
1.171041
# type: (Promise, Optional[List[Union[Dict[str, Optional[Callable]], Tuple[Callable, Callable], Callable]]]) -> None if not handlers: return for handler in handlers: if isinstance(handler, tuple): s, f = handler self.done(s, f) elif isinstance(handler, dict): s = handler.get("success") # type: ignore f = handler.get("failure") # type: ignore self.done(s, f) else: self.done(handler)
def done_all(self, handlers=None)
:type handlers: list[(Any) -> object] | list[((Any) -> object, (Any) -> object)]
2.736839
2.800417
0.977297
# type: (Promise, List[Callable]) -> List[Promise] if not handlers: return [] promises = [] # type: List[Promise] for handler in handlers: if isinstance(handler, tuple): s, f = handler promises.append(self.then(s, f)) elif isinstance(handler, dict): s = handler.get("success") f = handler.get("failure") promises.append(self.then(s, f)) else: promises.append(self.then(handler)) return promises
def then_all(self, handlers=None)
Utility function which calls 'then' for each handler provided. Handler can either be a function in which case it is used as success handler, or a tuple containing the success and the failure handler, where each of them could be None. :type handlers: list[(Any) -> object] | list[((Any) -> object, (Any) -> object)] :param handlers :rtype : list[Promise]
2.399293
2.47701
0.968624
# type: (Dict[Hashable, Promise[S]]) -> Promise[Dict[Hashable, S]] dict_type = type(m) # type: Type[Dict] if not m: return cls.resolve(dict_type()) def handle_success(resolved_values): # type: (List[S]) -> Dict[Hashable, S] return dict_type(zip(m.keys(), resolved_values)) return cls.all(m.values()).then(handle_success)
def for_dict(cls, m)
A special function that takes a dictionary of promises and turns them into a promise for a dictionary of values. In other words, this turns an dictionary of promises for values into a promise for a dictionary of values.
3.371915
3.239206
1.04097
# type: (Any) -> bool _type = obj.__class__ if obj is None or _type in BASE_TYPES: return False return ( issubclass(_type, Promise) or iscoroutine(obj) # type: ignore or is_future_like(_type) )
def is_thenable(cls, obj)
A utility function to determine if the specified object is a promise using "duck typing".
4.977935
5.092927
0.977421
if ccc.shape[0] == 1: cc = ccc[0] else: cc = ccc # Code borrowed from obspy.signal.cross_correlation.xcorr_pick_correction cc_curvature = np.concatenate((np.zeros(1), np.diff(cc, 2), np.zeros(1))) cc_t = np.arange(0, len(cc) * dt, dt) peak_index = cc.argmax() first_sample = peak_index # XXX this could be improved.. while first_sample > 0 and cc_curvature[first_sample - 1] <= 0: first_sample -= 1 last_sample = peak_index while last_sample < len(cc) - 1 and cc_curvature[last_sample + 1] <= 0: last_sample += 1 num_samples = last_sample - first_sample + 1 if num_samples < 3: msg = "Less than 3 samples selected for fit to cross " + \ "correlation: %s" % num_samples raise IndexError(msg) if num_samples < 5: msg = "Less than 5 samples selected for fit to cross " + \ "correlation: %s" % num_samples warnings.warn(msg) coeffs, residual = scipy.polyfit( cc_t[first_sample:last_sample + 1], cc[first_sample:last_sample + 1], deg=2, full=True)[:2] # check results of fit if coeffs[0] >= 0: msg = "Fitted parabola opens upwards!" warnings.warn(msg) if residual > 0.1: msg = "Residual in quadratic fit to cross correlation maximum " + \ "larger than 0.1: %s" % residual warnings.warn(msg) # X coordinate of vertex of parabola gives time shift to correct # differential pick time. Y coordinate gives maximum correlation # coefficient. shift = -coeffs[1] / 2.0 / coeffs[0] coeff = (4 * coeffs[0] * coeffs[2] - coeffs[1] ** 2) / (4 * coeffs[0]) return shift, coeff
def _xcorr_interp(ccc, dt)
Intrpolate around the maximum correlation value for sub-sample precision. :param ccc: Cross-correlation array :type ccc: numpy.ndarray :param dt: sample interval :type dt: float :return: Position of interpolated maximum in seconds from start of ccc :rtype: float
3.004249
3.117203
0.963764
if len(detection_streams) == 0: return Catalog() if not cores: num_cores = cpu_count() else: num_cores = cores if num_cores > len(detection_streams): num_cores = len(detection_streams) if parallel: pool = Pool(processes=num_cores) debug_print('Made pool of %i workers' % num_cores, 4, debug) # Parallel generation of events for each detection: # results will be a list of (i, event class) results = [pool.apply_async( _channel_loop, (detection_streams[i], ), {'template': template, 'min_cc': min_cc, 'detection_id': detections[i].id, 'interpolate': interpolate, 'i': i, 'pre_lag_ccsum': detections[i].detect_val, 'detect_chans': detections[i].no_chans, 'horizontal_chans': horizontal_chans, 'vertical_chans': vertical_chans}) for i in range(len(detection_streams))] pool.close() try: events_list = [p.get() for p in results] except KeyboardInterrupt as e: # pragma: no cover pool.terminate() raise e pool.join() events_list.sort(key=lambda tup: tup[0]) # Sort based on index. else: events_list = [] for i in range(len(detection_streams)): events_list.append(_channel_loop( detection=detection_streams[i], template=template, min_cc=min_cc, detection_id=detections[i].id, interpolate=interpolate, i=i, pre_lag_ccsum=detections[i].detect_val, detect_chans=detections[i].no_chans, horizontal_chans=horizontal_chans, vertical_chans=vertical_chans, debug=debug)) temp_catalog = Catalog() temp_catalog.events = [event_tup[1] for event_tup in events_list] return temp_catalog
def _day_loop(detection_streams, template, min_cc, detections, horizontal_chans, vertical_chans, interpolate, cores, parallel, debug=0)
Function to loop through multiple detections for one template. Designed to run for the same day of data for I/O simplicity, but as you are passing stream objects it could run for all the detections ever, as long as you have the RAM! :type detection_streams: list :param detection_streams: List of all the detections for this template that you want to compute the optimum pick for. Individual things in list should be of :class:`obspy.core.stream.Stream` type. :type template: obspy.core.stream.Stream :param template: The original template used to detect the detections passed :type min_cc: float :param min_cc: Minimum cross-correlation value to be allowed for a pick. :type detections: list :param detections: List of detections to associate events with an input detection. :type horizontal_chans: list :param horizontal_chans: List of channel endings for horizontal-channels, on which S-picks will be made. :type vertical_chans: list :param vertical_chans: List of channel endings for vertical-channels, on which P-picks will be made. :type interpolate: bool :param interpolate: Interpolate the correlation function to achieve sub-sample precision. :type debug: int :param debug: debug output level 0-5. :returns: Catalog object containing Event objects for each detection created by this template. :rtype: :class:`obspy.core.event.Catalog`
2.432038
2.386458
1.019099
detect_streams = [] for detection in detections: if detection.template_name != template[0]: continue # Stream to be saved for new detection detect_stream = [] max_delay = 0 for tr in detect_data: template_tr = template[1].select( station=tr.stats.station, channel=tr.stats.channel) if len(template_tr) >= 1: # Save template trace length in seconds template_len = ( len(template_tr[0]) / template_tr[0].stats.sampling_rate) else: continue # If there is no template-data match then skip the rest # of the trace loop. # Grab the delays for the desired template: [(sta, chan, delay)] # Now grab the delay for the desired trace for this template delay = delays[tr.stats.station + '.' + tr.stats.channel] if delay > max_delay: max_delay = delay detect_stream.append(tr.slice( starttime=detection.detect_time - shift_len + delay, endtime=detection.detect_time + delay + shift_len + template_len).copy()) for tr in detect_stream: if len(tr.data) == 0: msg = ('No data in %s.%s for detection at time %s' % (tr.stats.station, tr.stats.channel, detection.detect_time)) warnings.warn(msg) detect_stream.remove(tr) elif tr.stats.endtime - tr.stats.starttime < ( 2 * shift_len) + template_len: msg = ("Insufficient data for %s.%s will not use." % (tr.stats.station, tr.stats.channel)) warnings.warn(msg) detect_stream.remove(tr) elif np.ma.is_masked(tr.data): msg = ("Masked data found for %s.%s, will not use." % (tr.stats.station, tr.stats.channel)) warnings.warn(msg) detect_stream.remove(tr) # Check for duplicate traces stachans = [(tr.stats.station, tr.stats.channel) for tr in detect_stream] c_stachans = Counter(stachans) for key in c_stachans.keys(): if c_stachans[key] > 1: msg = ('Multiple channels for %s.%s, likely a data issue' % (key[0], key[1])) raise LagCalcError(msg) if plot: background = detect_data.slice( starttime=detection.detect_time - (shift_len + 5), endtime=detection.detect_time + shift_len + max_delay + 7).copy() for tr in background: if len(tr.data) == 0: background.remove(tr) detection_multiplot( stream=background, template=Stream(detect_stream), times=[detection.detect_time - shift_len], title='Detection Extracted') if not len(detect_stream) == 0: detect_stream = Stream(detect_stream).split() # Make sure there are no masks left over. # Create tuple of (template name, data stream) detect_streams.append((detection.template_name, Stream(detect_stream))) return detect_streams
def _prepare_data(detect_data, detections, template, delays, shift_len, plot)
Prepare data for lag_calc - reduce memory here. :type detect_data: obspy.core.stream.Stream :param detect_data: Stream to extract detection streams from. :type detections: list :param detections: List of :class:`eqcorrscan.core.match_filter.Detection` to get data for. :type template: tuple :param template: tuple of (template_name, template) :type delays: list :param delays: Dictionary of delay times in seconds keyed by sta.channel. :type shift_len: float :param shift_len: Shift length in seconds allowed for picking. :type plot: bool :param plot: Whether to plot the data extracted or not, used for debugging. :returns: List of detect_streams to be worked on :rtype: list
3.20382
2.978208
1.075754
parameters = [] f = open(filename, 'r') print('Reading parameters with the following header:') for line in f: if line[0] == '#': print(line.rstrip('\n').lstrip('\n')) else: parameter_dict = ast.literal_eval(line) # convert the dictionary to the class trig_par = TriggerParameters(parameter_dict) parameters.append(trig_par) f.close() return parameters
def read_trigger_parameters(filename)
Read the trigger parameters into trigger_parameter classes. :type filename: str :param filename: Parameter file :returns: List of :class:`eqcorrscan.utils.trigger.TriggerParameters` :rtype: list .. rubric:: Example >>> from eqcorrscan.utils.trigger import read_trigger_parameters >>> parameters = read_trigger_parameters('parameters') # doctest: +SKIP
3.10687
3.831851
0.810802