code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
from eqcorrscan.utils import clustering
tribes = []
func = getattr(clustering, method)
if method in ['space_cluster', 'space_time_cluster']:
cat = Catalog([t.event for t in self.templates])
groups = func(cat, **kwargs)
for group in groups:
new_tribe = Tribe()
for event in group:
new_tribe.templates.extend([t for t in self.templates
if t.event == event])
tribes.append(new_tribe)
return tribes | def cluster(self, method, **kwargs) | Cluster the tribe.
Cluster templates within a tribe: returns multiple tribes each of
which could be stacked.
:type method: str
:param method:
Method of stacking, see :mod:`eqcorrscan.utils.clustering`
:return: List of tribes.
.. rubric:: Example | 5.727488 | 3.887985 | 1.473125 |
templates, catalog, process_lengths = template_gen.template_gen(
method=method, lowcut=lowcut, highcut=highcut,
filt_order=filt_order, samp_rate=samp_rate, prepick=prepick,
return_event=True, save_progress=save_progress, **kwargs)
for template, event, process_len in zip(templates, catalog,
process_lengths):
t = Template()
for tr in template:
if not np.any(tr.data.astype(np.float16)):
warnings.warn('Data are zero in float16, missing data,'
' will not use: %s' % tr.id)
template.remove(tr)
if len(template) == 0:
print('Empty Template')
continue
t.st = template
t.name = template.sort(['starttime'])[0]. \
stats.starttime.strftime('%Y_%m_%dt%H_%M_%S')
t.lowcut = lowcut
t.highcut = highcut
t.filt_order = filt_order
t.samp_rate = samp_rate
t.process_length = process_len
t.prepick = prepick
event.comments.append(Comment(
text="eqcorrscan_template_" + t.name,
creation_info=CreationInfo(agency='eqcorrscan',
author=getpass.getuser())))
t.event = event
self.templates.append(t)
return self | def construct(self, method, lowcut, highcut, samp_rate, filt_order,
prepick, save_progress=False, **kwargs) | Generate a Tribe of Templates.
See :mod:`eqcorrscan.core.template_gen` for available methods.
:param method: Method of Tribe generation.
:param kwargs: Arguments for the given method.
:type lowcut: float
:param lowcut:
Low cut (Hz), if set to None will not apply a lowcut
:type highcut: float
:param highcut:
High cut (Hz), if set to None will not apply a highcut.
:type samp_rate: float
:param samp_rate:
New sampling rate in Hz.
:type filt_order: int
:param filt_order:
Filter level (number of corners).
:type prepick: float
:param prepick: Pre-pick time in seconds
:type save_progress: bool
:param save_progress:
Whether to save the resulting party at every data step or not.
Useful for long-running processes.
.. Note::
Methods: `from_contbase`, `from_sfile` and `from_sac` are not
supported by Tribe.construct and must use Template.construct.
.. Note::
The Method `multi_template_gen` is not supported because the
processing parameters for the stream are not known. Use
`from_meta_file` instead.
.. Note:: Templates will be named according to their start-time. | 4.354722 | 4.032381 | 1.079938 |
mode = 'w'
if append and os.path.isfile(fname):
mode = 'a'
header = '; '.join(['Template name', 'Detection time (UTC)',
'Number of channels', 'Channel list',
'Detection value', 'Threshold',
'Threshold type', 'Input threshold',
'Detection type'])
print_str = "{0}; {1}; {2}; {3}; {4}; {5}; {6}; {7}; {8}\n".format(
self.template_name, self.detect_time, self.no_chans,
self.chans, self.detect_val, self.threshold,
self.threshold_type, self.threshold_input, self.typeofdet)
with open(fname, mode) as _f:
_f.write(header + '\n') # Write a header for the file
_f.write(print_str) | def write(self, fname, append=True) | Write detection to csv formatted file.
Will append if append==True and file exists
:type fname: str
:param fname: Full path to file to open and write to.
:type append: bool
:param append: Set to true to append to an existing file, if True \
and file doesn't exist, will create new file and warn. If False
will overwrite old files. | 3.338042 | 3.491107 | 0.956156 |
if template is not None and template.name != self.template_name:
print("Template names do not match: {0}: {1}".format(
template.name, self.template_name))
return
# Detect time must be valid QuakeML uri within resource_id.
# This will write a formatted string which is still
# readable by UTCDateTime
det_time = str(self.detect_time.strftime('%Y%m%dT%H%M%S.%f'))
ev = Event(resource_id=ResourceIdentifier(
id=self.template_name + '_' + det_time,
prefix='smi:local'))
ev.creation_info = CreationInfo(
author='EQcorrscan', creation_time=UTCDateTime())
ev.comments.append(
Comment(text='threshold={0}'.format(self.threshold)))
ev.comments.append(
Comment(text='detect_val={0}'.format(self.detect_val)))
if self.chans is not None:
ev.comments.append(
Comment(text='channels used: {0}'.format(
' '.join([str(pair) for pair in self.chans]))))
if template is not None:
template_st = template.st
min_template_tm = min(
[tr.stats.starttime for tr in template_st])
for tr in template_st:
if (tr.stats.station, tr.stats.channel) \
not in self.chans:
continue
elif tr.stats.__contains__("not_in_original"):
continue
else:
pick_time = self.detect_time + (
tr.stats.starttime - min_template_tm)
ev.picks.append(Pick(
time=pick_time, waveform_id=WaveformStreamID(
network_code=tr.stats.network,
station_code=tr.stats.station,
channel_code=tr.stats.channel,
location_code=tr.stats.location)))
self.event = ev
return | def _calculate_event(self, template=None, template_st=None) | Calculate an event for this detection using a given template.
:type template: Template
:param template: The template that made this detection
:type template_st: `obspy.core.stream.Stream`
:param template_st:
Template stream, used to calculate pick times, not needed if
template is given.
.. rubric:: Note
Works in place on Detection - over-writes previous events.
Does not correct for pre-pick. | 4.091574 | 3.811225 | 1.073559 |
# We want to download some QuakeML files from the New Zealand GeoNet
# network, GeoNet currently doesn't support FDSN event queries, so we
# have to work around to download quakeml from their quakeml.geonet site.
client = Client(network_code)
# We want to download a few events from an earthquake sequence, these are
# identified by publiID numbers, given as arguments
catalog = Catalog()
for publicID in publicIDs:
if network_code == 'GEONET':
data_stream = client._download(
'http://quakeml.geonet.org.nz/quakeml/1.2/' + publicID)
data_stream.seek(0, 0)
catalog += read_events(data_stream, format="quakeml")
data_stream.close()
else:
catalog += client.get_events(
eventid=publicID, includearrivals=True)
# Lets plot the catalog to see what we have
if plot:
catalog.plot(projection='local', resolution='h')
# We don't need all the picks, lets take the information from the
# five most used stations - note that this is done to reduce computational
# costs.
catalog = filter_picks(catalog, top_n_picks=5)
# We only want the P picks in this example, but you can use others or all
# picks if you want.
for event in catalog:
for pick in event.picks:
if pick.phase_hint == 'S':
event.picks.remove(pick)
# Now we can generate the templates
templates = template_gen.template_gen(
method='from_client', catalog=catalog, client_id=network_code,
lowcut=2.0, highcut=9.0, samp_rate=20.0, filt_order=4, length=3.0,
prepick=0.15, swin='all', process_len=3600, debug=0, plot=plot)
# We now have a series of templates! Using Obspy's Stream.write() method we
# can save these to disk for later use. We will do that now for use in the
# following tutorials.
for i, template in enumerate(templates):
template.write('tutorial_template_' + str(i) + '.ms', format='MSEED')
# Note that this will warn you about data types. As we don't care
# at the moment, whatever obspy chooses is fine.
return | def mktemplates(network_code='GEONET',
publicIDs=['2016p008122', '2016p008353', '2016p008155',
'2016p008194'], plot=True) | Functional wrapper to make templates | 6.997546 | 7.036327 | 0.994488 |
# Locate the slowness file information
gridfiles = []
stations_out = []
for station in stations:
gridfiles += (glob.glob(path + '*.' + phase + '.' + station +
'.time.csv'))
if glob.glob(path + '*.' + phase + '.' + station + '*.csv'):
stations_out += [station]
# Read the files
allnodes = []
for gridfile in gridfiles:
print(' Reading slowness from: ' + gridfile)
f = open(gridfile, 'r')
grid = csv.reader(f, delimiter=str(' '))
traveltime = []
nodes = []
for row in grid:
nodes.append((float(row[0]), float(row[1]), float(row[2])))
traveltime.append(float(row[3]))
traveltime = np.array(traveltime)
if not phase == phaseout:
if phase == 'S':
traveltime = traveltime / ps_ratio
else:
traveltime = traveltime * ps_ratio
if lags_switch:
lags = traveltime - min(traveltime)
else:
lags = traveltime
if 'alllags' not in locals():
alllags = [lags]
else:
alllags = np.concatenate((alllags, [lags]), axis=0)
allnodes = nodes
# each element of allnodes should be the same as the
# other one, e.g. for each station the grid must be the
# same, hence allnodes=nodes
f.close()
alllags = np.array(alllags)
return stations_out, allnodes, alllags | def _read_tt(path, stations, phase, phaseout='S', ps_ratio=1.68,
lags_switch=True) | Read in .csv files of slowness generated from Grid2Time.
Converts these data to a useful format here.
It should be noted that this can read either P or S travel-time grids, not
both at the moment.
:type path: str
:param path: The path to the .csv Grid2Time outputs
:type stations: list
:param stations: List of station names to read slowness files for.
:type phase: str
:param phase: Input phase type.
:type phaseout: str
:param phaseout: What phase to return the lagtimes in.
:type ps_ratio: float
:param ps_ratio: p to s ratio for conversion
:type lags_switch: bool
:param lags_switch:
Return lags or raw travel-times, if set to true will return lags.
:returns: Stations
:rtype: list
:returns: List of lists of tuples of node locations
:rtype: list
:returns: Array of lags.
:rtype: :class:`numpy.ndarray`
.. note::
**Output:**
station[1] refers to nodes[1] and lags[1] nodes[1][1] refers
to station[1] and lags[1][1] nodes[n][n] is a tuple of latitude,
longitude and depth.
.. note::
This function currently needs comma separated grid files in
NonLinLoc format. Only certain versions of NonLinLoc write these csv
files, however it should be possible to read the binary files directly.
If you find you need this capability let us know and we can try and
implement it. | 3.281991 | 3.008185 | 1.09102 |
resamp_nodes = []
resamp_lags = []
# Cut the volume
for i, node in enumerate(nodes):
# If the node is within the volume range, keep it
if mindepth < float(node[2]) < maxdepth and\
corners.contains_point(node[0:2]):
resamp_nodes.append(node)
resamp_lags.append([lags[:, i]])
# Reshape the lags
print(np.shape(resamp_lags))
resamp_lags = np.reshape(resamp_lags, (len(resamp_lags), len(stations))).T
# Resample the nodes - they are sorted in order of size with largest long
# then largest lat, then depth.
print(' '.join(['Grid now has ', str(len(resamp_nodes)), 'nodes']))
return stations, resamp_nodes, resamp_lags | def _resample_grid(stations, nodes, lags, mindepth, maxdepth, corners) | Resample the lagtime grid to a given volume.
For use if the grid from Grid2Time is too large or you want to run a
faster, downsampled scan.
:type stations: list
:param stations:
List of station names from in the form where stations[i] refers to
nodes[i][:] and lags[i][:]
:type nodes: list
:param nodes:
List of node points where nodes[i] referes to stations[i] and
nodes[:][:][0] is latitude in degrees, nodes[:][:][1] is longitude in
degrees, nodes[:][:][2] is depth in km.
:type lags: numpy.ndarray
:param lags:
Array of arrays where lags[i][:] refers to stations[i]. lags[i][j]
should be the delay to the nodes[i][j] for stations[i] in seconds.
:type mindepth: float
:param mindepth: Upper limit of volume
:type maxdepth: float
:param maxdepth: Lower limit of volume
:type corners: matplotlib.path.Path
:param corners:
matplotlib Path of the corners for the 2D polygon to cut to in lat and
lon.
:returns: Stations
:rtype: list
:returns: List of lists of tuples of node locations
:rtype: list
:returns: Array of lags.
:rtype: :class:`numpy.ndarray`
.. note::
**Output:**
station[1] refers to nodes[1] and lags[1] nodes[1][1] refers
to station[1] and lags[1][1] nodes[n][n] is a tuple of latitude,
longitude and depth. | 4.566091 | 4.157295 | 1.098332 |
netdif = abs((lags.T - lags.T[0]).sum(axis=1).reshape(1, len(nodes))) \
> threshold
for i in range(len(nodes)):
_netdif = abs((lags.T -
lags.T[i]).sum(axis=1).reshape(1, len(nodes)))\
> threshold
netdif = np.concatenate((netdif, _netdif), axis=0)
sys.stdout.write("\r" + str(float(i) // len(nodes) * 100) + "% \r")
sys.stdout.flush()
nodes_out = [nodes[0]]
node_indices = [0]
print("\n")
print(len(nodes))
for i in range(1, len(nodes)):
if np.all(netdif[i][node_indices]):
node_indices.append(i)
nodes_out.append(nodes[i])
lags_out = lags.T[node_indices].T
print("Removed " + str(len(nodes) - len(nodes_out)) + " duplicate nodes")
return stations, nodes_out, lags_out | def _rm_similarlags(stations, nodes, lags, threshold) | Remove nodes that have a very similar network moveout to another node.
This function will, for each node, calculate the difference in lagtime
at each station at every node, then sum these for each node to get a
cumulative difference in network moveout. This will result in an
array of arrays with zeros on the diagonal.
:type stations: list
:param stations:
List of station names from in the form where stations[i] refers to
nodes[i][:] and lags[i][:]
:type nodes: list
:param nodes:
List of node points where nodes[i] referes to stations[i] and
nodes[:][:][0] is latitude in degrees, nodes[:][:][1] is longitude in
degrees, nodes[:][:][2] is depth in km.
:type lags: numpy.ndarray
:param lags:
Array of arrays where lags[i][:] refers to stations[i]. lags[i][j]
should be the delay to the nodes[i][j] for stations[i] in seconds.
:type threshold: float
:param threshold: Threshold for removal in seconds
:returns: Stations
:rtype: list
:returns: List of lists of tuples of node locations
:rtype: list
:returns: Array of lags.
:rtype: :class:`numpy.ndarray`
.. note::
**Output:**
station[1] refers to nodes[1] and lags[1] nodes[1][1] refers
to station[1] and lags[1][1] nodes[n][n] is a tuple of latitude,
longitude and depth. | 2.709805 | 2.725359 | 0.994293 |
cum_net_resp = np.load('tmp' + str(instance) +
'/node_' + str(node_lis[0]) + '.npy')[0]
os.remove('tmp' + str(instance) + '/node_' + str(node_lis[0]) + '.npy')
indices = np.ones(len(cum_net_resp)) * node_lis[0]
for i in node_lis[1:]:
node_energy = np.load('tmp' + str(instance) + '/node_' +
str(i) + '.npy')[0]
updated_indices = np.argmax([cum_net_resp, node_energy], axis=0)
temp = np.array([cum_net_resp, node_energy])
cum_net_resp = np.array([temp[updated_indices[j]][j]
for j in range(len(updated_indices))])
del temp, node_energy
updated_indices[updated_indices == 1] = i
indices = updated_indices
os.remove('tmp' + str(instance) + '/node_' + str(i) + '.npy')
return cum_net_resp, indices | def _cum_net_resp(node_lis, instance=0) | Compute the cumulative network response by reading saved energy .npy files.
:type node_lis: numpy.ndarray
:param node_lis: List of nodes (ints) to read from
:type instance: int
:param instance: Instance flag for parallel workflows, defaults to 0.
:returns: cumulative network response
:rtype: numpy.ndarray
:returns: node indices for each sample of the cumulative network response.
:rtype: list | 2.331495 | 2.385843 | 0.977221 |
cum_net_resp = np.nan_to_num(cum_net_resp) # Force no NaNs
if np.isnan(cum_net_resp).any():
raise ValueError("Nans present")
print('Mean of data is: ' + str(np.median(cum_net_resp)))
print('RMS of data is: ' + str(np.sqrt(np.mean(np.square(cum_net_resp)))))
print('MAD of data is: ' + str(np.median(np.abs(cum_net_resp))))
if thresh_type == 'MAD':
thresh = (np.median(np.abs(cum_net_resp)) * threshold)
elif thresh_type == 'abs':
thresh = threshold
elif thresh_type == 'RMS':
thresh = _rms(cum_net_resp) * threshold
print('Threshold is set to: ' + str(thresh))
print('Max of data is: ' + str(max(cum_net_resp)))
peaks = findpeaks.find_peaks2_short(cum_net_resp, thresh,
length * samp_rate, debug=0)
detections = []
if peaks:
for peak in peaks:
node = nodes[peak[1]]
detections.append(
Detection(template_name=str(node[0]) + '_' +
str(node[1]) + '_' + str(node[2]),
detect_time=peak[1] / samp_rate,
no_chans=len(realstations), detect_val=peak[0],
threshold=thresh, typeofdet='brightness',
chans=realstations, id=str(node[0]) + '_' +
str(node[1]) + '_' + str(node[2]) +
str(peak[1] / samp_rate),
threshold_type=thresh_type,
threshold_input=threshold))
else:
detections = []
print('I have found ' + str(len(peaks)) + ' possible detections')
return detections | def _find_detections(cum_net_resp, nodes, threshold, thresh_type,
samp_rate, realstations, length) | Find detections within the cumulative network response.
:type cum_net_resp: numpy.ndarray
:param cum_net_resp: Array of cumulative network response for nodes
:type nodes: list
:param nodes: Nodes associated with the source of energy in the \
cum_net_resp
:type threshold: float
:param threshold: Threshold value
:type thresh_type: str
:param thresh_type: Either MAD (Median Absolute Deviation) or abs \
(absolute) or RMS (Root Mean Squared)
:type samp_rate: float
:param samp_rate: Sampling rate in Hz
:type realstations: list
:param realstations:
List of stations used to make the cumulative network response, will be
reported in the :class:`eqcorrscan.core.match_filter.Detection`
:type length: float
:param length: Maximum length of peak to look for in seconds
:returns:
Detections as :class:`eqcorrscan.core.match_filter.Detection` objects.
:rtype: list | 2.939744 | 2.804686 | 1.048154 |
stream = stream_in.copy() # Copy the data before we remove stations
# First check that all channels in stream have data of the same length
maxlen = np.max([len(tr.data) for tr in stream])
if maxlen == 0:
warnings.warn('template without data')
return 0.0, len(stream)
if not stations[0] == 'all':
for tr in stream:
if tr.stats.station not in stations:
stream.remove(tr) # Remove stations we don't want to use
for tr in stream:
if not len(tr.data) == maxlen and not len(tr.data) == 0:
warnings.warn(tr.stats.station + '.' + tr.stats.channel +
' is not the same length, padding \n' +
'Length is ' + str(len(tr.data)) + ' samples')
pad = np.zeros(maxlen - len(tr.data))
if tr.stats.starttime.hour == 0:
tr.data = np.concatenate((pad, tr.data), axis=0)
else:
tr.data = np.concatenate((tr.data, pad), axis=0)
elif len(tr.data) == 0:
tr.data = np.zeros(maxlen)
# Clip the data to the set length
if clip:
for tr in stream:
tr.trim(tr.stats.starttime + clip[0], tr.stats.starttime + clip[1])
_coherence = 0.0
# Loop through channels and generate a correlation value for each
# unique cross-channel pairing
for i in range(len(stream)):
for j in range(i + 1, len(stream)):
_coherence += np.abs(normxcorr2(stream[i].data,
stream[j].data))[0][0]
_coherence = 2 * _coherence / (len(stream) * (len(stream) - 1))
return _coherence, len(stream) | def coherence(stream_in, stations=['all'], clip=False) | Determine the average network coherence of a given template or detection.
You will want your stream to contain only signal as noise will reduce the
coherence (assuming it is incoherent random noise).
:type stream_in: obspy.core.stream.Stream
:param stream_in: The stream of seismic data you want to calculate the \
coherence for.
:type stations: list
:param stations: List of stations to use for coherence, default is all
:type clip: tuple
:param clip: Default is to use all the data given (`False`) - \
tuple of start and end in seconds from start of trace
:return: tuple of coherence and number of channels used.
:rtype: tuple | 2.741144 | 2.703576 | 1.013896 |
min_fftlen = int(stream[0][0].data.shape[0] +
detector.data[0].shape[0] - Nc)
fftlen = scipy.fftpack.next_fast_len(min_fftlen)
mplen = stream[0][0].data.shape[0]
ulen = detector.data[0].shape[0]
num_st_fd = [np.fft.rfft(tr.data, n=fftlen)
for tr in stream[0]]
denom_st_fd = [np.fft.rfft(np.square(tr.data), n=fftlen)
for tr in stream[0]]
# Frequency domain of boxcar
w = np.fft.rfft(np.ones(detector.data[0].shape[0]),
n=fftlen)
# This should go into the detector object as in Detex
detector_fd = []
for dat_mat in detector.data:
detector_fd.append(np.array([np.fft.rfft(col[::-1], n=fftlen)
for col in dat_mat.T]))
return detector_fd, denom_st_fd, num_st_fd, w, ulen, mplen | def _do_ffts(detector, stream, Nc) | Perform ffts on data, detector and denominator boxcar
:type detector: eqcorrscan.core.subspace.Detector
:param detector: Detector object for doing detecting
:type stream: list of obspy.core.stream.Stream
:param stream: List of streams processed according to detector
:type Nc: int
:param Nc: Number of channels in data. 1 for non-multiplexed
:return: list of time-reversed detector(s) in freq domain
:rtype: list
:return: list of squared data stream(s) in freq domain
:rtype: list
:return: list of data stream(s) in freq domain
:return: detector-length boxcar in freq domain
:rtype: numpy.ndarray
:return: length of detector
:rtype: int
:return: length of data
:rtype: int | 4.001939 | 3.603515 | 1.110565 |
num_cor = np.multiply(det_freq, data_freq) # Numerator convolution
den_cor = np.multiply(w, data_freq_sq) # Denominator convolution
# Do inverse fft
# First and last Nt - 1 samples are invalid; clip them off
num_ifft = np.real(np.fft.irfft(num_cor))[:, ulen-1:mplen:Nc]
denominator = np.real(np.fft.irfft(den_cor))[ulen-1:mplen:Nc]
# Ratio of projected to envelope energy = det_stat across all channels
result = np.sum(np.square(num_ifft), axis=0) / denominator
return result | def _det_stat_freq(det_freq, data_freq_sq, data_freq, w, Nc, ulen, mplen) | Compute detection statistic in the frequency domain
:type det_freq: numpy.ndarray
:param det_freq: detector in freq domain
:type data_freq_sq: numpy.ndarray
:param data_freq_sq: squared data in freq domain
:type data_freq: numpy.ndarray
:param data_freq: data in freq domain
:type w: numpy.ndarray
:param w: boxcar in freq domain
:type Nc: int
:param Nc: number of channels in data stream
:type ulen: int
:param ulen: length of detector
:type mplen: int
:param mplen: length of data
:return: Array of detection statistics
:rtype: numpy.ndarray | 5.750855 | 6.114059 | 0.940595 |
stack = stream[0].data
for tr in stream[1:]:
stack = np.dstack(np.array([stack, tr.data]))
multiplex = stack.reshape(stack.size, )
return multiplex | def multi(stream) | Internal multiplexer for multiplex_detect.
:type stream: obspy.core.stream.Stream
:param stream: Stream to multiplex
:return: trace of multiplexed data
:rtype: obspy.core.trace.Trace
.. Note: Requires all channels to be the same length.
Maps a standard multiplexed stream of seismic data to a single traces of \
multiplexed data as follows:
Input:
x = [x1, x2, x3, ...]
y = [y1, y2, y3, ...]
z = [z1, z2, z3, ...]
Output:
xyz = [x1, y1, z1, x2, y2, z2, x3, y3, z3, ...] | 6.276159 | 5.423364 | 1.157245 |
from multiprocessing import Pool, cpu_count
# First check that detector parameters are the same
parameters = []
detections = []
for detector in detectors:
parameter = (detector.lowcut, detector.highcut,
detector.filt_order, detector.sampling_rate,
detector.multiplex, detector.stachans)
if parameter not in parameters:
parameters.append(parameter)
for parameter_set in parameters:
parameter_detectors = []
for detector in detectors:
det_par = (detector.lowcut, detector.highcut, detector.filt_order,
detector.sampling_rate, detector.multiplex,
detector.stachans)
if det_par == parameter_set:
parameter_detectors.append(detector)
stream, stachans = \
_subspace_process(
streams=[stream.copy()], lowcut=parameter_set[0],
highcut=parameter_set[1], filt_order=parameter_set[2],
sampling_rate=parameter_set[3], multiplex=parameter_set[4],
stachans=parameter_set[5], parallel=True, align=False,
shift_len=None, reject=False)
if not parallel:
for detector in parameter_detectors:
detections += _detect(
detector=detector, st=stream[0], threshold=threshold,
trig_int=trig_int, moveout=moveout, min_trig=min_trig,
process=False, extract_detections=False, debug=0)
else:
if num_cores:
ncores = num_cores
else:
ncores = cpu_count()
pool = Pool(processes=ncores)
results = [pool.apply_async(
_detect, args=(detector, stream[0], threshold, trig_int,
moveout, min_trig, False, False, 0))
for detector in parameter_detectors]
pool.close()
try:
_detections = [p.get() for p in results]
except KeyboardInterrupt as e: # pragma: no cover
pool.terminate()
raise e
pool.join()
for d in _detections:
if isinstance(d, list):
detections += d
else:
detections.append(d)
return detections | def subspace_detect(detectors, stream, threshold, trig_int, moveout=0,
min_trig=1, parallel=True, num_cores=None) | Conduct subspace detection with chosen detectors.
:type detectors: list
:param detectors:
list of :class:`eqcorrscan.core.subspace.Detector` to be used
for detection.
:type stream: obspy.core.stream.Stream
:param stream: Stream to detect within.
:type threshold: float
:param threshold:
Threshold between 0 and 1 for detection, see :func:`Detector.detect`
:type trig_int: float
:param trig_int: Minimum trigger interval in seconds.
:type moveout: float
:param moveout:
Maximum allowable moveout window for non-multiplexed, network
detection. See note.
:type min_trig: int
:param min_trig:
Minimum number of stations exceeding threshold for non-multiplexed,
network detection. See note in :func:`Detector.detect`.
:type parallel: bool
:param parallel: Whether to run detectors in parallel in groups.
:type num_cores: int
:param num_cores:
How many cpu cores to use if parallel==True. If set to None (default),
will use all available cores.
:rtype: list
:return:
List of :class:`eqcorrscan.core.match_filter.Detection` detections.
.. Note::
This will loop through your detectors using their detect method.
If the detectors are multiplexed it will run groups of detectors with
the same channels at the same time. | 2.410128 | 2.42211 | 0.995053 |
self.lowcut = lowcut
self.highcut = highcut
self.filt_order = filt_order
self.sampling_rate = sampling_rate
self.name = name
self.multiplex = multiplex
# Pre-process data
p_streams, stachans = _subspace_process(
streams=copy.deepcopy(streams), lowcut=lowcut, highcut=highcut,
filt_order=filt_order, sampling_rate=sampling_rate,
multiplex=multiplex, align=align, shift_len=shift_len,
reject=reject, plot=plot, no_missed=no_missed)
# Compute the SVD, use the cluster.SVD function
u, sigma, v, svd_stachans = svd(stream_list=p_streams, full=True)
self.stachans = stachans
# self.delays = delays
self.u = u
self.v = v
self.sigma = sigma
self.data = copy.deepcopy(u) # Set the data matrix to be full rank U.
self.dimension = np.inf
return self | def construct(self, streams, lowcut, highcut, filt_order,
sampling_rate, multiplex, name, align, shift_len=0,
reject=0.3, no_missed=True, plot=False) | Construct a subspace detector from a list of streams, full rank.
Subspace detector will be full-rank, further functions can be used \
to select the desired dimensions.
:type streams: list
:param streams:
List of :class:`obspy.core.stream.Stream` to be used to generate
the subspace detector. These should be pre-clustered and aligned.
:type lowcut: float
:param lowcut: Lowcut in Hz, can be None to not apply filter
:type highcut: float
:param highcut: Highcut in Hz, can be None to not apply filter
:type filt_order: int
:param filt_order: Number of corners for filter.
:type sampling_rate: float
:param sampling_rate: Desired sampling rate in Hz
:type multiplex: bool
:param multiplex:
Whether to multiplex the data or not. Data are multiplexed
according to the method of Harris, see the multi function for
details.
:type name: str
:param name: Name of the detector, used for book-keeping.
:type align: bool
:param align:
Whether to align the data or not - needs to be done at some point
:type shift_len: float
:param shift_len: Maximum shift allowed for alignment in seconds.
:type reject: float
:param reject:
Minimum correlation to include traces - only used if align=True.
:type no_missed: bool
:param no_missed:
Reject streams with missed traces, defaults to True. A missing
trace from lots of events will reduce the quality of the subspace
detector if multiplexed. Only used when multi is set to True.
:type plot: bool
:param plot: Whether to plot the alignment stage or not.
.. note::
The detector will be normalized such that the data, before
computing the singular-value decomposition, will have unit energy.
e.g. We divide the amplitudes of the data by the L1 norm of the
data.
.. warning::
EQcorrscan's alignment will attempt to align over the whole data
window given. For long (more than 2s) chunks of data this can give
poor results and you might be better off using the
:func:`eqcorrscan.utils.stacking.align_traces` function externally,
focusing on a smaller window of data. To do this you would align
the data prior to running construct. | 3.489916 | 3.444882 | 1.013073 |
# Take leftmost 'dimension' input basis vectors
for i, channel in enumerate(self.u):
if self.v[i].shape[1] < dimension:
raise IndexError('Channel is max dimension %s'
% self.v[i].shape[1])
self.data[i] = channel[:, 0:dimension]
self.dimension = dimension
return self | def partition(self, dimension) | Partition subspace into desired dimension.
:type dimension: int
:param dimension: Maximum dimension to use. | 7.245292 | 7.296092 | 0.993037 |
if show:
return subspace_fc_plot(detector=self, stachans=stachans,
size=size, show=show)
percent_capture = 0
if np.isinf(self.dimension):
return 100
for channel in self.sigma:
fc = np.sum(channel[0:self.dimension]) / np.sum(channel)
percent_capture += fc
else:
return 100 * (percent_capture / len(self.sigma)) | def energy_capture(self, stachans='all', size=(10, 7), show=False) | Calculate the average percentage energy capture for this subspace.
:return: Percentage energy capture
:rtype: float | 5.242532 | 4.823985 | 1.086764 |
return _detect(detector=self, st=st, threshold=threshold,
trig_int=trig_int, moveout=moveout, min_trig=min_trig,
process=process, extract_detections=extract_detections,
debug=debug, cores=cores) | def detect(self, st, threshold, trig_int, moveout=0, min_trig=0,
process=True, extract_detections=False, cores=1, debug=0) | Detect within continuous data using the subspace method.
:type st: obspy.core.stream.Stream
:param st:
Un-processed stream to detect within using the subspace detector.
:type threshold: float
:param threshold: Threshold value for detections between 0-1
:type trig_int: float
:param trig_int: Minimum trigger interval in seconds.
:type moveout: float
:param moveout:
Maximum allowable moveout window for non-multiplexed, network
detection. See note.
:type min_trig: int
:param min_trig:
Minimum number of stations exceeding threshold for non-multiplexed,
network detection. See note.
:type process: bool
:param process:
Whether or not to process the stream according to the parameters
defined by the detector. Default is True, which will process the
data.
:type extract_detections: bool
:param extract_detections:
Whether to extract waveforms for each detection or not, if True
will return detections and streams.
:type cores: int
:param cores: Number of threads to process data with.
:type debug: int
:param debug: Debug output level from 0-5.
:return: list of :class:`eqcorrscan.core.match_filter.Detection`
:rtype: list
.. warning::
Subspace is currently in beta, see note in the subspace tutorial
for information.
.. note::
If running in bulk with detectors that all have the same
parameters then you can pre-process the data and set process to
False. This will speed up this detect function dramatically.
.. warning::
If the detector and stream are multiplexed then they must
contain the same channels and multiplexed in the same order. This
is handled internally when process=True, but if running in bulk
you must take care.
.. note::
Non-multiplexed, network detection. When the detector is
not multiplexed, but there are multiple channels within the
detector, we do not stack the single-channel detection statistics
because we do not have a one-size-fits-all solution for computing
delays for a subspace detector (if you want to implement one, then
please contribute it!). Therefore, these parameters provide a
means for declaring a network coincidence trigger using
single-channel detection statistics, in a similar fashion to the
commonly used network-coincidence trigger with energy detection
statistics. | 1.907498 | 2.437174 | 0.782668 |
f = h5py.File(filename, "w")
# Must store eqcorrscan version number, username would be useful too.
data_group = f.create_group(name="data")
for i, data in enumerate(self.data):
dset = data_group.create_dataset(name="data_" + str(i),
shape=data.shape,
dtype=data.dtype)
dset[...] = data
data_group.attrs['length'] = len(self.data)
data_group.attrs['name'] = self.name.encode("ascii", "ignore")
data_group.attrs['sampling_rate'] = self.sampling_rate
data_group.attrs['multiplex'] = self.multiplex
data_group.attrs['lowcut'] = self.lowcut
data_group.attrs['highcut'] = self.highcut
data_group.attrs['filt_order'] = self.filt_order
data_group.attrs['dimension'] = self.dimension
data_group.attrs['user'] = getpass.getuser()
data_group.attrs['eqcorrscan_version'] = str(eqcorrscan.__version__)
# Convert station-channel list to something writable
ascii_stachans = ['.'.join(stachan).encode("ascii", "ignore")
for stachan in self.stachans]
stachans = f.create_dataset(name="stachans",
shape=(len(ascii_stachans),),
dtype='S10')
stachans[...] = ascii_stachans
u_group = f.create_group("u")
for i, u in enumerate(self.u):
uset = u_group.create_dataset(name="u_" + str(i),
shape=u.shape, dtype=u.dtype)
uset[...] = u
u_group.attrs['length'] = len(self.u)
sigma_group = f.create_group("sigma")
for i, sigma in enumerate(self.sigma):
sigmaset = sigma_group.create_dataset(name="sigma_" + str(i),
shape=sigma.shape,
dtype=sigma.dtype)
sigmaset[...] = sigma
sigma_group.attrs['length'] = len(self.sigma)
v_group = f.create_group("v")
for i, v in enumerate(self.v):
vset = v_group.create_dataset(name="v_" + str(i),
shape=v.shape, dtype=v.dtype)
vset[...] = v
v_group.attrs['length'] = len(self.v)
f.flush()
f.close()
return self | def write(self, filename) | Write detector to a file - uses HDF5 file format.
Meta-data are stored alongside numpy data arrays. See h5py.org for \
details of the methods.
:type filename: str
:param filename: Filename to save the detector to. | 2.10069 | 2.099559 | 1.000539 |
f = h5py.File(filename, "r")
self.data = []
for i in range(f['data'].attrs['length']):
self.data.append(f['data']['data_' + str(i)].value)
self.u = []
for i in range(f['u'].attrs['length']):
self.u.append(f['u']['u_' + str(i)].value)
self.sigma = []
for i in range(f['sigma'].attrs['length']):
self.sigma.append(f['sigma']['sigma_' + str(i)].value)
self.v = []
for i in range(f['v'].attrs['length']):
self.v.append(f['v']['v_' + str(i)].value)
self.stachans = [tuple(stachan.decode('ascii').split('.'))
for stachan in f['stachans'].value]
self.dimension = f['data'].attrs['dimension']
self.filt_order = f['data'].attrs['filt_order']
self.highcut = f['data'].attrs['highcut']
self.lowcut = f['data'].attrs['lowcut']
self.multiplex = bool(f['data'].attrs['multiplex'])
self.sampling_rate = f['data'].attrs['sampling_rate']
if isinstance(f['data'].attrs['name'], str):
self.name = f['data'].attrs['name']
else:
self.name = f['data'].attrs['name'].decode('ascii')
return self | def read(self, filename) | Read detector from a file, must be HDF5 format.
Reads a Detector object from an HDF5 file, usually created by \
eqcorrscan.
:type filename: str
:param filename: Filename to save the detector to. | 1.966662 | 2.056052 | 0.956523 |
return subspace_detector_plot(detector=self, stachans=stachans,
size=size, show=show) | def plot(self, stachans='all', size=(10, 7), show=True) | Plot the output basis vectors for the detector at the given dimension.
Corresponds to the first n horizontal vectors of the V matrix.
:type stachans: list
:param stachans: list of tuples of station, channel pairs to plot.
:type stachans: list
:param stachans: List of tuples of (station, channel) to use. Can set\
to 'all' to use all the station-channel pairs available. If \
detector is multiplexed, will just plot that.
:type size: tuple
:param size: Figure size.
:type show: bool
:param show: Whether or not to show the figure.
:returns: Figure
:rtype: matplotlib.pyplot.Figure
.. Note::
See :func:`eqcorrscan.utils.plotting.subspace_detector_plot`
for example. | 6.802861 | 3.848461 | 1.767683 |
lines = open(os.path.join(*path), 'r').readlines()[2:]
return [s.strip() for s in lines if s.strip() != ''] | def export_symbols(*path) | Required for windows systems - functions defined in libutils.def. | 3.707255 | 3.67806 | 1.007937 |
R = 6371.009 # Radius of the Earth in km
dlat = np.radians(abs(loc1[0] - loc2[0]))
dlong = np.radians(abs(loc1[1] - loc2[1]))
ddepth = abs(loc1[2] - loc2[2])
mean_lat = np.radians((loc1[0] + loc2[0]) / 2)
dist = R * np.sqrt(dlat ** 2 + (np.cos(mean_lat) * dlong) ** 2)
dist = np.sqrt(dist ** 2 + ddepth ** 2)
return dist | def dist_calc(loc1, loc2) | Function to calculate the distance in km between two points.
Uses the flat Earth approximation. Better things are available for this,
like `gdal <http://www.gdal.org/>`_.
:type loc1: tuple
:param loc1: Tuple of lat, lon, depth (in decimal degrees and km)
:type loc2: tuple
:param loc2: Tuple of lat, lon, depth (in decimal degrees and km)
:returns: Distance between points in km.
:rtype: float | 2.016729 | 2.142003 | 0.941516 |
counts = Counter(magnitudes)
df = np.zeros(len(counts))
mag_steps = np.zeros(len(counts))
grad = np.zeros(len(counts) - 1)
grad_points = grad.copy()
for i, magnitude in enumerate(sorted(counts.keys(), reverse=True)):
mag_steps[i] = magnitude
if i > 0:
df[i] = counts[magnitude] + df[i - 1]
else:
df[i] = counts[magnitude]
for i, val in enumerate(df):
if i > 0:
grad[i - 1] = (val - df[i - 1]) / (mag_steps[i] - mag_steps[i - 1])
grad_points[i - 1] = mag_steps[i] - ((mag_steps[i] -
mag_steps[i - 1]) / 2.0)
# Need to find the second order derivative
curvature = np.zeros(len(grad) - 1)
curvature_points = curvature.copy()
for i, _grad in enumerate(grad):
if i > 0:
curvature[i - 1] = (_grad - grad[i - 1]) / (grad_points[i] -
grad_points[i - 1])
curvature_points[i - 1] = grad_points[i] - ((grad_points[i] -
grad_points[i - 1]) /
2.0)
if plotvar:
plt.scatter(mag_steps, df, c='k', label='Magnitude function')
plt.plot(mag_steps, df, c='k')
plt.scatter(grad_points, grad, c='r', label='Gradient')
plt.plot(grad_points, grad, c='r')
plt.scatter(curvature_points, curvature, c='g', label='Curvature')
plt.plot(curvature_points, curvature, c='g')
plt.legend()
plt.show()
return curvature_points[np.argmax(abs(curvature))] | def calc_max_curv(magnitudes, plotvar=False) | Calculate the magnitude of completeness using the maximum curvature method.
:type magnitudes: list
:param magnitudes:
List of magnitudes from which to compute the maximum curvature which
will give an estimate of the magnitude of completeness given the
assumption of a power-law scaling.
:type plotvar: bool
:param plotvar: Turn plotting on and off
:rtype: float
:return: Magnitude at maximum curvature
.. Note:: Should be used as a guide, often under-estimates Mc.
.. rubric:: Example
>>> import numpy as np
>>> mags = []
>>> for mag in np.arange(2.5,3, 0.1):
... mags.extend([mag] * int(20000 - 10 * mag))
>>> for mag in np.arange(3,7, 0.1):
... mags.extend([mag] * int(10 ** (7 - 1 * mag)))
>>> calc_max_curv(mags, plotvar=False)
3.0 | 1.83405 | 1.88606 | 0.972424 |
# Note Wood anderson sensitivity is 2080 as per Uhrhammer & Collins 1990
PAZ_WA = {'poles': [-6.283 + 4.7124j, -6.283 - 4.7124j],
'zeros': [0 + 0j], 'gain': 1.0, 'sensitivity': 2080}
if velocity:
PAZ_WA['zeros'] = [0 + 0j, 0 + 0j]
# De-trend data
trace.detrend('simple')
# Simulate Wood Anderson
if PAZ:
trace.data = seis_sim(trace.data, trace.stats.sampling_rate,
paz_remove=PAZ, paz_simulate=PAZ_WA,
water_level=water_level,
remove_sensitivity=True)
elif seedresp:
trace.data = seis_sim(trace.data, trace.stats.sampling_rate,
paz_remove=None, paz_simulate=PAZ_WA,
water_level=water_level, seedresp=seedresp)
else:
UserWarning('No response given to remove, will just simulate WA')
trace.data = seis_sim(trace.data, trace.stats.sampling_rate,
paz_remove=None, paz_simulate=PAZ_WA,
water_level=water_level)
return trace | def _sim_WA(trace, PAZ, seedresp, water_level, velocity=False) | Remove the instrument response from a trace and simulate a Wood-Anderson.
Returns a de-meaned, de-trended, Wood Anderson simulated trace in
its place.
Works in-place on data and will destroy your original data, copy the
trace before giving it to this function!
:type trace: obspy.core.trace.Trace
:param trace:
A standard obspy trace, generally should be given without
pre-filtering, if given with pre-filtering for use with
amplitude determination for magnitudes you will need to
worry about how you cope with the response of this filter
yourself.
:type PAZ: dict
:param PAZ:
Dictionary containing lists of poles and zeros, the gain and
the sensitivity. If unset will expect seedresp.
:type seedresp: dict
:param seedresp: Seed response information - if unset will expect PAZ.
:type water_level: int
:param water_level: Water level for the simulation.
:type velocity: bool
:param velocity:
Whether to return a velocity trace or not - velocity is non-standard
for Wood-Anderson instruments, but institutes that use seiscomp3 or
Antelope require picks in velocity.
:returns: Trace of Wood-Anderson simulated data
:rtype: :class:`obspy.core.trace.Trace` | 3.462025 | 3.127048 | 1.107123 |
turning_points = [] # A list of tuples of (amplitude, sample)
for i in range(1, len(data) - 1):
if (data[i] < data[i - 1] and data[i] < data[i + 1]) or\
(data[i] > data[i - 1] and data[i] > data[i + 1]):
turning_points.append((data[i], i))
if len(turning_points) >= 1:
amplitudes = np.empty([len(turning_points) - 1],)
half_periods = np.empty([len(turning_points) - 1],)
else:
print('Turning points has length: ' + str(len(turning_points)) +
' data have length: ' + str(len(data)))
return 0.0, 0.0, 0.0
for i in range(1, len(turning_points)):
half_periods[i - 1] = (delta * (turning_points[i][1] -
turning_points[i - 1][1]))
amplitudes[i - 1] = np.abs(turning_points[i][0] -
turning_points[i - 1][0])
amplitude = np.max(amplitudes)
period = 2 * half_periods[np.argmax(amplitudes)]
return amplitude, period, delta * turning_points[np.argmax(amplitudes)][1] | def _max_p2t(data, delta) | Finds the maximum peak-to-trough amplitude and period.
Originally designed to be used to calculate magnitudes (by \
taking half of the peak-to-trough amplitude as the peak amplitude).
:type data: numpy.ndarray
:param data: waveform trace to find the peak-to-trough in.
:type delta: float
:param delta: Sampling interval in seconds
:returns: tuple of (amplitude, period, time) with amplitude in the same \
scale as given in the input data, and period in seconds, and time in \
seconds from the start of the data window.
:rtype: tuple | 2.101549 | 2.031645 | 1.034407 |
with open(gsefile, 'r') as f:
# First line should start with CAL2
header = f.readline()
if not header[0:4] == 'CAL2':
raise IOError('Unknown format for GSE file, only coded for CAL2')
station = header.split()[1]
channel = header.split()[2]
sensor = header.split()[3]
date = dt.datetime.strptime(header.split()[7], '%Y/%m/%d')
header = f.readline()
if not header[0:4] == 'PAZ2':
raise IOError('Unknown format for GSE file, only coded for PAZ2')
gain = float(header.split()[3]) # Measured in nm/counts
kpoles = int(header.split()[4])
kzeros = int(header.split()[5])
poles = []
for i in range(kpoles):
pole = f.readline()
poles.append(complex(float(pole.split()[0]),
float(pole.split()[1])))
zeros = []
for i in range(kzeros):
zero = f.readline()
zeros.append(complex(float(zero.split()[0]),
float(zero.split()[1])))
# Have Poles and Zeros, but need Gain and Sensitivity
# Gain should be in the DIG2 line:
for line in f:
if line[0:4] == 'DIG2':
sensitivity = float(line.split()[2])
# measured in counts/muVolt
PAZ = {'poles': poles, 'zeros': zeros, 'gain': gain,
'sensitivity': sensitivity}
return PAZ, date, station, channel, sensor | def _GSE2_PAZ_read(gsefile) | Read the instrument response information from a GSE Poles and Zeros file.
Formatted for files generated by the SEISAN program RESP.
Format must be CAL2, not coded for any other format at the moment,
contact the authors to add others in.
:type gsefile: string
:param gsefile: Path to GSE file
:returns: Dictionary of poles, zeros, gain and sensitivity
:rtype: dict | 3.002113 | 2.791595 | 1.075411 |
possible_respfiles = glob.glob(directory + os.path.sep + 'RESP.' +
network + '.' + station +
'.*.' + channel) # GeoNet RESP naming
possible_respfiles += glob.glob(directory + os.path.sep + 'RESP.' +
network + '.' + channel +
'.' + station) # RDseed RESP naming
possible_respfiles += glob.glob(directory + os.path.sep + 'RESP.' +
station + '.' + network)
# WIZARD resp naming
# GSE format, station needs to be 5 characters padded with _, channel is 4
# characters padded with _
station = str(station)
channel = str(channel)
possible_respfiles += glob.glob(directory + os.path.sep +
station.ljust(5, str('_')) +
channel[0:len(channel) - 1].
ljust(3, str('_')) +
channel[-1] + '.*_GSE')
PAZ = []
seedresp = []
for respfile in possible_respfiles:
print('Reading response from: ' + respfile)
if respfile.split(os.path.sep)[-1][0:4] == 'RESP':
# Read from a resp file
seedresp = {'filename': respfile, 'date': UTCDateTime(time),
'units': 'DIS', 'network': network, 'station': station,
'channel': channel, 'location': '*'}
try:
# Attempt to evaluate the response for this information, if not
# then this is not the correct response info!
freq_resp, freqs = evalresp(
delta, 100, seedresp['filename'], seedresp['date'],
units=seedresp['units'], freq=True,
network=seedresp['network'], station=seedresp['station'],
channel=seedresp['channel'])
except:
print('Issues with RESP file')
seedresp = []
continue
elif respfile[-3:] == 'GSE':
PAZ, pazdate, pazstation, pazchannel, pazsensor =\
_GSE2_PAZ_read(respfile)
# check that the date is good!
if pazdate >= time and pazchannel != channel and\
pazstation != station:
print('Issue with GSE file')
print('date: ' + str(pazdate) + ' channel: ' + pazchannel +
' station: ' + pazstation)
PAZ = []
else:
continue
# Check that PAZ are for the correct station, channel and date
if PAZ or seedresp:
break
if PAZ:
return PAZ
elif seedresp:
return seedresp | def _find_resp(station, channel, network, time, delta, directory) | Helper function to find the response information.
Works for a given station and channel at a given time and return a
dictionary of poles and zeros, gain and sensitivity.
:type station: str
:param station: Station name (as in the response files)
:type channel: str
:param channel: Channel name (as in the response files)
:type network: str
:param network: Network to scan for, can be a wildcard
:type time: datetime.datetime
:param time: Date-time to look for repsonse information
:type delta: float
:param delta: Sample interval in seconds
:type directory: str
:param directory: Directory to scan for response information
:returns: dictionary of response information
:rtype: dict | 4.232015 | 4.322282 | 0.979116 |
a, b = itertools.tee(iterable)
next(b, None)
if sys.version_info.major == 2:
return itertools.izip(a, b)
else:
return zip(a, b) | def _pairwise(iterable) | Wrapper on itertools for SVD_magnitude. | 2.112878 | 2.212131 | 0.955132 |
print('Depreciated, use svd_moments instead')
return svd_moments(u=U, s=s, v=V, stachans=stachans,
event_list=event_list, n_svs=n_SVs) | def SVD_moments(U, s, V, stachans, event_list, n_SVs=4) | Depreciated. | 2.616929 | 2.244124 | 1.166125 |
cat_out = catalog.copy()
if mindepth is not None:
for event in cat_out:
try:
origin = _get_origin(event)
except IOError:
continue
if origin.depth < mindepth * 1000:
cat_out.events.remove(event)
if maxdepth is not None:
for event in cat_out:
try:
origin = _get_origin(event)
except IOError:
continue
if origin.depth > maxdepth * 1000:
cat_out.events.remove(event)
for event in cat_out:
try:
origin = _get_origin(event)
except IOError:
continue
if not corners.contains_point((origin.latitude, origin.longitude)):
cat_out.events.remove(event)
return cat_out | def spatial_clip(catalog, corners, mindepth=None, maxdepth=None) | Clip the catalog to a spatial box, can be irregular.
Can only be irregular in 2D, depth must be between bounds.
:type catalog: :class:`obspy.core.catalog.Catalog`
:param catalog: Catalog to clip.
:type corners: :class:`matplotlib.path.Path`
:param corners: Corners to clip the catalog to
:type mindepth: float
:param mindepth: Minimum depth for earthquakes in km.
:type maxdepth: float
:param maxdepth: Maximum depth for earthquakes in km.
.. Note::
Corners is expected to be a :class:`matplotlib.path.Path` in the form
of tuples of (lat, lon) in decimal degrees. | 1.893922 | 1.923494 | 0.984626 |
if event.preferred_origin() is not None:
origin = event.preferred_origin()
elif len(event.origins) > 0:
origin = event.origins[0]
else:
raise IndexError('No origin set, cannot constrain')
return origin | def _get_origin(event) | Get the origin of an event.
:type event: :class:`obspy.core.event.Event`
:param event: Event to get the origin of.
:return: :class:`obspy.core.event.Origin` | 3.614987 | 3.8118 | 0.948367 |
try:
import ConfigParser
except ImportError:
import configparser as ConfigParser
import ast
f = open(infile, 'r')
print('Reading parameters with the following header:')
for line in f:
if line[0] == '#':
print(line.rstrip('\n').lstrip('\n'))
f.close()
config = ConfigParser.ConfigParser()
config.read(infile)
# Slightly tricky list reading
template_names = list(ast.literal_eval(config.get("eqcorrscan_pars",
"template_names")))
parameters = \
EQcorrscanParameters(template_names=template_names,
lowcut=config.get("eqcorrscan_pars", "lowcut"),
highcut=config.get("eqcorrscan_pars", "highcut"),
filt_order=config.get("eqcorrscan_pars",
"filt_order"),
samp_rate=config.get("eqcorrscan_pars",
"samp_rate"),
debug=config.get("eqcorrscan_pars", "debug"),
startdate=config.get("eqcorrscan_pars",
"startdate"),
enddate=config.get("eqcorrscan_pars", "enddate"),
archive=config.get("eqcorrscan_pars", "archive"),
arc_type=config.get("eqcorrscan_pars",
"arc_type"),
cores=config.get("eqcorrscan_pars", "cores"),
plotvar=config.getboolean("eqcorrscan_pars",
"plotvar"),
plotdir=config.get("eqcorrscan_pars", "plotdir"),
plot_format=config.get("eqcorrscan_pars",
"plot_format"),
tempdir=ast.literal_eval(config.
get("eqcorrscan_pars",
"tempdir")),
threshold=config.get("eqcorrscan_pars",
"threshold"),
threshold_type=config.get("eqcorrscan_pars",
"threshold_type"),
trigger_interval=config.get("eqcorrscan_pars",
"trigger_interval")
)
return parameters | def read_parameters(infile='../parameters/EQcorrscan_parameters.txt') | Read the default parameters from file.
:type infile: str
:param infile: Full path to parameter file.
:returns: parameters read from file.
:rtype: :class:`eqcorrscan.utils.parameters.EQcorrscanParameters` | 2.303109 | 2.300641 | 1.001073 |
outpath = os.sep.join(outfile.split(os.sep)[0:-1])
if len(outpath) > 0 and not os.path.isdir(outpath):
msg = ' '.join([os.path.join(outfile.split(os.sep)[0:-1]),
'does not exist, check path.'])
raise IOError(msg)
# Make sure that the user wants to overwrite the old parameters
if os.path.isfile(outfile) and not overwrite:
responding = True
while responding:
print(' '.join([outfile, 'exists. Overwrite? [y/N]']))
option = raw_input()
if option.upper() == 'N':
raise IOError('File exists, will not overwrite')
elif option.upper() == 'Y':
responding = False
else:
print('Must respond with y or n')
f = open(outfile, 'w')
# Write creation info.
header = ' '.join(['# User:', getpass.getuser(),
'\n# Creation date:', str(UTCDateTime()),
'\n# EQcorrscan version:',
str(eqcorrscan.__version__),
'\n\n\n'])
f.write(header)
# Write parameter info in a user readable, and parsable format.
parameters = self.__str__().split('\n')[1:]
f.write('[eqcorrscan_pars]\n')
for parameter in parameters:
f.write(parameter.lstrip() + '\n')
f.close()
print('Written parameter file: ' + outfile) | def write(self, outfile='../parameters/EQcorrscan_parameters.txt',
overwrite=False) | Function to write the parameters to a file - user readable.
:type outfile: str
:param outfile: Full path to filename to store parameters in.
:type overwrite: bool
:param overwrite: Whether to overwrite the old file or not. | 3.190906 | 3.238972 | 0.98516 |
if len(np.nonzero(tr.data)[0]) < 0.5 * len(tr.data):
qual = False
else:
qual = True
return qual | def _check_daylong(tr) | Check the data quality of the daylong file.
Check to see that the day isn't just zeros, with large steps, if it is
then the resampling will hate it.
:type tr: obspy.core.trace.Trace
:param tr: Trace to check if the data are daylong.
:return quality (simply good or bad)
:rtype: bool
.. rubric:: Example
>>> from obspy import read
>>> from eqcorrscan.utils.pre_processing import _check_daylong
>>> # Get the path to the test data
>>> import eqcorrscan
>>> import os
>>> TEST_PATH = os.path.dirname(eqcorrscan.__file__) + '/tests/test_data'
>>> st = read(TEST_PATH + '/WAV/TEST_/' +
... '2013-09-01-0410-35.DFDPC_024_00')
>>> _check_daylong(st[0])
True | 5.027489 | 5.027179 | 1.000062 |
start_in, end_in = (tr.stats.starttime, tr.stats.endtime)
for gap in gaps:
stream = Stream()
if gap['starttime'] > tr.stats.starttime:
stream += tr.slice(tr.stats.starttime, gap['starttime']).copy()
if gap['endtime'] < tr.stats.endtime:
# Note this can happen when gaps are calculated for a trace that
# is longer than `length`, e.g. gaps are calculated pre-trim.
stream += tr.slice(gap['endtime'], tr.stats.endtime).copy()
tr = stream.merge()[0]
if fill_gaps:
tr = tr.split()
tr = tr.detrend()
tr = tr.merge(fill_value=0)[0]
# Need to check length - if a gap happened overlapping the end or start
# of the trace this will be lost.
if tr.stats.starttime != start_in:
# pad with zeros
tr.data = np.concatenate(
[np.zeros(int(tr.stats.starttime - start_in)), tr.data])
tr.stats.starttime = start_in
if tr.stats.endtime != end_in:
tr.data = np.concatenate(
[tr.data, np.zeros(int(end_in - tr.stats.endtime))])
return tr | def _zero_pad_gaps(tr, gaps, fill_gaps=True) | Replace padded parts of trace with zeros.
Will cut around gaps, detrend, then pad the gaps with zeros.
:type tr: :class:`osbpy.core.stream.Trace`
:param tr: A trace that has had the gaps padded
:param gaps: List of dict of start-time and end-time as UTCDateTime objects
:type gaps: list
:return: :class:`obspy.core.stream.Trace` | 3.107205 | 3.11458 | 0.997632 |
tr = tr.split()
gaps = tr.get_gaps()
tr = tr.detrend().merge(fill_value=0)[0]
gaps = [{'starttime': gap[4], 'endtime': gap[5]} for gap in gaps]
return gaps, tr | def _fill_gaps(tr) | Interpolate through gaps and work-out where gaps are.
:param tr: Gappy trace (e.g. tr.data is np.ma.MaskedArray)
:type tr: `obspy.core.stream.Trace`
:return: gaps, trace, where gaps is a list of dict | 6.360559 | 4.801918 | 1.324587 |
''' if number != 1 '''
if number > 1:
''' repeat the test few times '''
for time in range(3):
''' Draw a RANDOM number in range of number ( Z_number ) '''
randomNumber = random.randint(2, number - 1)
''' Test if a^(n-1) = 1 mod n '''
if pow(randomNumber, number - 1, number) != 1:
return False
return True
else:
''' case number == 1 '''
return False | def is_prime(number) | Function to test primality of a number. Function lifted from online
resource:
http://www.codeproject.com/Articles/691200/Primality-test-algorithms-Prime-test-The-fastest-w
This function is distributed under a separate licence:
This article, along with any associated source code and files, is \
licensed under The Code Project Open License (CPOL)
:type number: int
:param number: Integer to test for primality
:returns: bool
>>> is_prime(4)
False
>>> is_prime(3)
True | 5.655096 | 6.203468 | 0.911602 |
peaks = []
if not parallel:
for sub_arr, arr_thresh in zip(arr, thresh):
peaks.append(find_peaks2_short(
arr=sub_arr, thresh=arr_thresh, trig_int=trig_int, debug=debug,
starttime=starttime, samp_rate=samp_rate,
full_peaks=full_peaks))
else:
if cores is None:
cores = arr.shape[0]
with pool_boy(Pool=Pool, traces=cores) as pool:
params = ((sub_arr, arr_thresh, trig_int, debug,
False, 1.0, full_peaks)
for sub_arr, arr_thresh in zip(arr, thresh))
results = [pool.apply_async(find_peaks2_short, param)
for param in params]
peaks = [res.get() for res in results]
return peaks | def multi_find_peaks(arr, thresh, trig_int, debug=0, starttime=False,
samp_rate=1.0, parallel=True, full_peaks=False,
cores=None) | Wrapper for find-peaks for multiple arrays.
:type arr: numpy.ndarray
:param arr: 2-D numpy array is required
:type thresh: list
:param thresh:
The threshold below which will be considered noise and peaks will not
be found in. One threshold per array.
:type trig_int: int
:param trig_int:
The minimum difference in samples between triggers, if multiple
peaks within this window this code will find the highest.
:type debug: int
:param debug: Optional, debug level 0-5
:type starttime: obspy.core.utcdatetime.UTCDateTime
:param starttime: Starttime for plotting, only used if debug > 2.
:type samp_rate: float
:param samp_rate: Sampling rate in Hz, only used for plotting if debug > 2.
:type parallel: bool
:param parallel:
Whether to compute in parallel or not - will use multiprocessing
:type full_peaks: bool
:param full_peaks: See `eqcorrscan.utils.findpeaks.find_peaks2_short`
:type cores: int
:param cores:
Maximum number of processes to spin up for parallel peak-finding
:returns:
List of list of tuples of (peak, index) in same order as input arrays | 2.708576 | 2.781443 | 0.973802 |
utilslib = _load_cdll('libutils')
length = np.int32(len(peaks))
utilslib.find_peaks.argtypes = [
np.ctypeslib.ndpointer(dtype=np.float32, shape=(length,),
flags=native_str('C_CONTIGUOUS')),
np.ctypeslib.ndpointer(dtype=np.float32, shape=(length,),
flags=native_str('C_CONTIGUOUS')),
ctypes.c_int, ctypes.c_float, ctypes.c_float,
np.ctypeslib.ndpointer(dtype=np.uint32, shape=(length,),
flags=native_str('C_CONTIGUOUS'))]
utilslib.find_peaks.restype = ctypes.c_int
peaks_sort = sorted(zip(peaks, index),
key=lambda amplitude: abs(amplitude[0]),
reverse=True)
arr, inds = zip(*peaks_sort)
arr = np.ascontiguousarray(arr, dtype=np.float32)
inds = np.array(inds, dtype=np.float32) / trig_int
inds = np.ascontiguousarray(inds, dtype=np.float32)
out = np.zeros(len(arr), dtype=np.uint32)
ret = utilslib.find_peaks(
arr, inds, length, 0, np.float32(1), out)
if ret != 0:
raise MemoryError("Issue with c-routine, returned %i" % ret)
peaks_out = list(compress(peaks_sort, out))
return peaks_out | def decluster(peaks, index, trig_int) | Decluster peaks based on an enforced minimum separation.
:type peaks: np.array
:param peaks: array of peak values
:type index: np.ndarray
:param index: locations of peaks
:type trig_int: int
:param trig_int: Minimum trigger interval in samples
:return: list of tuples of (value, sample) | 2.632705 | 2.699325 | 0.97532 |
triggers = []
for stachan, _peaks in zip(stachans, peaks):
for peak in _peaks:
trigger = (peak[1], peak[0], '.'.join(stachan))
triggers.append(trigger)
coincidence_triggers = []
for i, master in enumerate(triggers):
slaves = triggers[i + 1:]
coincidence = 1
trig_time = master[0]
trig_val = master[1]
for slave in slaves:
if abs(slave[0] - master[0]) <= (moveout * samp_rate) and \
slave[2] != master[2]:
coincidence += 1
if slave[0] < master[0]:
trig_time = slave[0]
trig_val += slave[1]
if coincidence >= min_trig:
coincidence_triggers.append((trig_val / coincidence,
trig_time))
# Sort by trigger-value, largest to smallest - remove duplicate detections
if coincidence_triggers:
coincidence_triggers.sort(key=lambda tup: tup[0], reverse=True)
output = [coincidence_triggers[0]]
for coincidence_trigger in coincidence_triggers[1:]:
add = True
for peak in output:
# If the event occurs within the trig_int time then do not add
# it, and break out of the inner loop.
if abs(coincidence_trigger[1] - peak[1]) < (trig_int *
samp_rate):
add = False
break
if add:
output.append((coincidence_trigger[0],
coincidence_trigger[1]))
output.sort(key=lambda tup: tup[1])
return output
else:
return [] | def coin_trig(peaks, stachans, samp_rate, moveout, min_trig, trig_int) | Find network coincidence triggers within peaks of detection statistics.
Useful for finding network detections from sets of detections on individual
stations.
:type peaks: list
:param peaks: List of lists of tuples of (peak, index) for each \
station-channel. Index should be in samples.
:type stachans: list
:param stachans: List of tuples of (station, channel) in the order of \
peaks.
:type samp_rate: float
:param samp_rate: Sampling rate in Hz
:type moveout: float
:param moveout: Allowable network moveout in seconds.
:type min_trig: int
:param min_trig: Minimum station-channels required to declare a trigger.
:type trig_int: float
:param trig_int:
Minimum allowable time between network triggers in seconds.
:return:
List of tuples of (peak, index), for the earliest detected station.
:rtype: list
>>> peaks = [[(0.5, 100), (0.3, 800)], [(0.4, 120), (0.7, 850)]]
>>> triggers = coin_trig(peaks, [('a', 'Z'), ('b', 'Z')], 10, 3, 2, 1)
>>> print(triggers)
[(0.45, 100)] | 2.688596 | 2.732068 | 0.984088 |
fig.suptitle(title)
if show:
fig.show()
if save:
fig.savefig(savefile)
print("Saved figure to {0}".format(savefile))
if return_fig:
return fig
return None | def _finalise_figure(fig, **kwargs): # pragma: no cover
title = kwargs.get("title") or None
show = kwargs.get("show") or False
save = kwargs.get("save") or False
savefile = kwargs.get("savefile") or "EQcorrscan_figure.png"
return_fig = kwargs.get("return_figure") or False
if title | Internal function to wrap up a figure.
Possible arguments:
:type title: str
:type show: bool
:type save: bool
:type savefile: str
:type return_figure: bool | 3.02811 | 3.310484 | 0.914703 |
trout = tr.copy() # Don't do it inplace on data
x = np.arange(len(tr.data))
y = tr.data
chunksize = int(round(tr.stats.sampling_rate / samp_rate))
# Wrap the array into a 2D array of chunks, truncating the last chunk if
# chunksize isn't an even divisor of the total size.
# (This part won't use _any_ additional memory)
numchunks = int(y.size // chunksize)
ychunks = y[:chunksize * numchunks].reshape((-1, chunksize))
xchunks = x[:chunksize * numchunks].reshape((-1, chunksize))
# Calculate the max, min, and means of chunksize-element chunks...
if state == 'Max':
trout.data = ychunks.max(axis=1)
elif state == 'Min':
trout.data = ychunks.min(axis=1)
elif state == 'Mean':
trout.data = ychunks.mean(axis=1)
elif state == 'Maxabs':
max_env = ychunks.max(axis=1)
min_env = ychunks.min(axis=1)
indeces = np.argmax(np.vstack([np.abs(max_env), np.abs(min_env)]),
axis=0)
stack = np.vstack([max_env, min_env]).T
trout.data = np.array([stack[i][indeces[i]]
for i in range(len(stack))])
xcenters = xchunks.mean(axis=1)
trout.stats.starttime = tr.stats.starttime + xcenters[0] /\
tr.stats.sampling_rate
trout.stats.sampling_rate = samp_rate
return trout | def chunk_data(tr, samp_rate, state='mean') | Downsample data for plotting.
Computes the maximum of data within chunks, useful for plotting waveforms
or cccsums, large datasets that would otherwise exceed the complexity
allowed, and overflow.
:type tr: obspy.core.trace.Trace
:param tr: Trace to be chunked
:type samp_rate: float
:param samp_rate: Desired sampling rate in Hz
:type state: str
:param state:
Either 'Min', 'Max', 'Mean' or 'Maxabs' to return one of these for the
chunks. Maxabs will return the largest (positive or negative) for
that chunk.
:returns: :class:`obspy.core.trace.Trace` | 3.324647 | 3.022612 | 1.099925 |
import matplotlib.pyplot as plt
if cc is None or shift is None:
if not isinstance(cc_vec, np.ndarray):
print('Given cc: %s and shift: %s' % (cc, shift))
raise IOError('Must provide either cc_vec, or cc and shift')
shift = np.abs(cc_vec).argmax()
cc = cc_vec[shift]
x = np.arange(len(image))
plt.plot(x, image / abs(image).max(), 'k', lw=1.3, label='Image')
x = np.arange(len(template)) + shift
plt.plot(x, template / abs(template).max(), 'r', lw=1.1, label='Template')
plt.title('Shift=%s, Correlation=%s' % (shift, cc))
fig = plt.gcf()
fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover
return fig | def xcorr_plot(template, image, shift=None, cc=None, cc_vec=None, **kwargs) | Plot a template overlying an image aligned by correlation.
:type template: numpy.ndarray
:param template: Short template image
:type image: numpy.ndarray
:param image: Long master image
:type shift: int
:param shift: Shift to apply to template relative to image, in samples
:type cc: float
:param cc: Cross-correlation at shift
:type cc_vec: numpy.ndarray
:param cc_vec: Cross-correlation vector.
:type save: bool
:param save: Whether to save the plot or not.
:type savefile: str
:param savefile: File name to save to
:returns: :class:`matplotlib.figure.Figure`
.. rubric:: Example
>>> from obspy import read
>>> from eqcorrscan.utils.plotting import xcorr_plot
>>> from eqcorrscan.utils.stacking import align_traces
>>> st = read().detrend('simple').filter('bandpass', freqmin=2, freqmax=15)
>>> shifts, ccs = align_traces([st[0], st[1]], 40)
>>> shift = shifts[1] * st[1].stats.sampling_rate
>>> cc = ccs[1]
>>> xcorr_plot(template=st[1].data, image=st[0].data, shift=shift,
... cc=cc) # doctest: +SKIP
.. image:: ../../plots/xcorr_plot.png | 2.851632 | 3.109034 | 0.917208 |
import matplotlib.pyplot as plt
if len(cccsum) != len(trace.data):
print('cccsum is: ' +
str(len(cccsum)) + ' trace is: ' + str(len(trace.data)))
msg = ' '.join(['cccsum and trace must have the',
'same number of data points'])
raise ValueError(msg)
df = trace.stats.sampling_rate
npts = trace.stats.npts
t = np.arange(npts, dtype=np.float32) / (df * 3600)
# Generate the subplot for the seismic data
ax1 = plt.subplot2grid((2, 5), (0, 0), colspan=4)
ax1.plot(t, trace.data, 'k')
ax1.axis('tight')
ax1.set_ylim([-15 * np.mean(np.abs(trace.data)),
15 * np.mean(np.abs(trace.data))])
# Generate the subplot for the correlation sum data
ax2 = plt.subplot2grid((2, 5), (1, 0), colspan=4, sharex=ax1)
# Plot the threshold values
ax2.plot([min(t), max(t)], [threshold, threshold], color='r', lw=1,
label="Threshold")
ax2.plot([min(t), max(t)], [-threshold, -threshold], color='r', lw=1)
ax2.plot(t, cccsum, 'k')
ax2.axis('tight')
ax2.set_ylim([-1.7 * threshold, 1.7 * threshold])
ax2.set_xlabel("Time after %s [hr]" % trace.stats.starttime.isoformat())
# ax2.legend()
# Generate a small subplot for the histogram of the cccsum data
ax3 = plt.subplot2grid((2, 5), (1, 4), sharey=ax2)
ax3.hist(cccsum_hist, 200, normed=1, histtype='stepfilled',
orientation='horizontal', color='black')
ax3.set_ylim([-5, 5])
fig = plt.gcf()
fig.suptitle(trace.id)
fig.canvas.draw()
fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover
return fig | def triple_plot(cccsum, cccsum_hist, trace, threshold, **kwargs) | Plot a seismogram, correlogram and histogram.
:type cccsum: numpy.ndarray
:param cccsum: Array of the cross-channel cross-correlation sum
:type cccsum_hist: numpy.ndarray
:param cccsum_hist: cccsum for histogram plotting, can be the same as \
cccsum but included if cccsum is just an envelope.
:type trace: obspy.core.trace.Trace
:param trace: A sample trace from the same time as cccsum
:type threshold: float
:param threshold: Detection threshold within cccsum
:type save: bool
:param save: If True will save and not plot to screen, vice-versa if False
:type savefile: str
:param savefile: Path to save figure to, only required if save=True
:returns: :class:`matplotlib.figure.Figure`
.. rubric:: Example
>>> from obspy import read
>>> from eqcorrscan.core.match_filter import normxcorr2
>>> from eqcorrscan.utils.plotting import triple_plot
>>> st = read()
>>> template = st[0].copy().trim(st[0].stats.starttime + 8,
... st[0].stats.starttime + 12)
>>> tr = st[0]
>>> ccc = normxcorr2(template=template.data, image=tr.data)
>>> tr.data = tr.data[0:len(ccc[0])]
>>> triple_plot(cccsum=ccc[0], cccsum_hist=ccc[0], trace=tr,
... threshold=0.8) # doctest: +SKIP
.. image:: ../../plots/triple_plot.png | 2.509887 | 2.53681 | 0.989387 |
import matplotlib.pyplot as plt
npts = len(data)
t = np.arange(npts, dtype=np.float32) / (samp_rate * 3600)
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.plot(t, data, 'k')
ax1.scatter(peaks[0][1] / (samp_rate * 3600), abs(peaks[0][0]),
color='r', label='Peaks')
for peak in peaks:
ax1.scatter(peak[1] / (samp_rate * 3600), abs(peak[0]), color='r')
ax1.legend()
ax1.set_xlabel("Time after %s [hr]" % starttime.isoformat())
ax1.axis('tight')
fig.suptitle('Peaks')
fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover
return fig | def peaks_plot(data, starttime, samp_rate, peaks=[(0, 0)], **kwargs) | Plot peaks to check that the peak finding routine is running correctly.
Used in debugging for the EQcorrscan module.
:type data: numpy.array
:param data: Numpy array of the data within which peaks have been found
:type starttime: obspy.core.utcdatetime.UTCDateTime
:param starttime: Start time for the data
:type samp_rate: float
:param samp_rate: Sampling rate of data in Hz
:type peaks: list
:param peaks: List of tuples of peak locations and amplitudes (loc, amp)
:returns: :class:`matplotlib.figure.Figure`
.. rubric:: Example
>>> import numpy as np
>>> from eqcorrscan.utils import findpeaks
>>> from eqcorrscan.utils.plotting import peaks_plot
>>> from obspy import UTCDateTime
>>> data = np.random.randn(200)
>>> data[30] = 100
>>> data[60] = 40
>>> threshold = 10
>>> peaks = findpeaks.find_peaks2_short(data, threshold, 3)
>>> peaks_plot(data=data, starttime=UTCDateTime("2008001"),
... samp_rate=10, peaks=peaks) # doctest: +SKIP
.. plot::
import matplotlib.pyplot as plt
import numpy as np
from eqcorrscan.utils import findpeaks
from eqcorrscan.utils.plotting import peaks_plot
from obspy import UTCDateTime
data = np.random.randn(200)
data[30]=100
data[60]=40
threshold = 10
peaks = findpeaks.find_peaks2_short(data, threshold, 3)
peaks_plot(data=data, starttime=UTCDateTime("2008001"),
samp_rate=10, peaks=peaks) | 2.434054 | 2.475772 | 0.983149 |
from mpl_toolkits.mplot3d import Axes3D # noqa: F401
import matplotlib.pyplot as plt
lats = []
longs = []
depths = []
for node in nodes:
lats.append(float(node[0]))
longs.append(float(node[1]))
depths.append(float(node[2]))
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(lats, longs, depths)
ax.set_ylabel("Latitude (deg)")
ax.set_xlabel("Longitude (deg)")
ax.set_zlabel("Depth(km)")
ax.get_xaxis().get_major_formatter().set_scientific(False)
ax.get_yaxis().get_major_formatter().set_scientific(False)
fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover
return fig | def threeD_gridplot(nodes, **kwargs) | Plot in a series of grid points in 3D.
:type nodes: list
:param nodes: List of tuples of the form (lat, long, depth)
:returns: :class:`matplotlib.figure.Figure`
.. rubric:: Example
>>> from eqcorrscan.utils.plotting import threeD_gridplot
>>> nodes = [(-43.5, 170.4, 4), (-43.3, 170.8, 12), (-43.4, 170.3, 8)]
>>> threeD_gridplot(nodes=nodes) # doctest: +SKIP
.. plot::
from eqcorrscan.utils.plotting import threeD_gridplot
nodes = [(-43.5, 170.4, 4), (-43.3, 170.8, 12), (-43.4, 170.3, 8)]
threeD_gridplot(nodes=nodes) | 1.828829 | 1.809131 | 1.010888 |
import matplotlib.pyplot as plt
from eqcorrscan.core.match_filter import normxcorr2
n_axes = len(traces)
if stack in ['linstack', 'PWS']:
n_axes += 1
fig, axes = plt.subplots(n_axes, 1, sharex=True, figsize=size)
if len(traces) > 1:
axes = axes.ravel()
traces = [(trace, trace.stats.starttime.datetime) for trace in traces]
traces.sort(key=lambda tup: tup[1])
traces = [trace[0] for trace in traces]
# Plot the traces
for i, tr in enumerate(traces):
y = tr.data
x = np.arange(len(y))
x = x / tr.stats.sampling_rate # convert to seconds
if not stack:
ind = i
else:
ind = i + 1
axes[ind].plot(x, y, 'k', linewidth=1.1)
axes[ind].yaxis.set_ticks([])
traces = [Stream(trace) for trace in traces]
if stack == 'PWS':
stacked = PWS_stack(traces)
elif stack == 'linstack':
stacked = linstack(traces)
if stack in ['linstack', 'PWS']:
tr = stacked[0]
y = tr.data
x = np.arange(len(y))
x = x / tr.stats.sampling_rate
axes[0].plot(x, y, 'r', linewidth=2.0)
axes[0].set_ylabel('Stack', rotation=0)
axes[0].yaxis.set_ticks([])
for i, slave in enumerate(traces):
if corr:
cc = normxcorr2(tr.data, slave[0].data)
if not stack:
ind = i
else:
ind = i + 1
if corr:
axes[ind].set_ylabel('cc=' + str(round(np.max(cc), 2)), rotation=0)
axes[ind].text(0.9, 0.15, str(round(np.max(slave[0].data))),
bbox=dict(facecolor='white', alpha=0.95),
transform=axes[ind].transAxes)
axes[ind].text(0.7, 0.85, slave[0].stats.starttime.datetime.
strftime('%Y/%m/%d %H:%M:%S'),
bbox=dict(facecolor='white', alpha=0.95),
transform=axes[ind].transAxes)
axes[-1].set_xlabel('Time (s)')
fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover
return fig | def multi_trace_plot(traces, corr=True, stack='linstack', size=(7, 12),
**kwargs) | Plot multiple traces (usually from the same station) on the same plot.
Differs somewhat to obspy's stream.plot in that only relative time within
traces is worried about, it will not merge traces together.
:type traces: list
:param traces: List of obspy.core.Trace
:type corr: bool
:param corr:
To calculate the correlation or not, if True, will add this to the
axes
:type stack: str
:param stack:
To plot the stack as the first trace or not, select type of
stack: 'linstack' or 'PWS', or None.
:type size: tuple
:param size: Size of figure. | 2.695117 | 2.589256 | 1.040885 |
import matplotlib.pyplot as plt
info = [(times[i], mags[i]) for i in range(len(times))]
info.sort(key=lambda tup: tup[0])
times = [x[0] for x in info]
mags = [x[1] for x in info]
# Make two subplots next to each other of time before and time after
fig, axes = plt.subplots(1, 2, sharey=True, figsize=size)
axes = axes.ravel()
pre_times = []
post_times = []
for i in range(len(times)):
if i > 0:
pre_times.append((times[i] - times[i - 1]) / 60)
if i < len(times) - 1:
post_times.append((times[i + 1] - times[i]) / 60)
axes[0].scatter(pre_times, mags[1:])
axes[0].set_title('Pre-event times')
axes[0].set_ylabel('Magnitude')
axes[0].set_xlabel('Time (Minutes)')
plt.setp(axes[0].xaxis.get_majorticklabels(), rotation=30)
axes[1].scatter(pre_times, mags[:-1])
axes[1].set_title('Post-event times')
axes[1].set_xlabel('Time (Minutes)')
axes[0].autoscale(enable=True, tight=True)
axes[1].autoscale(enable=True, tight=True)
plt.setp(axes[1].xaxis.get_majorticklabels(), rotation=30)
fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover
return fig | def interev_mag(times, mags, size=(10.5, 7.5), **kwargs) | Plot inter-event times against magnitude.
:type times: list
:param times: list of the detection times, must be sorted the same as mags
:type mags: list
:param mags: list of magnitudes
:type size: tuple
:param size: Size of figure in inches.
:returns: :class:`matplotlib.figure.Figure`
.. rubric:: Example
>>> from obspy.clients.fdsn import Client
>>> from obspy import UTCDateTime
>>> from eqcorrscan.utils.plotting import interev_mag
>>> client = Client('IRIS')
>>> t1 = UTCDateTime('2012-03-26T00:00:00')
>>> t2 = t1 + (3 * 86400)
>>> catalog = client.get_events(starttime=t1, endtime=t2, minmagnitude=3)
>>> magnitudes = [event.preferred_magnitude().mag for event in catalog]
>>> times = [event.preferred_origin().time for event in catalog]
>>> interev_mag(times, magnitudes) # doctest: +SKIP
.. plot::
from obspy.clients.fdsn import Client
from obspy import UTCDateTime
from eqcorrscan.utils.plotting import interev_mag
client = Client('IRIS')
t1 = UTCDateTime('2012-03-26T00:00:00')
t2 = t1 + (3 * 86400)
catalog = client.get_events(starttime=t1, endtime=t2, minmagnitude=3)
magnitudes = [event.preferred_magnitude().mag for event in catalog]
times = [event.preferred_origin().time for event in catalog]
interev_mag(times, magnitudes) | 2.032732 | 2.040387 | 0.996248 |
nodes = []
for ev in catalog:
nodes.append((ev.preferred_origin().latitude,
ev.preferred_origin().longitude,
ev.preferred_origin().depth / 1000))
# Will plot borehole instruments at elevation - depth if provided
all_stas = []
for net in inventory:
for sta in net:
if len(sta.channels) > 0:
all_stas.append((sta.latitude, sta.longitude,
sta.elevation / 1000 -
sta.channels[0].depth / 1000))
else:
warnings.warn('No channel information attached, '
'setting elevation without depth')
all_stas.append((sta.latitude, sta.longitude,
sta.elevation / 1000))
fig = threeD_seismplot(
stations=all_stas, nodes=nodes, size=size, **kwargs)
return fig | def obspy_3d_plot(inventory, catalog, size=(10.5, 7.5), **kwargs) | Plot obspy Inventory and obspy Catalog classes in three dimensions.
:type inventory: obspy.core.inventory.inventory.Inventory
:param inventory: Obspy inventory class containing station metadata
:type catalog: obspy.core.event.catalog.Catalog
:param catalog: Obspy catalog class containing event metadata
:type save: bool
:param save: False will plot to screen, true will save plot and not show \
to screen.
:type savefile: str
:param savefile: Filename to save to, required for save=True
:type size: tuple
:param size: Size of figure in inches.
:returns: :class:`matplotlib.figure.Figure`
.. rubric:: Example:
>>> from obspy.clients.fdsn import Client
>>> from obspy import UTCDateTime
>>> from eqcorrscan.utils.plotting import obspy_3d_plot
>>> client = Client('IRIS')
>>> t1 = UTCDateTime(2012, 3, 26)
>>> t2 = t1 + 86400
>>> catalog = client.get_events(starttime=t1, endtime=t2, latitude=-43,
... longitude=170, maxradius=5)
>>> inventory = client.get_stations(starttime=t1, endtime=t2, latitude=-43,
... longitude=170, maxradius=10)
>>> obspy_3d_plot(inventory=inventory, catalog=catalog) # doctest: +SKIP
.. plot::
from obspy.clients.fdsn import Client
from obspy import UTCDateTime
from eqcorrscan.utils.plotting import obspy_3d_plot
client = Client('IRIS')
t1 = UTCDateTime(2012, 3, 26)
t2 = t1 + 86400
catalog = client.get_events(starttime=t1, endtime=t2, latitude=-43,
longitude=170, maxradius=5)
inventory = client.get_stations(starttime=t1, endtime=t2, latitude=-43,
longitude=170, maxradius=10)
obspy_3d_plot(inventory=inventory, catalog=catalog) | 3.672297 | 3.918009 | 0.937287 |
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
stalats, stalongs, staelevs = zip(*stations)
evlats, evlongs, evdepths = zip(*nodes)
# Cope with +/-180 latitudes...
_evlongs = []
for evlong in evlongs:
if evlong < 0:
evlong = float(evlong)
evlong += 360
_evlongs.append(evlong)
evlongs = _evlongs
_stalongs = []
for stalong in stalongs:
if stalong < 0:
stalong = float(stalong)
stalong += 360
_stalongs.append(stalong)
stalongs = _stalongs
evdepths = [-1 * depth for depth in evdepths]
fig = plt.figure(figsize=size)
ax = Axes3D(fig)
ax.scatter(evlats, evlongs, evdepths, marker="x", c="k",
label='Hypocenters')
ax.scatter(stalats, stalongs, staelevs, marker="v", c="r",
label='Stations')
ax.set_ylabel("Longitude (deg)")
ax.set_xlabel("Latitude (deg)")
ax.set_zlabel("Elevation (km)")
ax.get_xaxis().get_major_formatter().set_scientific(False)
ax.get_yaxis().get_major_formatter().set_scientific(False)
plt.legend()
fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover
return fig | def threeD_seismplot(stations, nodes, size=(10.5, 7.5), **kwargs) | Plot seismicity and stations in a 3D, movable, zoomable space.
Uses matplotlibs Axes3D package.
:type stations: list
:param stations: list of one tuple per station of (lat, long, elevation), \
with up positive.
:type nodes: list
:param nodes: list of one tuple per event of (lat, long, depth) with down \
positive.
:type size: tuple
:param size: Size of figure in inches.
:returns: :class:`matplotlib.figure.Figure`
.. Note::
See :func:`eqcorrscan.utils.plotting.obspy_3d_plot` for example output. | 2.212297 | 2.147864 | 1.029999 |
import matplotlib.pyplot as plt
# Work out how many traces we can plot
n_traces = 0
for tr in signal:
try:
noise.select(id=tr.id)[0]
except IndexError: # pragma: no cover
continue
n_traces += 1
fig, axes = plt.subplots(n_traces, 2, sharex=True)
if len(signal) > 1:
axes = axes.ravel()
i = 0
lines = []
labels = []
for tr in signal:
try:
noise_tr = noise.select(id=tr.id)[0]
except IndexError: # pragma: no cover
continue
ax1 = axes[i]
ax2 = axes[i + 1]
fft_len = fftpack.next_fast_len(
max(noise_tr.stats.npts, tr.stats.npts))
if not normalise:
signal_fft = fftpack.rfft(tr.data, fft_len)
noise_fft = fftpack.rfft(noise_tr.data, fft_len)
else:
signal_fft = fftpack.rfft(tr.data / max(tr.data), fft_len)
noise_fft = fftpack.rfft(
noise_tr.data / max(noise_tr.data), fft_len)
frequencies = np.linspace(0, 1 / (2 * tr.stats.delta), fft_len // 2)
noise_line, = ax1.semilogy(
frequencies, 2.0 / fft_len * np.abs(noise_fft[0: fft_len // 2]),
'k', label="noise")
signal_line, = ax1.semilogy(
frequencies, 2.0 / fft_len * np.abs(signal_fft[0: fft_len // 2]),
'r', label="signal")
if "signal" not in labels:
labels.append("signal")
lines.append(signal_line)
if "noise" not in labels:
labels.append("noise")
lines.append(noise_line)
ax1.set_ylabel(tr.id, rotation=0, horizontalalignment='right')
ax2.plot(
frequencies,
(2.0 / fft_len * np.abs(signal_fft[0: fft_len // 2])) -
(2.0 / fft_len * np.abs(noise_fft[0: fft_len // 2])), 'k')
ax2.yaxis.tick_right()
ax2.set_ylim(bottom=0)
i += 2
axes[-1].set_xlabel("Frequency (Hz)")
axes[-2].set_xlabel("Frequency (Hz)")
axes[0].set_title("Spectra")
axes[1].set_title("Signal - noise")
plt.figlegend(lines, labels, 'upper left')
plt.tight_layout()
plt.subplots_adjust(hspace=0)
fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover
return fig | def noise_plot(signal, noise, normalise=False, **kwargs) | Plot signal and noise fourier transforms and the difference.
:type signal: `obspy.core.stream.Stream`
:param signal: Stream of "signal" window
:type noise: `obspy.core.stream.Stream`
:param noise: Stream of the "noise" window.
:type normalise: bool
:param normalise: Whether to normalise the data before plotting or not.
:return: `matplotlib.pyplot.Figure` | 1.967307 | 1.927018 | 1.020907 |
import matplotlib.pyplot as plt
figures = []
for sval, stachan in zip(svalues, stachans):
print(stachan)
plot_traces = [SVStream.select(station=stachan[0],
channel=stachan[1])[0]
for SVStream in svstreams]
fig, axes = plt.subplots(len(plot_traces), 1, sharex=True)
if len(plot_traces) > 1:
axes = axes.ravel()
for i, tr in enumerate(plot_traces):
y = tr.data
x = np.linspace(0, len(y) * tr.stats.delta, len(y))
axes[i].plot(x, y, 'k', linewidth=1.1)
ylab = 'SV %s = %s' % (i + 1, round(sval[i] / len(sval), 2))
axes[i].set_ylabel(ylab, rotation=0)
axes[i].yaxis.set_ticks([])
print(i)
axes[-1].set_xlabel('Time (s)')
plt.subplots_adjust(hspace=0)
fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover
figures.append(fig)
return figures | def svd_plot(svstreams, svalues, stachans, **kwargs) | Plot singular vectors from the :mod:`eqcorrscan.utils.clustering` routines.
One plot for each channel.
:type svstreams: list
:param svstreams:
See :func:`eqcorrscan.utils.clustering.svd_to_stream` - these should be
ordered by power, e.g. first singular vector in the first stream.
:type svalues: list
:param svalues:
List of floats of the singular values corresponding to the SVStreams
:type stachans: list
:param stachans: List of station.channel
:returns: :class:`matplotlib.figure.Figure`
.. rubric:: Example
>>> from obspy import read
>>> import glob
>>> from eqcorrscan.utils.plotting import svd_plot
>>> from eqcorrscan.utils.clustering import svd, svd_to_stream
>>> wavefiles = glob.glob('eqcorrscan/tests/test_data/WAV/TEST_/*')
>>> streams = [read(w) for w in wavefiles[1:10]]
>>> stream_list = []
>>> for st in streams:
... tr = st.select(station='GCSZ', channel='EHZ')
... tr = tr.detrend('simple').resample(100).filter(
... 'bandpass', freqmin=2, freqmax=8)
... stream_list.append(tr)
>>> uvec, sval, svec, stachans = svd(stream_list=stream_list)
>>> svstreams = svd_to_stream(uvectors=uvec, stachans=stachans, k=3,
... sampling_rate=100)
>>> svd_plot(svstreams=svstreams, svalues=sval,
... stachans=stachans) # doctest: +SKIP
.. plot::
from obspy import read
import glob, os
from eqcorrscan.utils.plotting import svd_plot
from eqcorrscan.utils.clustering import svd, svd_to_stream
wavefiles = glob.glob(os.path.realpath('../../..') +
'/tests/test_data/WAV/TEST_/*')
streams = [read(w) for w in wavefiles[1:10]]
stream_list = []
for st in streams:
tr = st.select(station='GCSZ', channel='EHZ')
st.detrend('simple').resample(100).filter('bandpass', freqmin=5,
freqmax=40)
stream_list.append(tr)
svec, sval, uvec, stachans = svd(stream_list=stream_list)
svstreams = svd_to_stream(uvectors=uvec, stachans=stachans, k=3,
sampling_rate=100)
svd_plot(svstreams=svstreams, svalues=sval,
stachans=stachans) | 2.764703 | 2.660056 | 1.03934 |
import matplotlib.pyplot as plt
if isinstance(traces, Stream):
traces.sort(['station', 'channel'])
if not fig:
fig = plt.figure()
for i, tr in enumerate(traces):
if i == 0:
ax = fig.add_subplot(len(traces), 1, i + 1)
else:
ax = fig.add_subplot(len(traces), 1, i + 1, sharex=ax)
ax1, ax2 = _spec_trace(tr, cmap=cmap, wlen=wlen, log=log, trc=trc,
tralpha=tralpha, axes=ax)
ax.set_yticks([])
if i < len(traces) - 1:
plt.setp(ax1.get_xticklabels(), visible=False)
if isinstance(traces, list):
ax.text(0.005, 0.85, "{0}::{1}".format(tr.id, tr.stats.starttime),
bbox=dict(facecolor='white', alpha=0.8),
transform=ax2.transAxes)
elif isinstance(traces, Stream):
ax.text(0.005, 0.85, tr.id,
bbox=dict(facecolor='white', alpha=0.8),
transform=ax2.transAxes)
ax.text(0.005, 0.02, str(np.max(tr.data).round(1)),
bbox=dict(facecolor='white', alpha=0.95),
transform=ax2.transAxes)
ax.set_xlabel('Time (s)')
fig.subplots_adjust(hspace=0)
fig.set_size_inches(w=size[0], h=size[1], forward=True)
fig.text(0.04, 0.5, 'Frequency (Hz)', va='center', rotation='vertical')
fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover
return fig | def spec_trace(traces, cmap=None, wlen=0.4, log=False, trc='k', tralpha=0.9,
size=(10, 13), fig=None, **kwargs) | Plots seismic data with spectrogram behind.
Takes a stream or list of traces and plots the trace with the spectra
beneath it.
:type traces: list
:param traces: Traces to be plotted, can be a single
:class:`obspy.core.stream.Stream`, or a list of
:class:`obspy.core.trace.Trace`.
:type cmap: str
:param cmap:
`Matplotlib colormap
<http://matplotlib.org/examples/color/colormaps_reference.html>`_.
:type wlen: float
:param wlen: Window length for fft in seconds
:type log: bool
:param log: Use a log frequency scale
:type trc: str
:param trc: Color for the trace.
:type tralpha: float
:param tralpha: Opacity level for the seismogram, from transparent (0.0) \
to opaque (1.0).
:type size: tuple
:param size: Plot size, tuple of floats, inches
:type fig: matplotlib.figure.Figure
:param fig: Figure to plot onto, defaults to self generating.
:returns: :class:`matplotlib.figure.Figure`
.. rubric:: Example
>>> from obspy import read
>>> from eqcorrscan.utils.plotting import spec_trace
>>> st = read()
>>> spec_trace(st, trc='white') # doctest: +SKIP
.. plot::
from obspy import read
from eqcorrscan.utils.plotting import spec_trace
st = read()
spec_trace(st, trc='white') | 2.019948 | 2.079573 | 0.971328 |
import matplotlib.pyplot as plt
if not axes:
fig = plt.figure(figsize=size)
ax1 = fig.add_subplot(111)
else:
ax1 = axes
trace.spectrogram(wlen=wlen, log=log, show=False, cmap=cmap, axes=ax1)
fig = plt.gcf()
ax2 = ax1.twinx()
y = trace.data
x = np.linspace(0, len(y) / trace.stats.sampling_rate, len(y))
ax2.plot(x, y, color=trc, linewidth=2.0, alpha=tralpha)
ax2.set_xlim(min(x), max(x))
ax2.set_ylim(min(y) * 2, max(y) * 2)
if title:
ax1.set_title(' '.join([trace.stats.station, trace.stats.channel,
trace.stats.starttime.datetime.
strftime('%Y/%m/%d %H:%M:%S')]))
if not axes:
fig.set_size_inches(size)
fig.show()
else:
return ax1, ax2 | def _spec_trace(trace, cmap=None, wlen=0.4, log=False, trc='k',
tralpha=0.9, size=(10, 2.5), axes=None, title=None) | Function to plot a trace over that traces spectrogram.
Uses obspys spectrogram routine.
:type trace: obspy.core.trace.Trace
:param trace: trace to plot
:type cmap: str
:param cmap: [Matplotlib colormap](http://matplotlib.org/examples/color/
colormaps_reference.html)
:type wlen: float
:param wlen: Window length for fft in seconds
:type log: bool
:param log: Use a log frequency scale
:type trc: str
:param trc: Color for the trace.
:type tralpha: float
:param tralpha: Opacity level for the seismogram, from transparent (0.0) \
to opaque (1.0).
:type size: tuple
:param size: Plot size, tuple of floats, inches
:type axes: matplotlib axes
:param axes: Axes to plot onto, defaults to self generating.
:type title: str
:param title: Title for the plot. | 2.114182 | 2.053187 | 1.029708 |
import matplotlib.pyplot as plt
if stachans == 'all' and not detector.multiplex:
stachans = detector.stachans
elif detector.multiplex:
stachans = [('multi', ' ')]
if np.isinf(detector.dimension):
msg = ' '.join(['Infinite subspace dimension. Only plotting as many',
'dimensions as events in design set'])
warnings.warn(msg)
nrows = detector.v[0].shape[1]
else:
nrows = detector.dimension
fig, axes = plt.subplots(nrows=nrows, ncols=len(stachans),
sharex=True, sharey=True, figsize=size)
x = np.arange(len(detector.u[0]), dtype=np.float32)
if detector.multiplex:
x /= len(detector.stachans) * detector.sampling_rate
else:
x /= detector.sampling_rate
for column, stachan in enumerate(stachans):
channel = detector.u[column]
for row, vector in enumerate(channel.T[0:nrows]):
if len(stachans) == 1:
if nrows == 1:
axis = axes
else:
axis = axes[row]
else:
axis = axes[row, column]
if row == 0:
axis.set_title('.'.join(stachan))
axis.plot(x, vector, 'k', linewidth=1.1)
if column == 0:
axis.set_ylabel('Basis %s' % (row + 1), rotation=0)
if row == nrows - 1:
axis.set_xlabel('Time (s)')
axis.set_yticks([])
plt.subplots_adjust(hspace=0.05)
plt.subplots_adjust(wspace=0.05)
fig = _finalise_figure(fig=fig, **kwargs) # pragma: no cover
return fig | def subspace_detector_plot(detector, stachans, size, **kwargs) | Plotting for the subspace detector class.
Plot the output basis vectors for the detector at the given dimension.
Corresponds to the first n horizontal vectors of the V matrix.
:type detector: :class:`eqcorrscan.core.subspace.Detector`
:type stachans: list
:param stachans: list of tuples of station, channel pairs to plot.
:type stachans: list
:param stachans: List of tuples of (station, channel) to use. Can set\
to 'all' to use all the station-channel pairs available. If \
detector is multiplexed, will just plot that.
:type size: tuple
:param size: Figure size.
:returns: Figure
:rtype: matplotlib.pyplot.Figure
.. rubric:: Example
>>> from eqcorrscan.core import subspace
>>> import os
>>> detector = subspace.Detector()
>>> detector.read(os.path.join(
... os.path.abspath(os.path.dirname(__file__)),
... '..', 'tests', 'test_data', 'subspace',
... 'stat_test_detector.h5'))
Detector: Tester
>>> subspace_detector_plot(detector=detector, stachans='all', size=(10, 7),
... show=True) # doctest: +SKIP
.. plot::
from eqcorrscan.core import subspace
from eqcorrscan.utils.plotting import subspace_detector_plot
import os
print('running subspace plot')
detector = subspace.Detector()
detector.read(os.path.join('..', '..', '..', 'tests', 'test_data',
'subspace', 'stat_test_detector.h5'))
subspace_detector_plot(detector=detector, stachans='all', size=(10, 7),
show=True) | 3.180212 | 3.070689 | 1.035667 |
def _match_filter_plot(stream, cccsum, template_names, rawthresh, plotdir,
plot_format, i): # pragma: no cover
import matplotlib.pyplot as plt
plt.ioff()
stream_plot = copy.deepcopy(stream[0])
# Downsample for plotting
stream_plot = _plotting_decimation(stream_plot, 10e5, 4)
cccsum_plot = Trace(cccsum)
cccsum_plot.stats.sampling_rate = stream[0].stats.sampling_rate
# Resample here to maintain shape better
cccsum_hist = cccsum_plot.copy()
cccsum_hist = cccsum_hist.decimate(int(stream[0].stats.
sampling_rate / 10)).data
cccsum_plot = chunk_data(cccsum_plot, 10, 'Maxabs').data
# Enforce same length
stream_plot.data = stream_plot.data[0:len(cccsum_plot)]
cccsum_plot = cccsum_plot[0:len(stream_plot.data)]
cccsum_hist = cccsum_hist[0:len(stream_plot.data)]
plot_name = (plotdir + os.sep + 'cccsum_plot_' + template_names[i] + '_' +
stream[0].stats.starttime.datetime.strftime('%Y-%m-%d') +
'.' + plot_format)
triple_plot(cccsum=cccsum_plot, cccsum_hist=cccsum_hist,
trace=stream_plot, threshold=rawthresh, save=True,
savefile=plot_name) | Plotting function for match_filter.
:param stream: Stream to plot
:param cccsum: Cross-correlation sum to plot
:param template_names: Template names used
:param rawthresh: Threshold level
:param plotdir: Location to save plots
:param plot_format: Output plot type (e.g. png, svg, eps, pdf...)
:param i: Template index name to plot. | null | null | null |
|
trace_len = trace.stats.npts
while trace_len > max_len:
trace.decimate(decimation_step)
trace_len = trace.stats.npts
return trace | def _plotting_decimation(trace, max_len=10e5, decimation_step=4) | Decimate data until required length reached.
:type trace: obspy.core.stream.Trace
:param trace: Trace to decimate
type max_len: int
:param max_len: Maximum length in samples
:type decimation_step: int
:param decimation_step: Decimation factor to use for each step.
:return: obspy.core.stream.Trace
.. rubric: Example
>>> from obspy import Trace
>>> import numpy as np
>>> trace = Trace(np.random.randn(1000))
>>> trace = _plotting_decimation(trace, max_len=100, decimation_step=2)
>>> print(trace.stats.npts)
63 | 2.58325 | 3.415365 | 0.756361 |
for fig in doctree.traverse(condition=nodes.figure):
if 'thumbnail' in fig['classes']:
continue
for img in fig.traverse(condition=nodes.image):
img['classes'].append('img-responsive') | def make_images_responsive(app, doctree) | Add Bootstrap img-responsive class to images. | 4.553406 | 4.132237 | 1.101923 |
log = logging.getLogger('ciu')
request = requests.get("https://raw.githubusercontent.com/brettcannon/"
"caniusepython3/master/caniusepython3/overrides.json")
if request.status_code == 200:
log.info("Overrides loaded from GitHub and cached")
overrides = request.json()
else:
log.info("Overrides loaded from included package data and cached")
raw_bytes = pkgutil.get_data(__name__, 'overrides.json')
overrides = json.loads(raw_bytes.decode('utf-8'))
return frozenset(map(packaging.utils.canonicalize_name, overrides.keys())) | def _manual_overrides(_cache_date=None) | Read the overrides file.
An attempt is made to read the file as it currently stands on GitHub, and
then only if that fails is the included file used. | 4.202333 | 3.661725 | 1.147638 |
log = logging.getLogger("ciu")
log.info("Checking {} ...".format(project_name))
request = requests.get("https://pypi.org/pypi/{}/json".format(project_name))
if request.status_code >= 400:
log = logging.getLogger("ciu")
log.warning("problem fetching {}, assuming ported ({})".format(
project_name, request.status_code))
return True
response = request.json()
return any(c.startswith("Programming Language :: Python :: 3")
for c in response["info"]["classifiers"]) | def supports_py3(project_name) | Check with PyPI if a project supports Python 3. | 3.55022 | 3.325585 | 1.067547 |
dependencies = []
dependencies.extend(projects_.projects_from_requirements(requirements_paths))
dependencies.extend(projects_.projects_from_metadata(metadata))
dependencies.extend(projects)
manual_overrides = pypi.manual_overrides()
for dependency in dependencies:
if dependency in manual_overrides:
continue
elif not pypi.supports_py3(dependency):
return False
return True | def check(requirements_paths=[], metadata=[], projects=[]) | Return True if all of the specified dependencies have been ported to Python 3.
The requirements_paths argument takes a sequence of file paths to
requirements files. The 'metadata' argument takes a sequence of strings
representing metadata. The 'projects' argument takes a sequence of project
names.
Any project that is not listed on PyPI will be considered ported. | 5.608242 | 5.325543 | 1.053084 |
description = ('Determine if a set of project dependencies will work with '
'Python 3')
parser = argparse.ArgumentParser(description=description)
req_help = 'path(s) to a pip requirements file (e.g. requirements.txt)'
parser.add_argument('--requirements', '-r', nargs='+', default=(),
help=req_help)
meta_help = 'path(s) to a PEP 426 metadata file (e.g. PKG-INFO, pydist.json)'
parser.add_argument('--metadata', '-m', nargs='+', default=(),
help=meta_help)
parser.add_argument('--projects', '-p', nargs='+', default=(),
help='name(s) of projects to test for Python 3 support')
parser.add_argument('--verbose', '-v', action='store_true',
help='verbose output (e.g. list compatibility overrides)')
parsed = parser.parse_args(args)
if not (parsed.requirements or parsed.metadata or parsed.projects):
parser.error("Missing 'requirements', 'metadata', or 'projects'")
projects = []
if parsed.verbose:
logging.getLogger('ciu').setLevel(logging.INFO)
projects.extend(projects_.projects_from_requirements(parsed.requirements))
metadata = []
for metadata_path in parsed.metadata:
with io.open(metadata_path) as file:
metadata.append(file.read())
projects.extend(projects_.projects_from_metadata(metadata))
projects.extend(map(packaging.utils.canonicalize_name, parsed.projects))
return projects | def projects_from_cli(args) | Take arguments through the CLI can create a list of specified projects. | 2.829976 | 2.857818 | 0.990258 |
if not blockers:
encoding = getattr(sys.stdout, 'encoding', '')
if encoding:
encoding = encoding.lower()
if encoding == 'utf-8':
# party hat
flair = "\U0001F389 "
else:
flair = ''
return [flair +
'You have 0 projects blocking you from using Python 3!']
flattened_blockers = set()
for blocker_reasons in blockers:
for blocker in blocker_reasons:
flattened_blockers.add(blocker)
need = 'You need {0} project{1} to transition to Python 3.'
formatted_need = need.format(len(flattened_blockers),
's' if len(flattened_blockers) != 1 else '')
can_port = ('Of {0} {1} project{2}, {3} {4} no direct dependencies '
'blocking {5} transition:')
formatted_can_port = can_port.format(
'those' if len(flattened_blockers) != 1 else 'that',
len(flattened_blockers),
's' if len(flattened_blockers) != 1 else '',
len(blockers),
'have' if len(blockers) != 1 else 'has',
'their' if len(blockers) != 1 else 'its')
return formatted_need, formatted_can_port | def message(blockers) | Create a sequence of key messages based on what is blocking. | 3.856477 | 3.864621 | 0.997893 |
pprinted = []
for blocker in sorted(blockers, key=lambda x: tuple(reversed(x))):
buf = [blocker[0]]
if len(blocker) > 1:
buf.append(' (which is blocking ')
buf.append(', which is blocking '.join(blocker[1:]))
buf.append(')')
pprinted.append(''.join(buf))
return pprinted | def pprint_blockers(blockers) | Pretty print blockers into a sequence of strings.
Results will be sorted by top-level project name. This means that if a
project is blocking another project then the dependent project will be
what is used in the sorting, not the project at the bottom of the
dependency graph. | 3.102303 | 2.826969 | 1.097395 |
log = logging.getLogger('ciu')
log.info('{0} top-level projects to check'.format(len(projects)))
print('Finding and checking dependencies ...')
blockers = dependencies.blockers(projects)
print('')
for line in message(blockers):
print(line)
print('')
for line in pprint_blockers(blockers):
print(' ', line)
return len(blockers) == 0 | def check(projects) | Check the specified projects for Python 3 compatibility. | 6.599981 | 6.382237 | 1.034117 |
blockers = set(reasons.keys()) - set(reasons.values())
paths = set()
for blocker in blockers:
path = [blocker]
parent = reasons[blocker]
while parent:
if parent in path:
raise CircularDependencyError(dict(parent=parent,
blocker=blocker,
path=path))
path.append(parent)
parent = reasons.get(parent)
paths.add(tuple(path))
return paths | def reasons_to_paths(reasons) | Calculate the dependency paths to the reasons of the blockers.
Paths will be in reverse-dependency order (i.e. parent projects are in
ascending order). | 2.606675 | 2.372238 | 1.098825 |
log = logging.getLogger('ciu')
log.info('Locating dependencies for {}'.format(project_name))
located = distlib.locators.locate(project_name, prereleases=True)
if not located:
log.warning('{0} not found'.format(project_name))
return None
return {packaging.utils.canonicalize_name(pypi.just_name(dep))
for dep in located.run_requires} | def dependencies(project_name) | Get the dependencies for a project. | 6.500982 | 6.563947 | 0.990407 |
log = logging.getLogger('ciu')
valid_reqs = []
for requirements_path in requirements:
with io.open(requirements_path) as file:
requirements_text = file.read()
# Drop line continuations.
requirements_text = re.sub(r"\\s*", "", requirements_text)
# Drop comments.
requirements_text = re.sub(r"#.*", "", requirements_text)
reqs = []
for line in requirements_text.splitlines():
if not line:
continue
try:
reqs.append(packaging.requirements.Requirement(line))
except packaging.requirements.InvalidRequirement:
log.warning('Skipping {0!r}: could not parse requirement'.format(line))
for req in reqs:
if not req.name:
log.warning('A requirement lacks a name '
'(e.g. no `#egg` on a `file:` path)')
elif req.url:
log.warning(
'Skipping {0}: URL-specified projects unsupported'.format(req.name))
else:
valid_reqs.append(req.name)
return frozenset(map(packaging.utils.canonicalize_name, valid_reqs)) | def projects_from_requirements(requirements) | Extract the project dependencies from a Requirements specification. | 3.357564 | 3.290751 | 1.020303 |
projects = []
for data in metadata:
meta = distlib.metadata.Metadata(fileobj=io.StringIO(data))
projects.extend(pypi.just_name(project) for project in meta.run_requires)
return frozenset(map(packaging.utils.canonicalize_name, projects)) | def projects_from_metadata(metadata) | Extract the project dependencies from a metadata spec. | 6.194633 | 5.62488 | 1.101292 |
if grayscale is None:
grayscale = GRAYSCALE_DEFAULT
confidence = float(confidence)
needleImage = _load_cv2(needleImage, grayscale)
needleHeight, needleWidth = needleImage.shape[:2]
haystackImage = _load_cv2(haystackImage, grayscale)
if region:
haystackImage = haystackImage[region[1]:region[1]+region[3],
region[0]:region[0]+region[2]]
else:
region = (0, 0) # full image; these values used in the yield statement
if (haystackImage.shape[0] < needleImage.shape[0] or
haystackImage.shape[1] < needleImage.shape[1]):
# avoid semi-cryptic OpenCV error below if bad size
raise ValueError('needle dimension(s) exceed the haystack image or region dimensions')
if step == 2:
confidence *= 0.95
needleImage = needleImage[::step, ::step]
haystackImage = haystackImage[::step, ::step]
else:
step = 1
# get all matches at once, credit: https://stackoverflow.com/questions/7670112/finding-a-subimage-inside-a-numpy-image/9253805#9253805
result = cv2.matchTemplate(haystackImage, needleImage, cv2.TM_CCOEFF_NORMED)
match_indices = numpy.arange(result.size)[(result > confidence).flatten()]
matches = numpy.unravel_index(match_indices[:limit], result.shape)
if len(matches[0]) == 0:
if USE_IMAGE_NOT_FOUND_EXCEPTION:
raise ImageNotFoundException('Could not locate the image (highest confidence = %.3f)' % result.max())
else:
return None
# use a generator for API consistency:
matchx = matches[1] * step + region[0] # vectorized
matchy = matches[0] * step + region[1]
for x, y in zip(matchx, matchy):
yield Box(x, y, needleWidth, needleHeight) | def _locateAll_opencv(needleImage, haystackImage, grayscale=None, limit=10000, region=None, step=1,
confidence=0.999) | faster but more memory-intensive than pure python
step 2 skips every other row and column = ~3x faster but prone to miss;
to compensate, the algorithm automatically reduces the confidence
threshold by 5% (which helps but will not avoid all misses).
limitations:
- OpenCV 3.x & python 3.x not tested
- RGBA images are treated as RBG (ignores alpha channel) | 3.474484 | 3.429243 | 1.013193 |
start = time.time()
while True:
try:
screenshotIm = screenshot(region=None) # the locateAll() function must handle cropping to return accurate coordinates, so don't pass a region here.
retVal = locate(image, screenshotIm, **kwargs)
try:
screenshotIm.fp.close()
except AttributeError:
# Screenshots on Windows won't have an fp since they came from
# ImageGrab, not a file. Screenshots on Linux will have fp set
# to None since the file has been unlinked
pass
if retVal or time.time() - start > minSearchTime:
return retVal
except ImageNotFoundException:
if time.time() - start > minSearchTime:
if USE_IMAGE_NOT_FOUND_EXCEPTION:
raise
else:
return None | def locateOnScreen(image, minSearchTime=0, **kwargs) | minSearchTime - amount of time in seconds to repeat taking
screenshots and trying to locate a match. The default of 0 performs
a single search. | 6.606282 | 6.625762 | 0.99706 |
raw_details = self._requestDetails(ip_address)
raw_details['country_name'] = self.countries.get(raw_details.get('country'))
raw_details['ip_address'] = ipaddress.ip_address(raw_details.get('ip'))
raw_details['latitude'], raw_details['longitude'] = self._read_coords(raw_details.get('loc'))
return Details(raw_details) | def getDetails(self, ip_address=None) | Get details for specified IP address as a Details object. | 3.211161 | 2.976893 | 1.078695 |
if ip_address not in self.cache:
url = self.API_URL
if ip_address:
url += '/' + ip_address
response = requests.get(url, headers=self._get_headers(), **self.request_options)
if response.status_code == 429:
raise RequestQuotaExceededError()
response.raise_for_status()
self.cache[ip_address] = response.json()
return self.cache[ip_address] | def _requestDetails(self, ip_address=None) | Get IP address data by sending request to IPinfo API. | 2.551976 | 2.448221 | 1.04238 |
headers = {
'user-agent': 'IPinfoClient/Python{version}/1.0'.format(version=sys.version_info[0]),
'accept': 'application/json'
}
if self.access_token:
headers['authorization'] = 'Bearer {}'.format(self.access_token)
return headers | def _get_headers(self) | Built headers for request to IPinfo API. | 3.677362 | 2.741659 | 1.341291 |
if not countries_file:
countries_file = os.path.join(os.path.dirname(__file__), self.COUNTRY_FILE_DEFAULT)
with open(countries_file) as f:
countries_json = f.read()
return json.loads(countries_json) | def _read_country_names(self, countries_file=None) | Read list of countries from specified country file or default file. | 2.526591 | 2.205381 | 1.145648 |
if not self.has_section(section):
return False
if not self.has_option(section, option):
return False
if ConfigParser.get(self, section, option) == self._secure_placeholder:
return True
return False | def is_secure_option(self, section, option) | Test an option to see if it is secured or not.
:param section: section id
:type section: string
:param option: option name
:type option: string
:rtype: boolean
otherwise. | 2.738115 | 2.929443 | 0.934688 |
items = []
for k, v in ConfigParser.items(self, section):
if self.is_secure_option(section, k):
v = self.get(section, k)
if v == '!!False!!':
v = False
items.append((k, v))
return items | def items(self, section) | Get all items for a section. Subclassed, to ensure secure
items come back with the unencrypted data.
:param section: section id
:type section: string | 3.608242 | 3.964122 | 0.910225 |
return [x
for x in self.items(section)
if self.is_secure_option(section, x[0])] | def secure_items(self, section) | Like items() but only return secure items.
:param section: section id
:type section: string | 4.536427 | 6.592966 | 0.688071 |
if not value:
value = '!!False!!'
if self.is_secure_option(section, option):
self.set_secure(section, option, value)
else:
ConfigParser.set(self, section, option, value) | def set(self, section, option, value) | Set an option value. Knows how to set options properly marked
as secure. | 3.986539 | 3.343507 | 1.192322 |
if self.keyring_available:
s_option = "%s%s" % (section, option)
self._unsaved[s_option] = ('set', value)
value = self._secure_placeholder
ConfigParser.set(self, section, option, value) | def set_secure(self, section, option, value) | Set an option and mark it as secure.
Any subsequent uses of 'set' or 'get' will also
now know that this option is secure as well. | 5.566339 | 5.599273 | 0.994118 |
if self.is_secure_option(section, option) and self.keyring_available:
s_option = "%s%s" % (section, option)
if self._unsaved.get(s_option, [''])[0] == 'set':
res = self._unsaved[s_option][1]
else:
res = keyring.get_password(self.keyring_name, s_option)
else:
res = ConfigParser.get(self, section, option, *args)
if res == '!!False!!':
return False
return res | def get(self, section, option, *args) | Get option value from section. If an option is secure,
populates the plain text. | 3.283937 | 3.155586 | 1.040674 |
if self.is_secure_option(section, option) and self.keyring_available:
s_option = "%s%s" % (section, option)
self._unsaved[s_option] = ('delete', None)
ConfigParser.remove_option(self, section, option) | def remove_option(self, section, option) | Removes the option from ConfigParser as well as
the secure storage backend | 5.061491 | 4.33823 | 1.166718 |
ConfigParser.write(self, *args)
if self.keyring_available:
for key, thing in self._unsaved.items():
action = thing[0]
value = thing[1]
if action == 'set':
keyring.set_password(self.keyring_name, key, value)
elif action == 'delete':
try:
keyring.delete_password(self.keyring_name, key)
except:
pass
self._unsaved = {} | def write(self, *args) | See ConfigParser.write(). Also writes secure items to keystore. | 2.930012 | 2.770543 | 1.057559 |
if self.parser.has_section(id):
return self._section_to_account(id)
return None | def account(self, id) | Get :py:class:`ofxclient.Account` by section id | 5.548723 | 4.782842 | 1.160131 |
serialized = account.serialize()
section_items = flatten_dict(serialized)
section_id = section_items['local_id']
if not self.parser.has_section(section_id):
self.parser.add_section(section_id)
for key in sorted(section_items):
self.parser.set(section_id, key, section_items[key])
self.encrypt_account(id=section_id)
return self | def add_account(self, account) | Add Account to config (does not save) | 3.684846 | 3.600353 | 1.023468 |
for key in self.secured_field_names:
value = self.parser.get(id, key)
self.parser.set_secure(id, key, value)
return self | def encrypt_account(self, id) | Make sure that certain fields are encrypted. | 5.672447 | 4.88822 | 1.160432 |
for key in self.secured_field_names:
if not self.parser.is_secure_option(id, key):
return False
return True | def is_encrypted_account(self, id) | Are all fields for the account id encrypted? | 7.868612 | 5.937199 | 1.325307 |
if self.parser.has_section(id):
self.parser.remove_section(id)
return True
return False | def remove_account(self, id) | Add Account from config (does not save) | 3.758677 | 3.08306 | 1.219138 |
with open(self.file_name, 'w') as fp:
self.parser.write(fp)
return self | def save(self) | Save changes to config file | 4.709911 | 4.22405 | 1.115023 |
client_args = {'ofx_version': str(ofx_version)}
if 'ofx.discovercard.com' in bank_info['url']:
# Discover needs no User-Agent and no Accept headers
client_args['user_agent'] = False
client_args['accept'] = False
if 'www.accountonline.com' in bank_info['url']:
# Citi needs no User-Agent header
client_args['user_agent'] = False
return client_args | def client_args_for_bank(bank_info, ofx_version) | Return the client arguments to use for a particular Institution, as found
from ofxhome. This provides us with an extension point to override or
augment ofxhome data for specific institutions, such as those that
require specific User-Agent headers (or no User-Agent header).
:param bank_info: OFXHome bank information for the institution, as returned
by ``OFXHome.lookup()``
:type bank_info: dict
:param ofx_version: OFX Version argument specified on command line
:type ofx_version: str
:return: Client arguments for a specific institution
:rtype: dict | 4.188964 | 4.343592 | 0.964401 |
return hashlib.sha256(("%s%s" % (
self.id,
self.username)).encode()).hexdigest() | def local_id(self) | Locally generated unique account identifier.
:rtype: string | 5.483054 | 6.427457 | 0.853067 |
u = self.username
p = self.password
if username and password:
u = username
p = password
client = self.client()
query = client.authenticated_query(username=u, password=p)
res = client.post(query)
ofx = BeautifulSoup(res, 'lxml')
sonrs = ofx.find('sonrs')
code = int(sonrs.find('code').contents[0].strip())
try:
status = sonrs.find('message').contents[0].strip()
except Exception:
status = ''
if code == 0:
return 1
raise ValueError(status) | def authenticate(self, username=None, password=None) | Test the authentication credentials
Raises a ``ValueError`` if there is a problem authenticating
with the human readable reason given by the institution.
:param username: optional username (use self.username by default)
:type username: string or None
:param password: optional password (use self.password by default)
:type password: string or None | 4.117438 | 4.060611 | 1.013995 |
from ofxclient.account import Account
client = self.client()
query = client.account_list_query()
resp = client.post(query)
resp_handle = StringIO(resp)
if IS_PYTHON_2:
parsed = OfxParser.parse(resp_handle)
else:
parsed = OfxParser.parse(BytesIO(resp_handle.read().encode()))
return [Account.from_ofxparse(a, institution=self)
for a in parsed.accounts] | def accounts(self) | Ask the bank for the known :py:class:`ofxclient.Account` list.
:rtype: list of :py:class:`ofxclient.Account` objects | 5.133127 | 5.062311 | 1.013989 |
return {
'id': self.id,
'org': self.org,
'url': self.url,
'broker_id': self.broker_id,
'username': self.username,
'password': self.password,
'description': self.description,
'client_args': self.client().init_args,
'local_id': self.local_id()
} | def serialize(self) | Serialize predictably for use in configuration storage.
Output looks like this::
{
'local_id': 'unique local identifier',
'id': 'FI Id',
'org': 'FI Org',
'url': 'FI OFX Endpoint Url',
'broker_id': 'FI Broker Id',
'username': 'Customer username',
'password': 'Customer password',
'description': 'descr',
'client_args': {
'id': 'random client id - see Client() for default',
'app_id': 'app name - see Client() for default',
'...': 'see Client() for other options'
}
}
:rtype: nested dictionary | 3.664181 | 1.89707 | 1.931495 |
return Institution(
id=raw['id'],
org=raw['org'],
url=raw['url'],
broker_id=raw.get('broker_id', ''),
username=raw['username'],
password=raw['password'],
description=raw.get('description', None),
client_args=raw.get('client_args', {})
) | def deserialize(raw) | Instantiate :py:class:`ofxclient.Institution` from dictionary
:param raw: serialized ``Institution``
:param type: dict per :py:method:`~Institution.serialize`
:rtype: subclass of :py:class:`ofxclient.Institution` | 3.535197 | 3.31451 | 1.066582 |
return hashlib.sha256(("%s%s" % (
self.institution.local_id(),
self.number)).encode()).hexdigest() | def local_id(self) | Locally generated unique account identifier.
:rtype: string | 6.14431 | 7.368673 | 0.833842 |
days_ago = datetime.datetime.now() - datetime.timedelta(days=days)
as_of = time.strftime("%Y%m%d", days_ago.timetuple())
query = self._download_query(as_of=as_of)
response = self.institution.client().post(query)
return StringIO(response) | def download(self, days=60) | Downloaded OFX response for the given time range
:param days: Number of days to look back at
:type days: integer
:rtype: :py:class:`StringIO` | 4.17875 | 3.699454 | 1.129559 |
if IS_PYTHON_2:
return OfxParser.parse(
self.download(days=days)
)
else:
return OfxParser.parse(
BytesIO(self.download(days=days).read().encode())
) | def download_parsed(self, days=60) | Downloaded OFX response parsed by :py:meth:`OfxParser.parse`
:param days: Number of days to look back at
:type days: integer
:rtype: :py:class:`ofxparser.Ofx` | 5.280279 | 3.831855 | 1.377995 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.