code
stringlengths
5
1M
repo_name
stringlengths
5
109
path
stringlengths
6
208
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
5
1M
package io.circe.generic.util.macros import io.circe.{ Codec, Decoder, Encoder } import scala.reflect.macros.blackbox abstract class JsonCodecMacros { val c: blackbox.Context import c.universe._ protected[this] def semiautoObj: Symbol protected[this] def deriveMethodPrefix: String private[this] def isCaseClassOrSealed(clsDef: ClassDef) = clsDef.mods.hasFlag(Flag.CASE) || clsDef.mods.hasFlag(Flag.SEALED) protected[this] final def constructJsonCodec(annottees: Tree*): Tree = annottees match { case List(clsDef: ClassDef) if isCaseClassOrSealed(clsDef) => q""" $clsDef object ${clsDef.name.toTermName} { ..${codec(clsDef)} } """ case List( clsDef: ClassDef, q"..$mods object $objName extends { ..$objEarlyDefs } with ..$objParents { $objSelf => ..$objDefs }" ) if isCaseClassOrSealed(clsDef) => q""" $clsDef $mods object $objName extends { ..$objEarlyDefs } with ..$objParents { $objSelf => ..$objDefs ..${codec(clsDef)} } """ case _ => c.abort(c.enclosingPosition, "Invalid annotation target: must be a case class or a sealed trait/class") } private[this] val DecoderClass = typeOf[Decoder[_]].typeSymbol.asType private[this] val EncoderClass = typeOf[Encoder[_]].typeSymbol.asType private[this] val AsObjectEncoderClass = typeOf[Encoder.AsObject[_]].typeSymbol.asType private[this] val AsObjectCodecClass = typeOf[Codec.AsObject[_]].typeSymbol.asType private[this] val macroName: Tree = { c.prefix.tree match { case Apply(Select(New(name), _), _) => name case _ => c.abort(c.enclosingPosition, "Unexpected macro application") } } private[this] val codecType: JsonCodecType = { c.prefix.tree match { case q"new ${`macroName`}()" => JsonCodecType.Both case q"new ${`macroName`}(encodeOnly = true)" => JsonCodecType.EncodeOnly case q"new ${`macroName`}(decodeOnly = true)" => JsonCodecType.DecodeOnly // format: off case _ => c.abort(c.enclosingPosition, s"Unsupported arguments supplied to @$macroName") // format: on } } private[this] def codec(clsDef: ClassDef): List[Tree] = { val tpname = clsDef.name val tparams = clsDef.tparams val decodeName = TermName("decode" + tpname.decodedName) val encodeName = TermName("encode" + tpname.decodedName) val codecName = TermName("codecFor" + tpname.decodedName) def deriveName(suffix: String) = TermName(deriveMethodPrefix + suffix) if (tparams.isEmpty) { val Type = tpname List( codecType match { case JsonCodecType.Both => q"""implicit val $codecName: $AsObjectCodecClass[$Type] = $semiautoObj.${deriveName("Codec")}[$Type]""" case JsonCodecType.DecodeOnly => q"""implicit val $decodeName: $DecoderClass[$Type] = $semiautoObj.${deriveName("Decoder")}[$Type]""" case JsonCodecType.EncodeOnly => q"""implicit val $encodeName: $AsObjectEncoderClass[$Type] = $semiautoObj.${deriveName("Encoder")}[$Type]""" } ) } else { val tparamNames = tparams.map(_.name) def mkImplicitParams(prefix: String, typeSymbol: TypeSymbol) = tparamNames.zipWithIndex.map { case (tparamName, i) => val paramName = TermName(s"$prefix$i") val paramType = tq"$typeSymbol[$tparamName]" q"$paramName: $paramType" } val decodeParams = mkImplicitParams("decode", DecoderClass) val encodeParams = mkImplicitParams("encode", EncoderClass) val Type = tq"$tpname[..$tparamNames]" val (decoder, encoder) = ( q"""implicit def $decodeName[..$tparams](implicit ..$decodeParams): $DecoderClass[$Type] = $semiautoObj.${deriveName("Decoder")}[$Type]""", q"""implicit def $encodeName[..$tparams](implicit ..$encodeParams): $AsObjectEncoderClass[$Type] = $semiautoObj.${deriveName("Encoder")}[$Type]""" ) codecType match { case JsonCodecType.Both => List(decoder, encoder) case JsonCodecType.DecodeOnly => List(decoder) case JsonCodecType.EncodeOnly => List(encoder) } } } } private sealed trait JsonCodecType private object JsonCodecType { case object Both extends JsonCodecType case object DecodeOnly extends JsonCodecType case object EncodeOnly extends JsonCodecType }
travisbrown/circe
modules/generic/shared/src/main/scala-2/io/circe/generic/util/macros/JsonCodecMacros.scala
Scala
apache-2.0
4,498
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.predictionio.controller import org.apache.predictionio.core.BaseDataSource import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD /** Base class of a parallel data source. * * A parallel data source runs locally within a single machine, or in parallel * on a cluster, to return data that is distributed across a cluster. * * @tparam TD Training data class. * @tparam EI Evaluation Info class. * @tparam Q Input query class. * @tparam A Actual value class. * @group Data Source */ abstract class PDataSource[TD, EI, Q, A] extends BaseDataSource[TD, EI, Q, A] { def readTrainingBase(sc: SparkContext): TD = readTraining(sc) /** Implement this method to only return training data from a data source */ def readTraining(sc: SparkContext): TD def readEvalBase(sc: SparkContext): Seq[(TD, EI, RDD[(Q, A)])] = readEval(sc) /** To provide evaluation feature for your engine, your must override this * method to return data for evaluation from a data source. Returned data can * optionally include a sequence of query and actual value pairs for * evaluation purpose. * * The default implementation returns an empty sequence as a stub, so that * an engine can be compiled without implementing evaluation. */ def readEval(sc: SparkContext): Seq[(TD, EI, RDD[(Q, A)])] = Seq[(TD, EI, RDD[(Q, A)])]() @deprecated("Use readEval() instead.", "0.9.0") def read(sc: SparkContext): Seq[(TD, EI, RDD[(Q, A)])] = readEval(sc) }
himanshudhami/PredictionIO
core/src/main/scala/org/apache/predictionio/controller/PDataSource.scala
Scala
apache-2.0
2,322
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.carbondata.spark.testsuite.secondaryindex import org.apache.carbondata.core.metadata.CarbonMetadata import org.apache.carbondata.spark.exception.ProcessMetaDataException import org.apache.spark.sql.execution.SparkPlan import org.apache.spark.sql.secondaryindex.joins.BroadCastSIFilterPushJoin import org.apache.spark.sql.test.util.QueryTest import org.scalatest.BeforeAndAfterAll class TestAlterTableColumnRenameWithSecondaryIndex extends QueryTest with BeforeAndAfterAll { override protected def beforeAll(): Unit = { dropTable() } test("test direct rename on SI table") { createTable() sql("create index index1 on table si_rename(c) AS 'carbondata' ") val ex = intercept[ProcessMetaDataException] { sql("alter table index1 change c test string") } assert(ex.getMessage.contains("Alter table column rename is not allowed on index table")) } test("test column rename with SI table") { dropTable() createTable() sql("create index index1 on table si_rename(c) AS 'carbondata' ") sql("alter table si_rename change c test string") val carbonTable = CarbonMetadata.getInstance().getCarbonTable("default", "index1") assert(null != carbonTable.getColumnByName("test")) assert(null == carbonTable.getColumnByName("c")) } test("test column rename with multiple SI table table") { dropTable() createTable() sql("create index index1 on table si_rename(c) AS 'carbondata' ") sql("create index index2 on table si_rename(c,d) AS 'carbondata' ") sql("alter table si_rename change c test string") sql("alter table si_rename change d testSI string") val carbonTable1 = CarbonMetadata.getInstance().getCarbonTable("default", "index1") assert(null != carbonTable1.getColumnByName("test")) assert(null == carbonTable1.getColumnByName("c")) val carbonTable2 = CarbonMetadata.getInstance().getCarbonTable("default", "index2") assert(null != carbonTable2.getColumnByName("testSI")) assert(null == carbonTable2.getColumnByName("d")) } test("test column rename with SI tables load and query") { dropTable() createTable() sql("create index index1 on table si_rename(c) AS 'carbondata'") sql("create index index2 on table si_rename(c,d) AS 'carbondata'") sql("insert into si_rename select 'abc',3,'def','mno'") sql("insert into si_rename select 'def',4,'xyz','pqr'") val query1 = sql("select c,d from si_rename where d = 'pqr' or c = 'def'").count() sql("alter table si_rename change c test string") sql("alter table si_rename change d testSI string") sql("show indexes on si_rename").collect val query2 = sql("select test,testsi from si_rename where testsi = 'pqr' or test = 'def'").count() assert(query1 == query2) val df = sql("select test,testsi from si_rename where testsi = 'pqr' or test = 'def'").queryExecution.sparkPlan if (!isFilterPushedDownToSI(df)) { assert(false) } else { assert(true) } } override protected def afterAll(): Unit = { dropTable() } private def dropTable(): Unit = { sql("drop table if exists si_rename") } private def createTable(): Unit = { sql("create table si_rename (a string,b int, c string, d string) STORED AS carbondata") } /** * Method to check whether the filter is push down to SI table or not * * @param sparkPlan * @return */ private def isFilterPushedDownToSI(sparkPlan: SparkPlan): Boolean = { var isValidPlan = false sparkPlan.transform { case broadCastSIFilterPushDown: BroadCastSIFilterPushJoin => isValidPlan = true broadCastSIFilterPushDown } isValidPlan } }
jackylk/incubator-carbondata
index/secondary-index/src/test/scala/org/apache/carbondata/spark/testsuite/secondaryindex/TestAlterTableColumnRenameWithSecondaryIndex.scala
Scala
apache-2.0
4,502
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ai.h2o.sparkling.examples import ai.h2o.sparkling.examples.CraigslistJobTitlesApp._ import org.apache.spark.sql.streaming._ import org.apache.spark.sql.SparkSession /** * Variant of Craigslist App with structured streaming support to classify incoming events. * * Launch: nc -lk 9999 and send events from your console * */ object CraigslistJobTitlesStructuredStreamingApp { def main(args: Array[String]) { val spark = SparkSession .builder() .appName("Craigslist Job Titles Structured Streaming App") .getOrCreate() val titlesTable = loadTitlesTable(spark) val model = fitModelPipeline(titlesTable) // consume data from socket val dataStream = spark.readStream .format("socket") .option("host", "localhost") .option("port", 9999) .load() // bring encoders into scope import spark.implicits._ // interpret input data as job titles val jobTitlesStream = dataStream .as[String] .withColumnRenamed("value", "jobtitle") // use model to predict category val prediction = model.transform(jobTitlesStream) // select relevant output columns val categoryPrediction = prediction.select("jobtitle", "prediction", "detailed_prediction.probabilities.*") // start streaming query, put output to console val query = categoryPrediction.writeStream .format("console") .trigger(Trigger.ProcessingTime("10 seconds")) .start() query.awaitTermination() } }
h2oai/sparkling-water
examples/src/main/scala/ai/h2o/sparkling/examples/CraigslistJobTitlesStructuredStreamingApp.scala
Scala
apache-2.0
2,307
package utils import models.ZkKafka import models.ZkKafka._ import org.apache.commons.codec.digest.DigestUtils import org.joda.time.DateTime import org.joda.time.format.DateTimeFormat import org.joda.time.DateTime import play.api.i18n.Messages import play.api.libs.json.Json._ import play.api.libs.json._ object JsonFormats { private def optionLongtoJsValue(maybeId: Option[Long]) = maybeId.map({ l => JsNumber(l) }).getOrElse(JsNull) implicit object DeltaFormat extends Format[Delta] { def reads(json: JsValue): JsResult[Delta] = JsSuccess(Delta( partition = (json \\ "partition").as[Int], amount = (json \\ "amount").as[Option[Long]], current = (json \\ "current").as[Long], storm = (json \\ "storm").as[Option[Long]] )) def writes(o: Delta): JsValue = { val doc: Map[String,JsValue] = Map( "partition" -> JsNumber(o.partition), "amount" -> optionLongtoJsValue(o.amount), "current" -> JsNumber(o.current), "storm" -> optionLongtoJsValue(o.storm) ) toJson(doc) } } }
evertrue/capillary
app/utils/JsonFormats.scala
Scala
mit
1,112
package com.appliedscala.events import java.util.UUID import org.joda.time.DateTime import play.api.libs.json.{JsObject, Json} /** * * AnswerUpdated class * <p/> */ case class AnswerUpdated(answerId: UUID, answerText: String, questionId: UUID, updatedBy: UUID, updated: DateTime) extends EventData { override def action = AnswerUpdated.actionName override def json: JsObject = Json.writes[AnswerUpdated].writes(this) } object AnswerUpdated { val actionName = "answer-updated" implicit val reads = Json.reads[AnswerUpdated] }
getArtemUsername/play-and-events
events/src/main/scala/com/appliedscala/events/AnswerUpdated.scala
Scala
mit
548
package org.glotaran.kernel.types.messages.supervisor /** * Send to supervisor to add a spefific number of workeractors */ case class AddWorker(number: Int)
glotaran/glotaran-kernel
glotaran-kernel-types/src/main/scala/org/glotaran/kernel/types/messages/supervisor/AddWorker.scala
Scala
gpl-3.0
164
//############################################################################ // Exceptions //############################################################################ //############################################################################ abstract class IntMap[A] { def lookup(key: Int): A = this match { case Empty() => sys.error("KO") case _ => sys.error("ok") } } case class Empty[A]() extends IntMap[A]; object exceptions { def check(what: String, actual: Any, expected: Any): Unit = { val success: Boolean = actual == expected; Console.print(if (success) "ok" else "KO"); var value: String = if (actual == null) "null" else actual.toString(); if (value == "\\u0000") value = "\\\\u0000"; Console.print(": " + what + " = " + value); if (!success) Console.print(" != " + expected); Console.println() Console.flush() } def test: Unit = { val key = 2000; val map: IntMap[String] = new Empty[String]; val value = try { map.lookup(key) } catch { case e: Throwable => e.getMessage() } check("lookup(" + key + ")", value, "KO"); } } //############################################################################ object Test { def main(args: Array[String]): Unit = { exceptions.test; } } //############################################################################
scala/scala
test/files/run/exceptions.scala
Scala
apache-2.0
1,468
package controllers import play.api._ import play.api.mvc._ import play.api.data._ import play.api.data.Forms._ import java.util.{Date} import models._ import views._ /** * Manage tasks related operations. */ class Tasks extends Controller with Secured { /** * Display the tasks panel for this project. */ def index(project: Long) = IsMemberOf(project) { _ => implicit request => Project.findById(project).map { p => val tasks = Task.findByProject(project) val team = Project.membersOf(project) Ok(html.tasks.index(p, tasks, team)) }.getOrElse(NotFound) } val taskForm = Form( tuple( "title" -> nonEmptyText, "dueDate" -> optional(date("MM/dd/yy")), "assignedTo" -> optional(text) ) ) // -- Tasks /** * Create a task in this project. */ def add(project: Long, folder: String) = IsMemberOf(project) { _ => implicit request => taskForm.bindFromRequest.fold( errors => BadRequest, { case (title, dueDate, assignedTo) => val task = Task.create( Task(None, folder, project, title, false, dueDate, assignedTo) ) Ok(html.tasks.item(task)) } ) } /** * Update a task */ def update(task: Long) = IsOwnerOf(task) { _ => implicit request => Form("done" -> boolean).bindFromRequest.fold( errors => BadRequest, isDone => { Task.markAsDone(task, isDone) Ok } ) } /** * Delete a task */ def delete(task: Long) = IsOwnerOf(task) { _ => implicit request => Task.delete(task) Ok } // -- Task folders /** * Add a new folder. */ def addFolder = Action { Ok(html.tasks.folder("New folder")) } /** * Delete a full tasks folder. */ def deleteFolder(project: Long, folder: String) = IsMemberOf(project) { _ => implicit request => Task.deleteInFolder(project, folder) Ok } /** * Rename a tasks folder. */ def renameFolder(project: Long, folder: String) = IsMemberOf(project) { _ => implicit request => Form("name" -> nonEmptyText).bindFromRequest.fold( errors => BadRequest, newName => { Task.renameFolder(project, folder, newName) Ok(newName) } ) } }
scoverage/scoverage-maven-samples
playframework/singlemodule/zentasks/zentasks-scala-2.10/app/controllers/Tasks.scala
Scala
apache-2.0
2,278
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package com.sumologic.shellbase import org.apache.commons.cli.CommandLine import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner @RunWith(classOf[JUnitRunner]) class ShellCommandSetTest extends CommonWordSpec { "A ShellCommandSet" should { "always accept the help command" in { val sut = new ShellCommandSet("test", "set help text") sut.commands += new TestCommand("one") run(sut, "test help") should be(true) run(sut, "test ?") should be(true) run(sut, "test ? one") should be(true) run(sut, "test ? two") should be(false) run(sut, "test") should be(true) } "support multi level help" in { val sut = new ShellCommandSet("test", "set help text") val nested = new ShellCommandSet("nested", "some help") sut.commands += new TestCommand("one") sut.commands += nested nested.commands += new TestCommand("two") run(sut, "help test one") should be(true) run(sut, "help test nested two") should be(true) run(sut, "help -a test nested two") should be(true) run(sut, "help --all test") should be(true) } "execute commands in the set" in { val sut = new ShellCommandSet("test", "set help text") val one = new TestCommand("one") val two = new TestCommand("two") sut.commands += one sut.commands += two run(sut, "test one") should be(true) one.commandLines.size should be(1) two.commandLines.size should be(0) } "support nested sets" in { val sut = new ShellCommandSet("test", "set help text") val level = new ShellCommandSet("level", "level help text") sut.commands += level val one = new TestCommand("one") val two = new TestCommand("two") level.commands += one level.commands += two run(sut, "test level one") should be(true) one.commandLines.size should be(1) two.commandLines.size should be(0) } "return false" when { "the command does not exist" in { val sut = new ShellCommandSet("test", "set help text") run(sut, "test say-what") should be(false) } "the command called returns false" in { val sut = new ShellCommandSet("test", "set help text") val one = new TestCommand("one") one.returnResult = false sut.commands += one run(sut, "test one") should be(false) one.commandLines.size should be(1) } "the command called throws a Throwable" in { val sut = new ShellCommandSet("test", "set help text") val one = new TestCommand("one") { override def execute(cmdLine: CommandLine) = { super.execute(cmdLine) throw new Throwable("urgh!") } } sut.commands += one run(sut, "test one") should be(false) one.commandLines.size should be(1) } "the command fails preExecute" in { val sut = new ShellCommandSet("test", "set help text") val throwExceptionShellHook: ShellCommandSet.ExecuteHook = (_, _) => throw new Exception("test") sut.preExecuteHooks += throwExceptionShellHook val one = new TestCommand("one") one.returnResult = true sut.commands += one run(sut, "test one") should be(false) one.commandLines.size should be(0) } "the command fails postExecute" in { val sut = new ShellCommandSet("test", "set help text") val throwExceptionShellHook: ShellCommandSet.ExecuteHook = (_, _) => throw new Exception("test") sut.postExecuteHooks += throwExceptionShellHook val one = new TestCommand("one") one.returnResult = true sut.commands += one run(sut, "test one") should be(false) one.commandLines.size should be(1) } } "not run a command" when { "validation fails on the set" in { val sut = new ShellCommandSet("test", "set help text") with FailedValidation val one = new TestCommand("one") sut.commands += one val result = run(sut, "test one") result should be(false) one.commandLines.size should be(0) } "validation fails on the command" in { val sut = new ShellCommandSet("test", "set help text") val one = new TestCommand("one") with FailedValidation sut.commands += one val result = run(sut, "test one") result should be(false) one.commandLines.size should be(0) } } "not allow running old execute line" in { val sut = new ShellCommandSet("blah", "") intercept[IllegalAccessException] { sut.execute(null) } } } def run(sut: ShellCommandSet, command: String): Boolean = { val root = new ShellCommandSet("", "root help text") root.commands += sut root.executeLine(command.split(" ").toList) } } class TestCommand(name: String) extends ShellCommand(name, "test command " + name) { var commandLines = List[CommandLine]() var returnResult = true def execute(cmdLine: CommandLine) = { commandLines +:= cmdLine returnResult } } trait FailedValidation extends ShellCommand { override def validate(cmdLine: CommandLine) = { Some("failure") } }
SumoLogic/shellbase
shellbase-core/src/test/scala/com/sumologic/shellbase/ShellCommandSetTest.scala
Scala
apache-2.0
6,069
package mesosphere.marathon.core.launcher.impl import mesosphere.marathon.core.launcher.TaskOp import mesosphere.marathon.core.matcher.base.util.OfferOperationFactory import mesosphere.marathon.core.task.Task import mesosphere.marathon.core.task.Task.LocalVolume import mesosphere.util.state.FrameworkId import org.apache.mesos.{ Protos => Mesos } class TaskOpFactoryHelper( private val principalOpt: Option[String], private val roleOpt: Option[String]) { private[this] val offerOperationFactory = new OfferOperationFactory(principalOpt, roleOpt) def launch( taskInfo: Mesos.TaskInfo, newTask: Task, oldTask: Option[Task] = None): TaskOp.Launch = { assume(newTask.taskId.mesosTaskId == taskInfo.getTaskId, "marathon task id and mesos task id must be equal") def createOperations = Seq(offerOperationFactory.launch(taskInfo)) TaskOp.Launch(taskInfo, newTask, oldTask, createOperations) } def reserveAndCreateVolumes( frameworkId: FrameworkId, newTask: Task, resources: Iterable[Mesos.Resource], localVolumes: Iterable[LocalVolume], oldTask: Option[Task] = None): TaskOp.ReserveAndCreateVolumes = { def createOperations = Seq( offerOperationFactory.reserve(frameworkId, newTask.taskId, resources), offerOperationFactory.createVolumes(frameworkId, newTask.taskId, localVolumes)) TaskOp.ReserveAndCreateVolumes(newTask, resources, localVolumes, oldTask, createOperations) } }
pgkelley4/marathon
src/main/scala/mesosphere/marathon/core/launcher/impl/TaskOpFactoryHelper.scala
Scala
apache-2.0
1,464
package org.fedoraproject.mobile import Implicits._ import android.content.Context import android.os.Bundle import android.util.Log import android.view.{ LayoutInflater, Menu, MenuItem, View, ViewGroup } import android.widget.{ AdapterView, ArrayAdapter, LinearLayout, TextView, Toast } import argonaut._, Argonaut._ import scalaz._, Scalaz._ import uk.co.senab.actionbarpulltorefresh.library.PullToRefreshAttacher import scala.io.Source class StatusFragment extends TypedFragment with PullToRefreshAttacher.OnRefreshListener { private lazy val refreshAdapter = new PullToRefreshAttacher(activity) def onRefreshStarted(view: View): Unit = updateStatuses() private def updateStatuses(): Unit = { val progress = findView(TR.progress) progress.setVisibility(View.VISIBLE) Status.statuses(getActivity.getApplicationContext).runAsync(_.fold( err => runOnUiThread(Toast.makeText(activity, R.string.status_failure, Toast.LENGTH_LONG).show), res => { runOnUiThread(progress.setVisibility(View.GONE)) res.decodeEither[Status.StatusesResponse].fold( err => { Log.e("StatusFragment", err.toString) () }, parsed => { val adapter = new StatusAdapter( activity, android.R.layout.simple_list_item_1, parsed.services.toArray.sortBy(_._2.name)) runOnUiThread(findView(TR.statuses).setAdapter(adapter)) runOnUiThread { val globalInfoView = findView(TR.globalinfo) globalInfoView.setText(parsed.global_verbose_status) // TODO: StatusCondition instead of String. Status.StatusCondition.readOpt(parsed.global_status).map(c => globalInfoView.setBackgroundColor(Status.colorFor(c))) } } ) runOnUiThread(refreshAdapter.setRefreshComplete) } )) } override def onCreateView(i: LayoutInflater, c: ViewGroup, b: Bundle): View = { super.onCreateView(i, c, b) i.inflate(R.layout.status_activity, c, false) } override def onStart(): Unit = { super.onStart() val view = findView(TR.statuses) refreshAdapter.setRefreshableView(view, this) updateStatuses() } }
fedora-infra/mobile
src/main/scala/fragment/status/StatusFragment.scala
Scala
mpl-2.0
2,286
/*package parsequery import org.scalameter.api._ import org.scalameter.picklers.Implicits._ import org.scalameter.Measurer.{RelativeNoise, OutlierElimination, PeriodicReinstantiation, MemoryFootprint} import org.scalameter.Key import java.text.SimpleDateFormat import java.util.Calendar import parsec._ import parsec.optimised._ object ParsequeryBenchmark extends Bench.ForkedTime with JSONParser { import Js._ import fastparse.all._ override def executor = SeparateJvmsExecutor( new Executor.Warmer.Default, Aggregator.min[Double], new Measurer.Default ) override def persistor = Persistor.None override def reporter = new LoggingReporter def benchmark(fname: String, f: String => _): Unit = { import scala.io.Source val fileName = "data/scala-lang-contributions.json" val fileContent = Source.fromFile(fileName).mkString val range = Gen.enumeration("size")(10) performance of fname in { measure method "parser" config ( exec.minWarmupRuns -> 5, exec.maxWarmupRuns -> 10, exec.benchRuns -> 25, exec.independentSamples -> 1 ) in { using(range) in { n => // we use while to remove overhead of for ... yield var i = 0 while (i < n) { f(fileContent) i += 1 } } } } } def runGeneralParser(src: String) = { val Parsed.Success(resAll, _) = jsonExpr.parse(src) val ids2totals: List[(Val, Val)] = (resAll match { case x @ Arr(ls) => for (l <- ls) yield (l("author")("id"), l("total")) case _ => sys.error("Something went wrong") }).toList } def runSpecializedParser(src: String) = { val Parsed.Success(specialized, _) = projections.parse(src) val ids2totalsBis: List[Val] = (specialized match { case x @ Arr(ls) => ls }).toList } benchmark("GeneralParser", runGeneralParser) benchmark("SpecializedParser", runSpecializedParser) } */
manojo/parsequery
macros/src/bench/scala/parsequery/ParsequeryBenchmark.scala
Scala
mit
1,999
/*********************************************************************** * Copyright (c) 2013-2017 Commonwealth Computer Research, Inc. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Apache License, Version 2.0 * which accompanies this distribution and is available at * http://www.opensource.org/licenses/apache2.0.php. ***********************************************************************/ package org.locationtech.geomesa.index.utils.bin import java.io.ByteArrayOutputStream import java.util.{Arrays, Date} import com.vividsolutions.jts.geom.Point import org.junit.runner.RunWith import org.locationtech.geomesa.features.ScalaSimpleFeature import org.locationtech.geomesa.utils.bin.BinaryEncodeCallback.{ByteArrayCallback, ByteStreamCallback} import org.locationtech.geomesa.utils.bin.BinaryOutputEncoder import org.locationtech.geomesa.utils.geotools.SimpleFeatureTypes import org.specs2.mutable.Specification import org.specs2.runner.JUnitRunner import scala.util.Random @RunWith(classOf[JUnitRunner]) class BinSorterTest extends Specification { val spec = "name:String,dtg:Date,*geom:Point:srid=4326" val sft = SimpleFeatureTypes.createType(getClass.getSimpleName, spec) val seed = 10 // new Random().nextLong(); println("SEED " + seed) val r = new Random(seed) val features = (0 until r.nextInt(100) + 1).map { i => val dtg = new Date(r.nextInt(999999)) val name = s"name$i" val geom = s"POINT(40 6$i)" val sf = new ScalaSimpleFeature(sft, s"$i") sf.setAttributes(Array[AnyRef](name, dtg, geom)) sf } val out = new ByteArrayOutputStream(16 * features.length) val callback = new ByteStreamCallback(out) features.foreach { f => callback.apply( f.getAttribute("name").asInstanceOf[String].hashCode, f.getDefaultGeometry.asInstanceOf[Point].getY.toFloat, f.getDefaultGeometry.asInstanceOf[Point].getX.toFloat, f.getAttribute("dtg").asInstanceOf[Date].getTime) } val bin = out.toByteArray "BinAggregatingIterator" should { "quicksort" in { val bytes = Arrays.copyOf(bin, bin.length) BinSorter.quickSort(bytes, 0, bytes.length - 16, 16) val result = bytes.grouped(16).map(BinaryOutputEncoder.decode).map(_.dtg).toSeq forall(result.sliding(2))(s => s.head must beLessThanOrEqualTo(s.drop(1).head)) } "mergesort" in { val bytes = Arrays.copyOf(bin, bin.length).grouped(48).toSeq bytes.foreach(b => BinSorter.quickSort(b, 0, b.length - 16, 16)) val result = BinSorter.mergeSort(bytes.iterator, 16).map { case (b, o) => BinaryOutputEncoder.decode(b.slice(o, o + 16)).dtg } forall(result.sliding(2))(s => s.head must beLessThanOrEqualTo(s.drop(1).head)) } "mergesort in place" in { val bytes = Arrays.copyOf(bin, bin.length).grouped(48) val (left, right) = (bytes.next(), bytes.next()) // sort the left and right arrays BinSorter.quickSort(left, 0, left.length - 16, 16) BinSorter.quickSort(right, 0, right.length - 16, 16) val merged = BinSorter.mergeSort(left, right, 16) val result = merged.grouped(16).map(BinaryOutputEncoder.decode).map(_.dtg).toSeq forall(result.sliding(2))(s => s.head must beLessThanOrEqualTo(s.drop(1).head)) } "quicksort 24 byte records" in { val out = new ByteArrayOutputStream(24 * features.length) val callback = new ByteStreamCallback(out) features.foreach { f => callback.apply( f.getAttribute("name").asInstanceOf[String].hashCode, f.getDefaultGeometry.asInstanceOf[Point].getY.toFloat, f.getDefaultGeometry.asInstanceOf[Point].getX.toFloat, f.getAttribute("dtg").asInstanceOf[Date].getTime, f.getAttribute("dtg").asInstanceOf[Date].getTime * 1000) } val bytes = out.toByteArray BinSorter.quickSort(bytes, 0, bytes.length - 24, 24) val result = bytes.grouped(24).map(BinaryOutputEncoder.decode).map(_.dtg).toSeq forall(result.sliding(2))(s => s.head must beLessThanOrEqualTo(s.drop(1).head)) } "quicksort edge cases" in { val maxLength = 8 // anything more than 8 takes too long to run val buffer = Array.ofDim[Byte](maxLength * 16) val bins = (1 to maxLength).map { i => ByteArrayCallback.apply(s"name$i".hashCode, 0f, 0f, i * 1000) ByteArrayCallback.result } (1 to maxLength).foreach { i => bins.slice(0, i).permutations.foreach { seq => val right = i * 16 - 16 seq.zipWithIndex.foreach { case (b, s) => System.arraycopy(b, 0, buffer, s * 16, 16) } BinSorter.quickSort(buffer, 0, right, 16) val result = buffer.take(right + 16).grouped(16).map(BinaryOutputEncoder.decode).map(_.dtg).toSeq result must haveLength(i) if (result.length > 1) { forall(result.sliding(2))(s => s.head must beLessThanOrEqualTo(s.drop(1).head)) } } } success } } }
ronq/geomesa
geomesa-index-api/src/test/scala/org/locationtech/geomesa/index/utils/bin/BinSorterTest.scala
Scala
apache-2.0
5,042
package com.emstlk.nacl4s.crypto.box import com.emstlk.nacl4s.crypto.Utils._ import com.emstlk.nacl4s.crypto.core.HSalsa20 import com.emstlk.nacl4s.crypto.scalarmult.Curve25519 import com.emstlk.nacl4s.crypto.secretbox.XSalsa20Poly1305 object Curve25519XSalsa20Poly1305 { val seedBytes = 32 val publicKeyBytes = 32 val secretKeyBytes = 32 val beforenmBytes = 32 val nonceBytes = 24 val zeroBytes = 32 val boxZeroBytes = 16 def cryptoBoxBeforenm(k: Array[Byte], pk: Array[Byte], sk: Array[Byte]) = { val s = new Array[Byte](32) Curve25519.cryptoScalarmult(s, sk, pk) HSalsa20.cryptoCore(k, new Array[Byte](16), s, getSigma) } def cryptoBoxAfternm(c: Array[Byte], m: Array[Byte], mlen: Int, n: Array[Byte], k: Array[Byte]) = { XSalsa20Poly1305.cryptoSecretBox(c, m, mlen, n, k) } def cryptoBoxOpenAfternm(m: Array[Byte], c: Array[Byte], clen: Int, n: Array[Byte], k: Array[Byte]) = { XSalsa20Poly1305.cryptoSecretBoxOpen(m, c, clen, n, k) } def cryptoBox(c: Array[Byte], m: Array[Byte], mlen: Int, n: Array[Byte], pk: Array[Byte], sk: Array[Byte]) = { val k = new Array[Byte](beforenmBytes) cryptoBoxBeforenm(k, pk, sk) cryptoBoxAfternm(c, m, mlen, n, k) } def cryptoBoxOpen(m: Array[Byte], c: Array[Byte], clen: Int, n: Array[Byte], pk: Array[Byte], sk: Array[Byte]) = { val k = new Array[Byte](beforenmBytes) cryptoBoxBeforenm(k, pk, sk) cryptoBoxOpenAfternm(m, c, clen, n, k) } //TODO init crypto_box_seed_keypair def cryptoBoxKeypair(pk: Array[Byte], sk: Array[Byte]) = { random.nextBytes(sk) Curve25519.cryptoScalarmultBase(pk, sk) } }
emstlk/nacl4s
src/main/scala/com/emstlk/nacl4s/crypto/box/Curve25519XSalsa20Poly1305.scala
Scala
mit
1,642
/* * Copyright 2016 http4s.org * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.http4s import cats.effect.IO import cats.effect.Resource import cats.syntax.all._ import fs2._ import fs2.text.utf8 import munit._ import org.scalacheck.Prop /** Common stack for http4s' munit based tests */ trait Http4sSuite extends CatsEffectSuite with DisciplineSuite with munit.ScalaCheckEffectSuite with Http4sSuitePlatform { private[this] val suiteFixtures = List.newBuilder[Fixture[_]] override def munitFixtures: Seq[Fixture[_]] = suiteFixtures.result() // Override to remove implicit modifier override def unitToProp = super.unitToProp // Scala 3 likes this better implicit def saneUnitToProp(unit: Unit): Prop = unitToProp(unit) def registerSuiteFixture[A](fixture: Fixture[A]) = { suiteFixtures += fixture fixture } def resourceSuiteDeferredFixture[A](name: String, resource: Resource[IO, A]) = registerSuiteFixture(UnsafeResourceSuiteLocalDeferredFixture(name, resource)) implicit class ParseResultSyntax[A](self: ParseResult[A]) { def yolo: A = self.valueOr(e => sys.error(e.toString)) } def writeToString[A](a: A)(implicit W: EntityEncoder[IO, A]): IO[String] = Stream .emit(W.toEntity(a)) .flatMap(_.body) .through(utf8.decode) .foldMonoid .compile .last .map(_.getOrElse("")) }
http4s/http4s
testing/shared/src/test/scala/org/http4s/Http4sSuite.scala
Scala
apache-2.0
1,916
package com.twitter.finatra.thrift.filters import com.twitter.finagle.{Filter, Service} import com.twitter.finatra.thrift.exceptions.ExceptionManager import com.twitter.util.Future import javax.inject.{Inject, Singleton} /** * A [[ThriftFilter]] which handles exceptions by rescuing the exception and passing * it to the [[ExceptionManager]] to handle it. * * @note This Filter SHOULD be as close to the start of the Filter chain as possible */ @Singleton class ExceptionMappingFilter @Inject() ( exceptionManager: ExceptionManager) extends Filter.TypeAgnostic { def toFilter[T, U]: Filter[T, U, T, U] = new Filter[T, U, T, U] { def apply( request: T, service: Service[T, U] ): Future[U] = { service(request).rescue { case e => exceptionManager.handleException(e) } } } }
twitter/finatra
thrift/src/main/scala/com/twitter/finatra/thrift/filters/ExceptionMappingFilter.scala
Scala
apache-2.0
834
/** * Copyright 2011-2016 GatlingCorp (http://gatling.io) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package io.gatling.core.json import java.io.{ InputStream, InputStreamReader } import java.nio.charset.Charset import io.advantageous.boon.json.implementation.{ JsonFastParser, JsonParserUsingCharacterSource } class Boon extends JsonParser { private def newFastParser = new JsonFastParser(false, false, true, false) def parse(bytes: Array[Byte], charset: Charset) = { val parser = newFastParser parser.setCharset(charset) parser.parse(bytes) } def parse(string: String) = newFastParser.parse(string) def parse(stream: InputStream, charset: Charset) = new JsonParserUsingCharacterSource().parse(new InputStreamReader(stream, charset)) }
thkluge/gatling
gatling-core/src/main/scala/io/gatling/core/json/Boon.scala
Scala
apache-2.0
1,291
/** * Copyright (C) 2016 Verizon. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.verizon.bda.trapezium.dal.spark.cassandra import com.verizon.bda.trapezium.dal.sql.BaseSqlDAO import org.apache.spark.sql._ import org.apache.spark.sql.SQLContext import org.apache.spark.sql.types.StructType /** * Created by Faraz Waseem on 12/17/15. * Cassandrao DAO is wrapper around spark connector which is high level interface to Cassandra * It has defaults options which can be overwritten in spark conf options. * like sc.conf.set("spark.cassandra.connection.host", "md-bdadev-54.verizon.com") * */ class CassandraDAO(dbName: String, tableName: String, hosts: List[String]) (implicit spark: SparkSession) extends BaseSqlDAO(dbName, tableName) { protected val schema = null; var dbMap = Map("table" -> tableName, "keyspace" -> dbName) /** * The schema corresponding to the table <code>tableName</code> is returned. * * @return <code>StructType</code> containing the schema. */ override def getSchema: StructType = schema def this (dbName: String, tableName: String, hosts: List[String], options: Map[String, String]) (implicit spark: SparkSession) { this(dbName, tableName, hosts) dbMap ++= options } /** * Write the batch of records (eg. Rows) into the data store. * * @param data distributed collection of data to be persisted of type <code>DataFrame</code> */ override def write(data: DataFrame): Unit = { // data.write.insertInto(dbName + "." + tableName) data.write .format("org.apache.spark.sql.cassandra") .options(dbMap) .mode(SaveMode.Append) .save() } /** * The requested list of columns are returned as batch. * * @param cols List of columns to return * @return T distributed collection of data containing the requested columns. */ override def getColumns(cols: List[String]): DataFrame = { val sqlText = constructSql(cols) log.info(s"Executing query: $sqlText") val df = spark.sqlContext.sql(sqlText) df } def getOptions(): Map[String, String] = { dbMap.toMap } /** * All the columns from source are returned as batch. * * @return T distributed collection of data containing all columns. */ override def getAll(): DataFrame = { val df = spark.sqlContext .read .format("org.apache.spark.sql.cassandra") .options(dbMap) .load() df } /** * It is helper method to create a host string from list like * @param hosts * @return */ private def createStringList( hosts: List[String]): String = { val builder: StringBuilder = new StringBuilder hosts.foreach((i: String) => { builder.append(i); builder.append(" , ") }) val hostString: String = builder.toString(); return hostString.substring(0, hostString.lastIndexOf(",")); } }
Verizon/trapezium
sparkcassandra-connector/src/main/scala/com/verizon/bda/trapezium/dal/spark/cassandra/CassandraDAO.scala
Scala
apache-2.0
3,468
/* * Copyright 2015 the original author or authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package rhttpc.transport.amqp import akka.actor._ import rhttpc.utils.Agent import com.github.ghik.silencer.silent import com.rabbitmq.client.AMQP.Queue.DeclareOk import com.rabbitmq.client.{AMQP, Channel, Connection} import rhttpc.transport.SerializingPublisher.SerializedMessage import rhttpc.transport._ import scala.concurrent.Future import scala.concurrent.duration._ import scala.util.Try trait AmqpTransport extends PubSubTransport { def queuesStats: Future[Map[String, AmqpQueueStats]] } // TODO: actor-based, connection recovery private[rhttpc] class AmqpTransportImpl(connection: Connection, prepareExchangeName: OutboundQueueData => String, consumeTimeout: FiniteDuration, nackDelay: FiniteDuration, declarePublisherQueue: AmqpDeclareOutboundQueueData => DeclareOk, declareSubscriberQueue: AmqpDeclareInboundQueueData => DeclareOk, prepareProperties: PartialFunction[SerializedMessage, AMQP.BasicProperties]) (implicit actorSystem: ActorSystem) extends AmqpTransport { import actorSystem.dispatcher private lazy val statsChannel = connection.createChannel() @silent private val queueNamesAgent = Agent[Set[String]](Set.empty) override def publisher[PubMsg](queueData: OutboundQueueData) (implicit serializer: Serializer[PubMsg]): AmqpPublisher[PubMsg] = { val channel = connection.createChannel() val exchangeName = prepareExchangeName(queueData) declarePublisherQueue(AmqpDeclareOutboundQueueData(queueData, exchangeName, channel)) queueNamesAgent.send(_ + queueData.name) val publisher = new AmqpPublisher[PubMsg]( channel = channel, queueName = queueData.name, exchangeName = exchangeName, serializer = serializer, prepareProperties = prepareProperties ) channel.addConfirmListener(publisher) channel.confirmSelect() publisher } override def subscriber[SubMsg](queueData: InboundQueueData, consumer: ActorRef) (implicit deserializer: Deserializer[SubMsg]): Subscriber[SubMsg] = { val subscribers = (1 to queueData.parallelConsumers).map { _ => val channel = connection.createChannel() declareSubscriberQueue(AmqpDeclareInboundQueueData(queueData, channel)) queueNamesAgent.send(_ + queueData.name) new AmqpSubscriber[SubMsg]( channel = channel, queueName = queueData.name, consumer = consumer, deserializer = deserializer, consumeTimeout = consumeTimeout, nackDelay = nackDelay ) with SendingSimpleMessage[SubMsg] } new SubscriberAggregate[SubMsg](subscribers) } override def fullMessageSubscriber[SubMsg](queueData: InboundQueueData, consumer: ActorRef) (implicit deserializer: Deserializer[SubMsg]): Subscriber[SubMsg] = { val subscribers = (1 to queueData.parallelConsumers).map { _ => val channel = connection.createChannel() declareSubscriberQueue(AmqpDeclareInboundQueueData(queueData, channel)) new AmqpSubscriber[SubMsg]( channel = channel, queueName = queueData.name, consumer = consumer, deserializer = deserializer, consumeTimeout = consumeTimeout, nackDelay = nackDelay ) with SendingFullMessage[SubMsg] } new SubscriberAggregate[SubMsg](subscribers) } override def queuesStats: Future[Map[String, AmqpQueueStats]] = { queueNamesAgent.future().map { names => names.map { queueName => val dlqQueueName = AmqpDefaults.prepareDlqQueueName(queueName) val stats = AmqpQueueStats( messageCount = messageCount(queueName), consumerCount = consumerCount(queueName), dlqMessageCount = messageCount(dlqQueueName), dlqConsumerCount = consumerCount(dlqQueueName) ) queueName -> stats }.toMap } } private def messageCount(queueName: String): Long = Try(statsChannel.messageCount(queueName)).getOrElse(0L) private def consumerCount(queueName: String): Long = Try(statsChannel.consumerCount(queueName)).getOrElse(0L) override def stop(): Future[Unit] = Future.unit } case class AmqpQueueStats(messageCount: Long, consumerCount: Long, dlqMessageCount: Long, dlqConsumerCount: Long) object AmqpQueueStats { def zero = AmqpQueueStats(0, 0, 0, 0) } object AmqpTransport { def apply[PubMsg <: AnyRef, SubMsg](connection: Connection, prepareExchangeName: OutboundQueueData => String = AmqpDefaults.prepareExchangeName, consumeTimeout: FiniteDuration = AmqpDefaults.consumeTimeout, nackDelay: FiniteDuration = AmqpDefaults.nackDelay, declarePublisherQueue: AmqpDeclareOutboundQueueData => DeclareOk = AmqpDefaults.declarePublisherQueueWithDelayedExchangeIfNeed, declareSubscriberQueue: AmqpDeclareInboundQueueData => DeclareOk = AmqpDefaults.declareSubscriberQueue, prepareProperties: PartialFunction[SerializedMessage, AMQP.BasicProperties] = AmqpDefaults.preparePersistentMessageProperties) (implicit actorSystem: ActorSystem): AmqpTransport = { new AmqpTransportImpl( connection = connection, prepareExchangeName = prepareExchangeName, consumeTimeout = consumeTimeout, nackDelay = nackDelay, declarePublisherQueue = declarePublisherQueue, declareSubscriberQueue = declareSubscriberQueue, prepareProperties = AmqpDefaults.preparePersistentMessageProperties ) } } case class AmqpDeclareInboundQueueData(queueData: InboundQueueData, channel: Channel) case class AmqpDeclareOutboundQueueData(queueData: OutboundQueueData, exchangeName: String, channel: Channel)
arkadius/reliable-http-client
rhttpc-amqp/src/main/scala/rhttpc/transport/amqp/AmqpTransport.scala
Scala
apache-2.0
6,783
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.deploy import java.io.{PrintStream, OutputStream, File} import java.net.URI import java.util.jar.Attributes.Name import java.util.jar.{JarFile, Manifest} import java.util.zip.ZipFile import scala.collection.JavaConverters._ import scala.collection.mutable.ArrayBuffer import com.google.common.io.Files import org.apache.commons.io.FileUtils import org.scalatest.BeforeAndAfterEach import org.apache.spark.SparkFunSuite import org.apache.spark.api.r.RUtils import org.apache.spark.deploy.SparkSubmitUtils.MavenCoordinate class RPackageUtilsSuite extends SparkFunSuite with BeforeAndAfterEach { private val main = MavenCoordinate("a", "b", "c") private val dep1 = MavenCoordinate("a", "dep1", "c") private val dep2 = MavenCoordinate("a", "dep2", "d") private def getJarPath(coord: MavenCoordinate, repo: File): File = { new File(IvyTestUtils.pathFromCoordinate(coord, repo, "jar", useIvyLayout = false), IvyTestUtils.artifactName(coord, useIvyLayout = false, ".jar")) } private val lineBuffer = ArrayBuffer[String]() private val noOpOutputStream = new OutputStream { def write(b: Int) = {} } /** Simple PrintStream that reads data into a buffer */ private class BufferPrintStream extends PrintStream(noOpOutputStream) { // scalastyle:off println override def println(line: String) { // scalastyle:on println lineBuffer += line } } def beforeAll() { System.setProperty("spark.testing", "true") } override def beforeEach(): Unit = { lineBuffer.clear() } test("pick which jars to unpack using the manifest") { val deps = Seq(dep1, dep2).mkString(",") IvyTestUtils.withRepository(main, Some(deps), None, withR = true) { repo => val jars = Seq(main, dep1, dep2).map(c => new JarFile(getJarPath(c, new File(new URI(repo))))) assert(RPackageUtils.checkManifestForR(jars(0)), "should have R code") assert(!RPackageUtils.checkManifestForR(jars(1)), "should not have R code") assert(!RPackageUtils.checkManifestForR(jars(2)), "should not have R code") } } test("build an R package from a jar end to end") { assume(RUtils.isRInstalled, "R isn't installed on this machine.") val deps = Seq(dep1, dep2).mkString(",") IvyTestUtils.withRepository(main, Some(deps), None, withR = true) { repo => val jars = Seq(main, dep1, dep2).map { c => getJarPath(c, new File(new URI(repo))) }.mkString(",") RPackageUtils.checkAndBuildRPackage(jars, new BufferPrintStream, verbose = true) val firstJar = jars.substring(0, jars.indexOf(",")) val output = lineBuffer.mkString("\\n") assert(output.contains("Building R package")) assert(output.contains("Extracting")) assert(output.contains(s"$firstJar contains R source code. Now installing package.")) assert(output.contains("doesn't contain R source code, skipping...")) } } test("jars that don't exist are skipped and print warning") { assume(RUtils.isRInstalled, "R isn't installed on this machine.") val deps = Seq(dep1, dep2).mkString(",") IvyTestUtils.withRepository(main, Some(deps), None, withR = true) { repo => val jars = Seq(main, dep1, dep2).map { c => getJarPath(c, new File(new URI(repo))) + "dummy" }.mkString(",") RPackageUtils.checkAndBuildRPackage(jars, new BufferPrintStream, verbose = true) val individualJars = jars.split(",") val output = lineBuffer.mkString("\\n") individualJars.foreach { jarFile => assert(output.contains(s"$jarFile")) } } } test("faulty R package shows documentation") { assume(RUtils.isRInstalled, "R isn't installed on this machine.") IvyTestUtils.withRepository(main, None, None) { repo => val manifest = new Manifest val attr = manifest.getMainAttributes attr.put(Name.MANIFEST_VERSION, "1.0") attr.put(new Name("Spark-HasRPackage"), "true") val jar = IvyTestUtils.packJar(new File(new URI(repo)), dep1, Nil, useIvyLayout = false, withR = false, Some(manifest)) RPackageUtils.checkAndBuildRPackage(jar.getAbsolutePath, new BufferPrintStream, verbose = true) val output = lineBuffer.mkString("\\n") assert(output.contains(RPackageUtils.RJarDoc)) } } test("SparkR zipping works properly") { val tempDir = Files.createTempDir() try { IvyTestUtils.writeFile(tempDir, "test.R", "abc") val fakeSparkRDir = new File(tempDir, "SparkR") assert(fakeSparkRDir.mkdirs()) IvyTestUtils.writeFile(fakeSparkRDir, "abc.R", "abc") IvyTestUtils.writeFile(fakeSparkRDir, "DESCRIPTION", "abc") IvyTestUtils.writeFile(tempDir, "package.zip", "abc") // fake zip file :) val fakePackageDir = new File(tempDir, "packageTest") assert(fakePackageDir.mkdirs()) IvyTestUtils.writeFile(fakePackageDir, "def.R", "abc") IvyTestUtils.writeFile(fakePackageDir, "DESCRIPTION", "abc") val finalZip = RPackageUtils.zipRLibraries(tempDir, "sparkr.zip") assert(finalZip.exists()) val entries = new ZipFile(finalZip).entries().asScala.map(_.getName).toSeq assert(entries.contains("/test.R")) assert(entries.contains("/SparkR/abc.R")) assert(entries.contains("/SparkR/DESCRIPTION")) assert(!entries.contains("/package.zip")) assert(entries.contains("/packageTest/def.R")) assert(entries.contains("/packageTest/DESCRIPTION")) } finally { FileUtils.deleteDirectory(tempDir) } } }
pronix/spark
core/src/test/scala/org/apache/spark/deploy/RPackageUtilsSuite.scala
Scala
apache-2.0
6,337
package com.caibowen.prma.webface import java.io.IOException import java.sql.ResultSet import ch.qos.logback.classic.Level import ch.qos.logback.classic.spi.LoggingEvent import com.caibowen.prma.api.LogLevel import com.caibowen.prma.api.model.EventVO import com.caibowen.prma.logger.logback.LogbackEventAdaptor import org.slf4j.{MDC, MarkerFactory, LoggerFactory} /** * Created by Bowen Cai on 1/5/2015. */ class _Mock { val LOG = LoggerFactory.getLogger(classOf[SearchEngine]) def gen(mk: Boolean, except: Boolean) = { val exp = new RuntimeException("msg level 3", new IOException("msg level 2"))//, new FileNotFoundException("msg level 1"))) val mk1 = MarkerFactory.getMarker("marker 1") val mk2 = MarkerFactory.getMarker("marker 2") mk1.add(mk2) val mdc1: String = "test mdc 1" MDC.put(mdc1, "hahaha") MDC.put("test mdc 2", "hahaha222") MDC.put("test mdc 3", "wowowo") // MDC.clear() val lbEvent = new LoggingEvent("fmt scala logging store test", LOG.asInstanceOf[ch.qos.logback.classic.Logger], Level.DEBUG, "scala logging store test", if (except) exp else null, null) if (mk) lbEvent.setMarker(mk1) val fadapt = new LogbackEventAdaptor fadapt.from(lbEvent) } def _test = List( gen(true, false), // gen(false, true), gen(false, false) ) }
xkommando/PRMA
webface/src/main/scala/com/caibowen/prma/webface/_Mock.scala
Scala
lgpl-3.0
1,370
/* * Copyright 2012 Twitter Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package com.twitter.zipkin.common import java.util.concurrent.TimeUnit.{HOURS, MICROSECONDS} import org.scalatest.{FunSuite, Matchers} class DependenciesTest extends FunSuite with Matchers { val dl1 = DependencyLink("Gizmoduck", "tflock", 4) val dl2 = DependencyLink("mobileweb", "Gizmoduck", 4) val dl3 = DependencyLink("tfe", "mobileweb", 2) val dl4 = DependencyLink("tfe", "mobileweb", 4) val deps1 = Dependencies(0L, MICROSECONDS.convert(1, HOURS), List(dl1, dl3)) val deps2 = Dependencies(MICROSECONDS.convert(1, HOURS), MICROSECONDS.convert(2, HOURS), List(dl2, dl4)) test("identity on Dependencies.zero") { deps1 + Dependencies.zero should be(deps1) Dependencies.zero + deps1 should be(deps1) } test("sums where parent/child match") { val result = deps1 + deps2 result.startTs should be(deps1.startTs) result.endTs should be(deps2.endTs) result.links.sortBy(_.parent) should be(Seq( dl1, dl2, dl3.copy(callCount = dl3.callCount + dl4.callCount) )) } }
jfeltesse-mdsol/zipkin
zipkin-common/src/test/scala/com/twitter/zipkin/common/DependenciesTest.scala
Scala
apache-2.0
1,637
// Copyright 2012 Twitter, Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package com.twitter.cassie import com.twitter.util.{ Future, Promise } import java.util.{ Map => JMap, List => JList, ArrayList => JArrayList } import org.apache.cassandra.finagle.thrift import scala.collection.JavaConversions._ import scala.collection.mutable.Buffer /** * Async iteration across the columns for a given key. * * EXAMPLE * val cf = new Cluster("127.0.0.1").keyspace("foo") * .connect().columnFamily("bar", Utf8Codec, Utf8Codec, Utf8Codec) * * val done = cf.columnsIteratee.foreach("bam").foreach {col => * println(col) // this function is executed asynchronously for each column * } * done() // this is a Future[Unit] that will be satisfied when the iteration * // is done */ trait ColumnsIteratee[Key, Name, Value] { def hasNext(): Boolean def next(): Future[ColumnsIteratee[Key, Name, Value]] def foreach(f: Column[Name, Value] => Unit): Future[Unit] = { val p = new Promise[Unit] next map (_.visit(p, f)) handle { case e => p.setException(e) } p } def map[A](f: Column[Name, Value] => A): Future[Seq[A]] = { val buffer = Buffer.empty[A] foreach { column => buffer.append(f(column)) }.map { _ => buffer } } def visit(p: Promise[Unit], f: Column[Name, Value] => Unit): Unit } object ColumnsIteratee { def apply[Key, Name, Value](cf: ColumnFamily[Key, Name, Value], key: Key, start: Option[Name], end: Option[Name], batchSize: Int, limit: Int, order: Order = Order.Normal) = { new InitialColumnsIteratee(cf, key, start, end, batchSize, limit, order) } } private[cassie] class InitialColumnsIteratee[Key, Name, Value]( val cf: ColumnFamily[Key, Name, Value], key: Key, start: Option[Name], end: Option[Name], batchSize: Int, remaining: Int, order: Order) extends ColumnsIteratee[Key, Name, Value] { def hasNext() = true def next() = { // if limit < batchSize val fetchSize = math.min(batchSize, remaining) cf.getRowSlice(key, start, end, fetchSize, order).map { buf => if (buf.size < batchSize || batchSize == remaining) { new FinalColumnsIteratee(buf) } else { new SubsequentColumnsIteratee(cf, key, batchSize, buf.last.name, end, remaining - buf.size, order, buf) } } } def visit(p: Promise[Unit], f: Column[Name, Value] => Unit) { throw new UnsupportedOperationException("no need to visit the initial Iteratee") } } private[cassie] class SubsequentColumnsIteratee[Key, Name, Value](val cf: ColumnFamily[Key, Name, Value], val key: Key, val batchSize: Int, val start: Name, val end: Option[Name], val remaining: Int, val order: Order, val buffer: JList[Column[Name, Value]]) extends ColumnsIteratee[Key, Name, Value] { def hasNext = true def next() = { val fetchSize = math.min(batchSize + 1, remaining + 1) cf.getRowSlice(key, Some(start), end, fetchSize, order).map { buf => val skipped = buf.subList(1, buf.length) if (skipped.size() < batchSize || batchSize == remaining) { new FinalColumnsIteratee(skipped) } else { new SubsequentColumnsIteratee(cf, key, batchSize, skipped.last.name, end, remaining - skipped.size, order, skipped) } } } def visit(p: Promise[Unit], f: Column[Name, Value] => Unit) { for (c <- buffer) { f(c) } if (hasNext) { next map (_.visit(p, f)) handle { case e => p.setException(e) } } else { p.setValue(Unit) } } } private[cassie] class FinalColumnsIteratee[Key, Name, Value](val buffer: JList[Column[Name, Value]]) extends ColumnsIteratee[Key, Name, Value] { def hasNext = false def next = Future.exception(new UnsupportedOperationException("no next for the final iteratee")) def visit(p: Promise[Unit], f: Column[Name, Value] => Unit) { for (c <- buffer) { f(c) } p.setValue(Unit) } }
travisbrown/zipkin
zipkin-cassandra/src/main/scala/com/twitter/cassie/ColumnsIteratee.scala
Scala
apache-2.0
4,420
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.cloudera.spark.hbase.example import org.apache.spark.SparkContext import org.apache.hadoop.hbase.HBaseConfiguration import org.apache.hadoop.fs.Path import org.apache.hadoop.hbase.util.Bytes import org.apache.hadoop.hbase.client.Put import org.apache.spark.SparkConf import com.cloudera.spark.hbase.HBaseContext object HBaseBulkPutTimestampExample { def main(args: Array[String]) { if (args.length == 0) { System.out.println("HBaseBulkPutTimestampExample {tableName} {columnFamily}"); return ; } val tableName = args(0); val columnFamily = args(1); val sparkConf = new SparkConf().setAppName("HBaseBulkPutTimestampExample " + tableName + " " + columnFamily) val sc = new SparkContext(sparkConf) val rdd = sc.parallelize(Array( (Bytes.toBytes("6"), Array((Bytes.toBytes(columnFamily), Bytes.toBytes("1"), Bytes.toBytes("1")))), (Bytes.toBytes("7"), Array((Bytes.toBytes(columnFamily), Bytes.toBytes("1"), Bytes.toBytes("2")))), (Bytes.toBytes("8"), Array((Bytes.toBytes(columnFamily), Bytes.toBytes("1"), Bytes.toBytes("3")))), (Bytes.toBytes("9"), Array((Bytes.toBytes(columnFamily), Bytes.toBytes("1"), Bytes.toBytes("4")))), (Bytes.toBytes("10"), Array((Bytes.toBytes(columnFamily), Bytes.toBytes("1"), Bytes.toBytes("5")))))); val conf = HBaseConfiguration.create(); conf.addResource(new Path("/etc/hbase/conf/core-site.xml")); conf.addResource(new Path("/etc/hbase/conf/hbase-site.xml")); val timeStamp = System.currentTimeMillis() val hbaseContext = new HBaseContext(sc, conf); hbaseContext.bulkPut[(Array[Byte], Array[(Array[Byte], Array[Byte], Array[Byte])])](rdd, tableName, (putRecord) => { val put = new Put(putRecord._1) putRecord._2.foreach((putValue) => put.add(putValue._1, putValue._2, timeStamp, putValue._3)) put }, true); } }
lgscofield/SparkOnHBase
src/main/scala/com/cloudera/spark/hbase/example/HBaseBulkPutTimestampExample.scala
Scala
apache-2.0
2,719
package model trait PluginComponent extends TemplateComponent { self: Profile => import profile.simple._ import self._ lazy val Plugins = TableQuery[Plugins] class Plugins(tag: Tag) extends Table[Plugin](tag, "PLUGIN"){ val pluginId = column[String]("PLUGIN_ID", O PrimaryKey) val version = column[String]("VERSION") def * = (pluginId, version) <> (Plugin.tupled, Plugin.unapply) } } case class Plugin( pluginId: String, version: String )
mqshen/gitbucketTest
src/main/scala/model/Plugin.scala
Scala
apache-2.0
469
/* * (c) Copyright 2016 Hewlett Packard Enterprise Development LP * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package cogx.compiler.codegenerator.opencl.cpukernels import cogx.platform.checkpoint.{ObjectSaver, Saveable} import cogx.platform.types.KernelTypes.ActuatorKernelType import cogx.platform.types.{Pixel, VirtualFieldRegister, FieldType, AbstractKernel} import cogx.platform.opencl.{OpenCLCpuKernel, OpenCLFieldRegister} import cogx.compiler.parser.op._ import cogx.platform.cpumemory.ColorFieldMemory /** * The kernel to handle unpipelined actuators. * * @author Dick Carter */ private[cogx] class UnpipelinedColorActuatorKernel(in: VirtualFieldRegister, op: UnpipelinedColorActuatorOp, actuatorClassname: String, restoreParameters: () => String) extends OpenCLCpuKernel(op, Array(in), Array[FieldType]()) with Saveable { /** The type of the kernel, either DeviceKernel, or one of a number of CPU kernel types. */ override val kernelType = ActuatorKernelType /** The version of the kernel. */ def majorVersion = 1 /** The version of the kernel. */ def minorVersion = 0 /** Invoke the user-supplied resetHook upon reset */ override def reset() { op.resetHook() } def compute(in: Array[OpenCLFieldRegister], out: Array[OpenCLFieldRegister]) { // Read the GPU data to the CPU buffer val cpuMemory = in(0).slave.read.asInstanceOf[ColorFieldMemory] // Pass the data to the user-defined `nextOutput` function. op.newOutput(cpuMemory.iterator) } /** Create a clone of this kernel that uses a new set of virtual field registers * as inputs. Useful for breaking a large circuit apart into smaller subcircuits. */ def copyWithNewInputs(inputs: Array[VirtualFieldRegister]): AbstractKernel = { // Note that we intentionally do NOT copy the old value of 'source' here. // These copy methods exist to support cloning kernels from a large circuit // into several smaller subcircuits. There's probably a clone of the // original actuator driver somewhere, and that's probably what this copy // needs to be hooked up to. new UnpipelinedColorActuatorKernel(in, op, actuatorClassname, restoreParameters) } /** Save this instance using the facilities of the ObjectSaver */ override def save(saver: ObjectSaver): Unit = { super.save(saver) saver.writeInt("majorVersion", majorVersion) saver.writeInt("minorVersion", minorVersion) saver.writeString("actuatorClassname", actuatorClassname) saver.writeString("restoreParameters", restoreParameters()) } }
hpe-cct/cct-core
src/main/scala/cogx/compiler/codegenerator/opencl/cpukernels/UnpipelinedColorActuatorKernel.scala
Scala
apache-2.0
3,131
package gh.test.gh2013.event import gh2013.events.{GollumEventParser} import net.liftweb.json._ import org.scalatest.{FlatSpec, Matchers} class GollumEventTest extends FlatSpec with Matchers { "A valid GollumEvent" must "be correctly parsed" in { val json = parse( """ | { | "actor":"hudec", | "public":true, | "created_at":"2013-01-01T01:37:00-08:00", | "type":"GollumEvent", | "payload":{ | "pages":[ | { | "title":"Home", | "action":"edited", | "html_url":"https://github.com/hudec/sql-processor/wiki/Home", | "page_name":"Home", | "sha":"b5cfd5f62ef7f76abc82495f5e9d3d146b6d7a4d", | "summary":null | } | ] | }, | "repository":{ | "watchers":8, | "has_wiki":true, | "owner":"hudec", | "created_at":"2011-04-09T09:55:26-07:00", | "homepage":"", | "stargazers":8, | "open_issues":6, | "pushed_at":"2013-01-01T01:26:32-08:00", | "url":"https://github.com/hudec/sql-processor", | "description":"The SQL Processor is an engine producing the ANSI SQL statements and providing their execution without the necessity to write Java plumbing code related to the ORM or JDBC API.", | "forks":1, | "has_issues":true, | "fork":false, | "size":728, | "has_downloads":true, | "name":"sql-processor", | "language":"Java", | "id":1592013, | "private":false | }, | | "actor_attributes":{ | "blog":"http://www.linkedin.com/pub/vladim%C3%ADr-hudec/17/477/11", | "login":"hudec", | "location":"Prague", | "gravatar_id":"5bbd09833ad88520dd73b3dbd7cc07aa", | "type":"User", | "name":"Vladimír Hudec", | "email":"[email protected]" | }, | "url":"https://github.com/hudec/sql-processor/wiki/Home" | |} """.stripMargin) gh2013.parser(GollumEventParser)(json) shouldBe 'defined } "Another valid GollumEvent" must "be correctly parsed" in { val json = parse( """ | { | | "actor":"firepick1", | "public":true, | "type":"GollumEvent", | "url":"https://github.com/firepick1/FirePick/wiki/Inventables", | "repository":{ | "watchers":0, | "owner":"firepick1", | "created_at":"2012-12-31T20:46:53-08:00", | "stargazers":0, | "open_issues":0, | "has_issues":true, | "has_wiki":true, | "pushed_at":"2012-12-31T20:46:53-08:00", | "url":"https://github.com/firepick1/FirePick", | "description":"www.firepick.org GitHub ", | "forks":0, | "fork":false, | "size":0, | "name":"FirePick", | "id":7393229, | "private":false, | "has_downloads":true | }, | "actor_attributes":{ | "gravatar_id":"268127beb163e9ba4a6c17975f30d0f0", | "login":"firepick1", | "type":"User" | }, | "payload":{ | "pages":[ | { | "title":"Inventables", | "summary":null, | "sha":"26e67c124d06ff4c030e84007efb8885b6bd6879", | "page_name":"Inventables", | "html_url":"https://github.com/firepick1/FirePick/wiki/Inventables", | "action":"created" | } | ] | }, | "created_at":"2013-01-01T00:14:49-08:00" | |} """.stripMargin) gh2013.parser(GollumEventParser)(json) shouldBe 'defined } }
mgoeminne/github_etl
src/test/scala/gh/test/gh2013/event/GollumEventTest.scala
Scala
mit
4,599
package com.stulsoft.ysps.peither import scala.io.StdIn /** * Playing with Either. * * Convention dictates that Left is used for failure and Right is used for success. * * Created by Yuriy Stul on 9/14/2016. */ object EitherSample { def main(args: Array[String]): Unit = { println("==>main") test1() test2() test3() println("<==main") } def test1(): Unit = { println("==>test1") val in = StdIn.readLine("Type Either a string or an Int: ") val result: Either[String, Int] = try { Right(in.toInt) } catch { case _: Exception => Left(in) } println(result match { case Right(x) => "You passed me the Int: " + x + ", which I will increment. " + x + " + 1 = " + (x + 1) case Left(x) => "You passed me the String: " + x }) println("<==test1") } def test2(): Unit = { println("==>test2") val l: Either[String, Int] = Left("flower") val r: Either[String, Int] = Right(12) println(s"l.left = ${l.left}") println(s"l.right = $l") println(s"r.left = ${r.left}") println(s"r.right = $r") println("====================") println(s"l.left.map(_.size): Either[Int, Int]=${l.left.map(_.length): Either[Int, Int]}") println(s"l.right.map(_.toDouble): Either[String, Double]=${l.map(_.toDouble): Either[String, Double]}") println(s"r.left.map(_.size): Either[Int, Int]=${r.left.map(_.length): Either[Int, Int]}") println(s"r.right.map(_.toDouble): Either[String, Double]=${r.map(_.toDouble): Either[String, Double]}") println("<==test2") } def test3(): Unit ={ println("==>test3") println(s"""validate("") is ${validate("")}""") println(s"""validate("abc") is ${validate("abc")}""") println("<==test3") } def validate(t: String): Either[String, String] = { if (t.nonEmpty) Right(t) else Left("***ERROR") } }
ysden123/ysps
src/main/scala/com/stulsoft/ysps/peither/EitherSample.scala
Scala
mit
1,887
/* * Copyright 2001-2013 Artima, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import org.scalatest._ import scala.collection.mutable.Stack import scala.collection.mutable import org.scalatest.events._ import scala.util.Random import scala.reflect.NameTransformer import org.scalatest.exceptions.TestCanceledException import org.scalatest.exceptions.TestFailedException class UnitedStates extends Suite { import UnitedStates.allStates import UnitedStates.nestedSuiteCount override def nestedSuites: collection.immutable.IndexedSeq[Suite] = allStates.take(nestedSuiteCount).toIndexedSeq override def run(testName: Option[String], args: Args): org.scalatest.Status = { if (nestedSuiteCount < allStates.length) nestedSuiteCount += 1 super.run(testName, args) } } trait StateSuite extends Suite { import StateSuite.allTestNames import StateSuite.testCounts import StateSuite.testStatuses private def anInitialDuration = Random.nextInt(20) private val simpleName = getClass.getSimpleName.replaceAll("\\\\$", "") override def testNames: Set[String] = allTestNames.take(testCounts(simpleName)).toSet override def tags: Map[String, Set[String]] = Map() override def run(testName: Option[String], args: Args): org.scalatest.Status = { val testCount = testCounts(simpleName) if (testCount < allTestNames.length) { testCounts(simpleName) += 1 // The new test is at testCount; Decide if it is pending, and if so, how many times it will stay pending // whether or not it will be pending should be a 50/50 choice val nameOfNewTest = allTestNames(testCount) val isPending = Random.nextInt(2) == 0 testStatuses(simpleName)(nameOfNewTest) = if (isPending) Pending(anInitialDuration, Random.nextInt(30)) // Maximum of 30 times pending before going to some other status else Succeeded(anInitialDuration) } val alterSucceededTests = Random.nextInt(3) == 0 if (alterSucceededTests) { val nameOfTestToAlter = allTestNames(Random.nextInt(testCounts(simpleName)) ) testStatuses(simpleName)(nameOfTestToAlter) match { case Succeeded(duration) => val isIgnored = Random.nextInt(2) == 0 val isCanceled = !isIgnored && (Random.nextInt(2) == 0) // If not ignored or canceled, then make it failed val remaining = Random.nextInt(if (isIgnored) 20 else 15) testStatuses(simpleName)(nameOfTestToAlter) = if (isIgnored) Ignored(duration, remaining) else if (isCanceled) Canceled(duration, remaining) else Failed(duration, remaining) case _ => } } val shouldSlowATest = Random.nextInt(50) == 0 if (shouldSlowATest) { val nameOfTestToSlow = allTestNames(Random.nextInt(testCounts(simpleName))) val slowFactor = Random.nextInt(25) val slowerStatus = testStatuses(simpleName)(nameOfTestToSlow) match { case Succeeded(d) => Succeeded(d * slowFactor) case Pending(d, r) => Pending(d * slowFactor, r) case Canceled(d, r) => Canceled(d * slowFactor, r) case Ignored(d, r) => Ignored(d * slowFactor, r) case Failed(d, r) => Failed(d * slowFactor, r) } testStatuses(simpleName)(nameOfTestToSlow) = slowerStatus } super.run(testName, args) } private def reportTestStarting(theSuite: Suite, report: Reporter, tracker: Tracker, testName: String, testText: String, suiteRerunner: Option[String], location: Option[Location]) { report(TestStarting(tracker.nextOrdinal(), theSuite.suiteName, theSuite.suiteId, Some(theSuite.getClass.getName), testName, testText, Some(MotionToSuppress), location, suiteRerunner)) } private def reportTestFailed(theSuite: Suite, report: Reporter, throwable: Throwable, testName: String, testText: String, suiteRerunner: Option[String], tracker: Tracker, duration: Long, level: Int, includeIcon: Boolean, location: Option[Location]) { val message = getMessageForException(throwable) val formatter = getIndentedText(testText, level, includeIcon) report(TestFailed(tracker.nextOrdinal(), message, theSuite.suiteName, theSuite.suiteId, Some(theSuite.getClass.getName), testName, testText, Vector.empty, Some(throwable), Some(duration), Some(formatter), location, suiteRerunner)) } private def reportTestCanceled(theSuite: Suite, report: Reporter, throwable: Throwable, testName: String, testText: String, rerunnable: Option[Rerunner], tracker: Tracker, duration: Long, level: Int, includeIcon: Boolean, location: Option[Location]) { val message = getMessageForException(throwable) val formatter = getIndentedText(testText, level, includeIcon) report(TestCanceled(tracker.nextOrdinal(), message, theSuite.suiteName, theSuite.suiteId, Some(theSuite.getClass.getName), testName, testText, Vector.empty, Some(throwable), Some(duration), Some(formatter), location, rerunnable)) } private def reportTestSucceeded(theSuite: Suite, report: Reporter, tracker: Tracker, testName: String, testText: String, duration: Long, formatter: Formatter, suiteRerunner: Option[String], location: Option[Location]) { report(TestSucceeded(tracker.nextOrdinal(), theSuite.suiteName, theSuite.suiteId, Some(theSuite.getClass.getName), testName, testText, Vector.empty, Some(duration), Some(formatter), location, suiteRerunner)) } private def reportTestPending(theSuite: Suite, report: Reporter, tracker: Tracker, testName: String, testText: String, duration: Long, formatter: Formatter, location: Option[Location]) { report(TestPending(tracker.nextOrdinal(), theSuite.suiteName, theSuite.suiteId, Some(theSuite.getClass.getName), testName, testText, Vector.empty, Some(duration), Some(formatter), location)) } private def getMessageForException(e: Throwable): String = if (e.getMessage != null) e.getMessage else e.getClass.getName + " was thrown" private def getIndentedText(testText: String, level: Int, includeIcon: Boolean) = { val formattedText = if (includeIcon) { val testSucceededIcon = "-" (" " * (if (level == 0) 0 else (level - 1))) + testSucceededIcon + " " + testText } else { (" " * level) + testText } IndentedText(formattedText, testText, level) } def indentation(level: Int) = " " * level private def reportTestIgnored(report: Reporter, tracker: Tracker, testName: String, testText: String, level: Int) { val testSucceededIcon = "-" val formattedText = indentation(level - 1) + (testSucceededIcon + " " + testText) report(TestIgnored(tracker.nextOrdinal(), suiteName, suiteId, Some(getClass.getName), testName, testText, Some(IndentedText(formattedText, testText, level)), None)) } private def handleFailedTest(throwable: Throwable, testName: String, report: Reporter, tracker: Tracker, duration: Long, location: Option[Location]) { val message = getMessageForException(throwable) val formatter = getIndentedText(testName, 1, true) report(TestFailed(tracker.nextOrdinal(), message, suiteName, suiteId, Some(getClass.getName), testName, testName, Vector.empty, Some(throwable), Some(duration), Some(formatter), location, None)) } override def runTest(testName: String, args: Args): org.scalatest.Status = { if (!testStatuses(simpleName)(testName).isInstanceOf[Ignored]) reportTestStarting(this, args.reporter, args.tracker, testName, testName, None, None) val formatter = getIndentedText(testName, 1, true) testStatuses(simpleName)(testName) match { case Pending(duration, remaining) => if (remaining > 1) testStatuses(simpleName)(testName) = Pending(duration, remaining - 1) else testStatuses(simpleName)(testName) = Succeeded(duration) reportTestPending(this, args.reporter, args.tracker, testName, testName, duration, formatter, None) org.scalatest.SucceededStatus case Ignored(duration, remaining) => if (remaining > 1) testStatuses(simpleName)(testName) = Ignored(duration, remaining - 1) else testStatuses(simpleName)(testName) = Succeeded(duration) reportTestIgnored(args.reporter, args.tracker, testName, testName, 1) org.scalatest.SucceededStatus case Canceled(duration, remaining) => if (remaining > 1) testStatuses(simpleName)(testName) = Canceled(duration, remaining - 1) else testStatuses(simpleName)(testName) = Succeeded(duration) val e = intercept[TestCanceledException] { cancel("Because of rain") } val message = getMessageForException(e) val formatter = getIndentedText(testName, 1, true) args.reporter(TestCanceled(args.tracker.nextOrdinal(), message, suiteName, suiteId, Some(getClass.getName), testName, testName, Vector.empty, Some(e), Some(duration), Some(formatter), None, None)) org.scalatest.SucceededStatus case Failed(duration, remaining) => if (remaining > 1) testStatuses(simpleName)(testName) = Failed(duration, remaining - 1) else testStatuses(simpleName)(testName) = Succeeded(duration) val e = intercept[TestFailedException] { fail("1 + 1 did not equal 3, even for very large values of 1") } handleFailedTest(e, testName, args.reporter, args.tracker, duration, None) org.scalatest.FailedStatus case Succeeded(duration) => reportTestSucceeded(this, args.reporter, args.tracker, testName, testName, duration, formatter, None, None) org.scalatest.SucceededStatus } } } sealed abstract class Status { val duration: Int } case class Pending(duration: Int, remaining: Int) extends Status case class Succeeded(duration: Int) extends Status case class Canceled(duration: Int, remaining: Int) extends Status case class Ignored(duration: Int, remaining: Int) extends Status case class Failed(duration: Int, remaining: Int) extends Status object StateSuite { val testCounts = mutable.Map( "Alabama" -> 0, "Alaska" -> 0, "Arizona" -> 0, "Arkansas" -> 0, "California" -> 0, "Colorado" -> 0, "Connecticut" -> 0, "Delaware" -> 0, "Florida" -> 0, "Georgia" -> 0, "Hawaii" -> 0, "Idaho" -> 0, "Illinois" -> 0, "Indiana" -> 0, "Iowa" -> 0, "Kansas" -> 0, "Kentucky" -> 0, "Louisiana" -> 0, "Maine" -> 0, "Maryland" -> 0, "Massachusetts" -> 0, "Michigan" -> 0, "Minnesota" -> 0, "Mississippi" -> 0, "Missouri" -> 0, "Montana" -> 0, "Nebraska" -> 0, "Nevada" -> 0, "NewHampshire" -> 0, "NewJersey" -> 0, "NewMexico" -> 0, "NewYork" -> 0, "NorthCarolina" -> 0, "NorthDakota" -> 0, "Ohio" -> 0, "Oklahoma" -> 0, "Oregon" -> 0, "Pennsylvania" -> 0, "RhodeIsland" -> 0, "SouthCarolina" -> 0, "SouthDakota" -> 0, "Tennessee" -> 0, "Texas" -> 0, "Utah" -> 0, "Vermont" -> 0, "Virginia" -> 0, "Washington" -> 0, "WestVirginia" -> 0, "Wisconsin" -> 0, "Wyoming" -> 0 ) val testStatuses = mutable.Map( "Alabama" -> mutable.Map.empty[String, Status], "Alaska" -> mutable.Map.empty[String, Status], "Arizona" -> mutable.Map.empty[String, Status], "Arkansas" -> mutable.Map.empty[String, Status], "California" -> mutable.Map.empty[String, Status], "Colorado" -> mutable.Map.empty[String, Status], "Connecticut" -> mutable.Map.empty[String, Status], "Delaware" -> mutable.Map.empty[String, Status], "Florida" -> mutable.Map.empty[String, Status], "Georgia" -> mutable.Map.empty[String, Status], "Hawaii" -> mutable.Map.empty[String, Status], "Idaho" -> mutable.Map.empty[String, Status], "Illinois" -> mutable.Map.empty[String, Status], "Indiana" -> mutable.Map.empty[String, Status], "Iowa" -> mutable.Map.empty[String, Status], "Kansas" -> mutable.Map.empty[String, Status], "Kentucky" -> mutable.Map.empty[String, Status], "Louisiana" -> mutable.Map.empty[String, Status], "Maine" -> mutable.Map.empty[String, Status], "Maryland" -> mutable.Map.empty[String, Status], "Massachusetts" -> mutable.Map.empty[String, Status], "Michigan" -> mutable.Map.empty[String, Status], "Minnesota" -> mutable.Map.empty[String, Status], "Mississippi" -> mutable.Map.empty[String, Status], "Missouri" -> mutable.Map.empty[String, Status], "Montana" -> mutable.Map.empty[String, Status], "Nebraska" -> mutable.Map.empty[String, Status], "Nevada" -> mutable.Map.empty[String, Status], "NewHampshire" -> mutable.Map.empty[String, Status], "NewJersey" -> mutable.Map.empty[String, Status], "NewMexico" -> mutable.Map.empty[String, Status], "NewYork" -> mutable.Map.empty[String, Status], "NorthCarolina" -> mutable.Map.empty[String, Status], "NorthDakota" -> mutable.Map.empty[String, Status], "Ohio" -> mutable.Map.empty[String, Status], "Oklahoma" -> mutable.Map.empty[String, Status], "Oregon" -> mutable.Map.empty[String, Status], "Pennsylvania" -> mutable.Map.empty[String, Status], "RhodeIsland" -> mutable.Map.empty[String, Status], "SouthCarolina" -> mutable.Map.empty[String, Status], "SouthDakota" -> mutable.Map.empty[String, Status], "Tennessee" -> mutable.Map.empty[String, Status], "Texas" -> mutable.Map.empty[String, Status], "Utah" -> mutable.Map.empty[String, Status], "Vermont" -> mutable.Map.empty[String, Status], "Virginia" -> mutable.Map.empty[String, Status], "Washington" -> mutable.Map.empty[String, Status], "WestVirginia" -> mutable.Map.empty[String, Status], "Wisconsin" -> mutable.Map.empty[String, Status], "Wyoming" -> mutable.Map.empty[String, Status] ) val allTestNames = Vector( "When in the Course of human events", "it becomes necessary for one people to dissolve the political bands which have connected them with another", "and to assume among the powers of the earth", "the separate and equal station to which the Laws of Nature and of Nature's God entitle them", "a decent respect to the opinions of mankind requires that they should declare the causes which impel them to the separation", "We hold these truths to be self-evident", "that all men are created equal", "that they are endowed by their Creator with certain unalienable Rights", "that among these are Life, Liberty and the pursuit of Happiness.", "That to secure these rights", "Governments are instituted among Men", "deriving their just powers from the consent of the governed", "That whenever any Form of Government becomes destructive of these ends", "it is the Right of the People to alter or to abolish it", "and to institute new Government", "laying its foundation on such principles and organizing its powers in such form", "as to them shall seem most likely to effect their Safety and Happiness.", "Prudence, indeed, will dictate that Governments long established should not be changed for light and transient causes", "and accordingly all experience hath shewn", "that mankind are more disposed to suffer", "while evils are sufferable", "than to right themselves by abolishing the forms to which they are accustomed", "But when a long train of abuses and usurpations", "pursuing invariably the same Object evinces a design to reduce them under absolute Despotism", "it is their right", "it is their duty", "to throw off such Government", "and to provide new Guards for their future security", "Such has been the patient sufferance of these Colonies", "and such is now the necessity which constrains them to alter their former Systems of Government", "The history of the present King of Great Britain is a history of repeated injuries and usurpations", "all having in direct object the establishment of an absolute Tyranny over these States", "To prove this, let Facts be submitted to a candid world.", "He has refused his Assent to Laws, the most wholesome and necessary for the public good", "He has forbidden his Governors to pass Laws of immediate and pressing importance", "unless suspended in their operation till his Assent should be obtained", "and when so suspended, he has utterly neglected to attend to them", "He has refused to pass other Laws for the accommodation of large districts of people", "unless those people would relinquish the right of Representation in the Legislature", "a right inestimable to them and formidable to tyrants only ", "He has called together legislative bodies at places unusual, uncomfortable, and distant from the depository of their public Records", "for the sole purpose of fatiguing them into compliance with his measures ", "He has dissolved Representative Houses repeatedly", "for opposing with manly firmness his invasions on the rights of the people.", "He has refused for a long time, after such dissolutions, to cause others to be elected", "whereby the Legislative powers, incapable of Annihilation, have returned to the People at large for their exercise", "the State remaining in the mean time exposed to all the dangers of invasion from without, and convulsions within.", "He has endeavoured to prevent the population of these States", "for that purpose obstructing the Laws for Naturalization of Foreigners", "refusing to pass others to encourage their migrations hither", "and raising the conditions of new Appropriations of Lands", "He has obstructed the Administration of Justice", "by refusing his Assent to Laws for establishing Judiciary powers.", "He has made Judges dependent on his Will alone", "for the tenure of their offices", "and the amount and payment of their salaries.", "He has erected a multitude of New Offices", "and sent hither swarms of Officers to harrass our people, and eat out their substance.", "He has kept among us, in times of peace, Standing Armies without the Consent of our legislatures", "He has affected to render the Military independent of and superior to the Civil power.", "He has combined with others to subject us to a jurisdiction foreign to our constitution, and unacknowledged by our laws", "giving his Assent to their Acts of pretended Legislation:", "For Quartering large bodies of armed troops among us", "For protecting them, by a mock Trial, from punishment for any Murders which they should commit on the Inhabitants of these States", "For cutting off our Trade with all parts of the world", "For imposing Taxes on us without our Consent:", "For depriving us in many cases, of the benefits of Trial by Jury", "For transporting us beyond Seas to be tried for pretended offences", "For abolishing the free System of English Laws in a neighbouring Province", "establishing therein an Arbitrary government", "and enlarging its Boundaries so as to render it at once an example and fit instrument for introducing the same absolute rule into these Colonies", "For taking away our Charters, abolishing our most valuable Laws, and altering fundamentally the Forms of our Governments", "For suspending our own Legislatures, and declaring themselves invested with power to legislate for us in all cases whatsoever", "He has abdicated Government here, by declaring us out of his Protection and waging War against us", "He has plundered our seas, ravaged our Coasts, burnt our towns, and destroyed the lives of our people", "He is at this time transporting large Armies of foreign Mercenaries to compleat the works of death, desolation and tyranny", "already begun with circumstances of Cruelty & perfidy scarcely paralleled in the most barbarous ages", "and totally unworthy the Head of a civilized nation.", "He has constrained our fellow Citizens taken Captive on the high Seas to bear Arms against their Country", "to become the executioners of their friends and Brethren", "or to fall themselves by their Hands", "He has excited domestic insurrections amongst us", "and has endeavoured to bring on the inhabitants of our frontiers", "the merciless Indian Savages, whose known rule of warfare", "is an undistinguished destruction of all ages, sexes and conditions.", "In every stage of these Oppressions We have Petitioned for Redress in the most humble terms", "Our repeated Petitions have been answered only by repeated injury", "A Prince whose character is thus marked by every act which may define a Tyrant", "is unfit to be the ruler of a free people.", "Nor have We been wanting in attentions to our Brittish brethren", "We have warned them from time to time of attempts by their legislature to extend an unwarrantable jurisdiction over us", "We have reminded them of the circumstances of our emigration and settlement here", "We have appealed to their native justice and magnanimity", "and we have conjured them by the ties of our common kindred to disavow these usurpations", "which, would inevitably interrupt our connections and correspondence", "They too have been deaf to the voice of justice and of consanguinity", "We must, therefore, acquiesce in the necessity, which denounces our Separation", "and hold them, as we hold the rest of mankind, Enemies in War, in Peace Friends", "We, therefore, the Representatives of the united States of America", "in General Congress, Assembled, appealing to the Supreme Judge of the world for the rectitude of our intentions", "do, in the Name, and by Authority of the good People of these Colonies", "solemnly publish and declare, That these United Colonies are", "and of Right ought to be Free and Independent States", "that they are Absolved from all Allegiance to the British Crown", "and that all political connection between them and the State of Great Britain", "is and ought to be totally dissolved", "and that as Free and Independent States", "they have full Power to levy War", "conclude Peace", "contract Alliances", "establish Commerce", "and to do all other Acts and Things which Independent States may of right do", "And for the support of this Declaration", "with a firm reliance on the protection of divine Providence", "we mutually pledge to each other our Lives", "our Fortunes and our sacred Honor" ) } object UnitedStates { private var nestedSuiteCount = 0 val allStates = Vector( Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, Nevada, NewHampshire, NewJersey, NewMexico, NewYork, NorthCarolina, NorthDakota, Ohio, Oklahoma, Oregon, Pennsylvania, RhodeIsland, SouthCarolina, SouthDakota, Tennessee, Texas, Utah, Vermont, Virginia, Washington, WestVirginia, Wisconsin, Wyoming ) } object Alabama extends StateSuite object Alaska extends StateSuite object Arizona extends StateSuite object Arkansas extends StateSuite object California extends StateSuite object Colorado extends StateSuite object Connecticut extends StateSuite object Delaware extends StateSuite object Florida extends StateSuite object Georgia extends StateSuite object Hawaii extends StateSuite object Idaho extends StateSuite object Illinois extends StateSuite object Indiana extends StateSuite object Iowa extends StateSuite object Kansas extends StateSuite object Kentucky extends StateSuite object Louisiana extends StateSuite object Maine extends StateSuite object Maryland extends StateSuite object Massachusetts extends StateSuite object Michigan extends StateSuite object Minnesota extends StateSuite object Mississippi extends StateSuite object Missouri extends StateSuite object Montana extends StateSuite object Nebraska extends StateSuite object Nevada extends StateSuite object NewHampshire extends StateSuite object NewJersey extends StateSuite object NewMexico extends StateSuite object NewYork extends StateSuite object NorthCarolina extends StateSuite object NorthDakota extends StateSuite object Ohio extends StateSuite object Oklahoma extends StateSuite object Oregon extends StateSuite object Pennsylvania extends StateSuite object RhodeIsland extends StateSuite object SouthCarolina extends StateSuite object SouthDakota extends StateSuite object Tennessee extends StateSuite object Texas extends StateSuite object Utah extends StateSuite object Vermont extends StateSuite object Virginia extends StateSuite object Washington extends StateSuite object WestVirginia extends StateSuite object Wisconsin extends StateSuite object Wyoming extends StateSuite
SRGOM/scalatest
scalatest-test/src/us/US.scala
Scala
apache-2.0
26,241
/* Copyright 2013 Twitter, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package com.twitter.summingbird.storm import com.twitter.algebird.Semigroup import com.twitter.storehaus.algebra.MergeableStore import com.twitter.summingbird.batch.{ BatchID, Batcher } import com.twitter.summingbird.online._ import com.twitter.util.Future import java.util.{ Collections, HashMap, Map => JMap, UUID } import java.util.concurrent.atomic.AtomicInteger import scala.collection.mutable.SynchronizedMap import java.util.WeakHashMap import scala.collection.JavaConverters._ object TestStore { private val testStores = new WeakHashMap[String, TestStore[_, _]] def apply[K, V: Semigroup](storeID: String): Option[TestStore[K, V]] = (Option(testStores.get(storeID)).map { s => s.asInstanceOf[TestStore[K, V]] }) private def buildStore[K, V: Semigroup](initialData: Map[K, V]): String = { val storeID = UUID.randomUUID.toString val newInitStore = TestStore[K, V](storeID, initialData) testStores.synchronized { testStores.put(storeID, newInitStore) } storeID } def createBatchedStore[K, V](initialData: Map[(K, BatchID), V] = Map.empty[(K, BatchID), V])(implicit batcher: Batcher, valueSG: Semigroup[V]): (String, MergeableStoreFactory[(K, BatchID), V]) = { val storeID = buildStore[(K, BatchID), V](initialData) val supplier = MergeableStoreFactory.from( TestStore.apply[(K, BatchID), V](storeID) .getOrElse(sys.error("Weak hash map no longer contains store")) ) (storeID, supplier) } def createStore[K, V: Semigroup](initialData: Map[K, V] = Map.empty[K, V]): (String, MergeableStoreFactory[(K, BatchID), V]) = { val storeID = buildStore[K, V](initialData) val supplier = MergeableStoreFactory.fromOnlineOnly( TestStore.apply[K, V](storeID) .getOrElse(sys.error("Weak hash map no longer contains store")) ) (storeID, supplier) } } case class TestStore[K, V: Semigroup](storeID: String, initialData: Map[K, V]) extends MergeableStore[K, V] { private val backingStore: JMap[K, Option[V]] = Collections.synchronizedMap(new HashMap[K, Option[V]]()) val updates: AtomicInteger = new AtomicInteger(0) val reads: AtomicInteger = new AtomicInteger(0) def toScala: Map[K, V] = backingStore.asScala.collect { case (k, Some(v)) => (k, v) }.toMap private def getOpt(k: K) = { reads.incrementAndGet Option(backingStore.get(k)).flatMap(i => i) } val semigroup = implicitly[Semigroup[V]] override def get(k: K) = Future.value(getOpt(k)) override def put(pair: (K, Option[V])) = { val (k, optV) = pair if (optV.isDefined) backingStore.put(k, optV) else backingStore.remove(k) updates.incrementAndGet Future.Unit } override def merge(pair: (K, V)) = { val (k, v) = pair val oldV = getOpt(k) val newV = Semigroup.plus(Some(v), oldV) updates.incrementAndGet backingStore.put(k, newV) Future.value(oldV) } }
rangadi/summingbird
summingbird-storm-test/src/main/scala/com/twitter/summingbird/storm/TestStore.scala
Scala
apache-2.0
3,489
package gruenewa.grid import gruenewa.prelude._ class GridRunException(cause: Throwable) extends Exception(cause) object GridRun { trait Executor { def apply[A, B](func: A => B)(arg: A): B def close() } def startScanner(callback: (String, Int) => Unit) = Discovery.startListener(callback) def startExecutor(): Executor = { val grid = Grid.startSession() val dispatcher = new Dispatcher(grid) val scanner = startScanner(dispatcher.listener) new Executor { def apply[A, B](func: A => B)(arg: A): B = { dispatcher.dispatch(func)(arg)() match { case Right(b) => b case Left(e) => throw new GridRunException(e) } } def close() { scanner.close() dispatcher.close() grid.close() } } } def apply[T](block: Executor => T) { using(startExecutor()) { executor => block(executor) } } }
gruenewa/gruenewa-grid
src/main/scala/gruenewa/grid/GridRun.scala
Scala
gpl-3.0
933
package com.peterpotts.snake.predicate case class And[T](predicates: Seq[Predicate[T]]) extends Predicate[T] { def apply(value: T) = predicates.map(_(value)).reduce(_ && _) override def toString() = predicates.mkString(" && ") }
peterpotts/snake
src/main/scala/com/peterpotts/snake/predicate/And.scala
Scala
mit
235
package me.apidoc.swagger.translators import lib.Primitives import io.apibuilder.spec.v0.{ models => apidoc } import me.apidoc.swagger.Util import io.swagger.{ models => swagger } object Response { def apply( resolver: Resolver, code: String, response: swagger.Response ): apidoc.Response = { val responseCode = if (code == "default") { apidoc.ResponseCodeOption.Default } else { apidoc.ResponseCodeInt(code.toInt) } // getExamples // getHeaders apidoc.Response( code = responseCode, `type` = Option(response.getSchema) match { case None => Primitives.Unit.toString case Some(schema) => resolver.schemaType(schema) }, description = Option(response.getDescription), deprecation = None, attributes = Util.vendorExtensionsToAttributesOpt(response.getVendorExtensions) ) } }
gheine/apidoc
swagger/src/main/scala/me/apidoc/swagger/translators/Response.scala
Scala
mit
887
package com.datawizards.sparklocal.session import com.datawizards.sparklocal.SparkLocalBaseTest import com.datawizards.sparklocal.dataset.DataSetAPI import com.datawizards.sparklocal.rdd.RDDAPI import com.datawizards.sparklocal.implicits._ import org.junit.runner.RunWith import org.scalatest.junit.JUnitRunner @RunWith(classOf[JUnitRunner]) class CreateDatasetTest extends SparkLocalBaseTest { val data = Array(1,2,3,4,5) test("Create DataSet - result") { assertDatasetOperationResult(createDataset(ExecutionEngine.ScalaEager)) { data } } test("Create DataSet(RDD) - result") { assertDatasetOperationResult(createDatasetRDD(ExecutionEngine.ScalaEager)) { data } } test("Create DataSet - equals") { assertDatasetEquals( createDataset(ExecutionEngine.ScalaEager), createDataset(ExecutionEngine.ScalaLazy) ) assertDatasetEquals( createDataset(ExecutionEngine.ScalaEager), createDataset(ExecutionEngine.ScalaParallel) ) assertDatasetEquals( createDataset(ExecutionEngine.ScalaEager), createDataset(ExecutionEngine.ScalaParallelLazy) ) assertDatasetEquals( createDataset(ExecutionEngine.ScalaEager), createDataset(ExecutionEngine.Spark) ) } test("Create DataSet(RDD) - equals") { assertDatasetEquals( createDatasetRDD(ExecutionEngine.ScalaEager), createDatasetRDD(ExecutionEngine.ScalaLazy) ) assertDatasetEquals( createDatasetRDD(ExecutionEngine.ScalaEager), createDatasetRDD(ExecutionEngine.ScalaParallel) ) assertDatasetEquals( createDatasetRDD(ExecutionEngine.ScalaEager), createDatasetRDD(ExecutionEngine.ScalaParallelLazy) ) assertDatasetEquals( createDatasetRDD(ExecutionEngine.ScalaEager), createDatasetRDD(ExecutionEngine.Spark) ) } private def createDataset[Session <: SparkSessionAPI](engine: ExecutionEngine[Session]): DataSetAPI[Int] = SparkSessionAPI .builder(engine) .master("local") .getOrCreate() .createDataset(data) private def createDatasetRDD[Session <: SparkSessionAPI](engine: ExecutionEngine[Session]): DataSetAPI[Int] = SparkSessionAPI .builder(engine) .master("local") .getOrCreate() .createDataset(RDDAPI(data)) }
piotr-kalanski/spark-local
src/test/scala/com/datawizards/sparklocal/session/CreateDatasetTest.scala
Scala
apache-2.0
2,312
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.sysml.api.ml import org.scalatest.FunSuite import org.scalatest.Matchers import org.apache.spark.ml.linalg.Vectors import org.apache.spark.ml.feature.LabeledPoint import org.apache.spark.ml.Pipeline import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator import org.apache.spark.ml.feature.{HashingTF, Tokenizer} import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator} import org.apache.spark.ml.linalg.Vector import org.apache.spark.sql._ import scala.reflect.runtime.universe._ case class LabeledDocument[T:TypeTag](id: Long, text: String, label: Double) case class Document[T:TypeTag](id: Long, text: String) class LogisticRegressionSuite extends FunSuite with WrapperSparkContext with Matchers { // Note: This is required by every test to ensure that it runs successfully on windows laptop !!! val loadConfig = ScalaAutomatedTestBase test("run logistic regression with default") { //Make sure system ml home set when run wrapper val newSparkSession = SparkSession.builder().master("local").appName("TestLocal").getOrCreate(); import newSparkSession.implicits._ val training = sc.parallelize(Seq( LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0)), LabeledPoint(1.0, Vectors.dense(1.0, 0.4, 2.1)), LabeledPoint(2.0, Vectors.dense(1.2, 0.0, 3.5)))) val testing = sc.parallelize(Seq( LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0)), LabeledPoint(1.0, Vectors.dense(1.0, 0.4, 2.1)), LabeledPoint(2.0, Vectors.dense(1.2, 0.0, 3.5)))) val lr = new LogisticRegression("log", sc) val lrmodel = lr.fit(training.toDF) lrmodel.transform(testing.toDF).show lr.getIcpt shouldBe 0 lrmodel.getIcpt shouldBe lr.getIcpt lrmodel.getMaxInnerIter shouldBe lr.getMaxInnerIter } test("test logistic regression with mlpipeline"){ //Make sure system ml home set when run wrapper val newSparkSession = SparkSession.builder().master("local").appName("TestLocal").getOrCreate(); import newSparkSession.implicits._ val training = sc.parallelize(Seq( LabeledDocument(0L, "a b c d e spark", 1.0), LabeledDocument(1L, "b d", 2.0), LabeledDocument(2L, "spark f g h", 1.0), LabeledDocument(3L, "hadoop mapreduce", 2.0), LabeledDocument(4L, "b spark who", 1.0), LabeledDocument(5L, "g d a y", 2.0), LabeledDocument(6L, "spark fly", 1.0), LabeledDocument(7L, "was mapreduce", 2.0), LabeledDocument(8L, "e spark program", 1.0), LabeledDocument(9L, "a e c l", 2.0), LabeledDocument(10L, "spark compile", 1.0), LabeledDocument(11L, "hadoop software", 2.0))) val tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words") val hashingTF = new HashingTF().setNumFeatures(1000).setInputCol(tokenizer.getOutputCol).setOutputCol("features") val lr = new LogisticRegression("log",sc) val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, lr)) val crossval = new CrossValidator().setEstimator(pipeline).setEvaluator(new BinaryClassificationEvaluator) val paramGrid = new ParamGridBuilder().addGrid(hashingTF.numFeatures, Array(10, 100, 1000)).addGrid(lr.regParam, Array(0.1, 0.01)).build() crossval.setEstimatorParamMaps(paramGrid) crossval.setNumFolds(2) val lrmodel = crossval.fit(training.toDF) val test = sc.parallelize(Seq( Document(12L, "spark i j k"), Document(13L, "l m n"), Document(14L, "mapreduce spark"), Document(15L, "apache hadoop"))) lrmodel.transform(test.toDF).show lr.getIcpt shouldBe 0 // lrmodel.getIcpt shouldBe lr.getIcpt // lrmodel.getMaxInnerIter shouldBe lr.getMaxInnerIter } }
deroneriksson/incubator-systemml
src/test/scala/org/apache/sysml/api/ml/LogisticRegressionSuite.scala
Scala
apache-2.0
4,519
/* * Copyright (c) 2014-2016 * nonblocking.at gmbh [http://www.nonblocking.at] * * This file is part of Cliwix. * * Cliwix is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package at.nonblocking.cliwix.core.validation import java.util.UUID import at.nonblocking.cliwix.core.util.{TreeTypeUtils, ListTypeUtils} import at.nonblocking.cliwix.model.{DocumentLibraryFolder, LiferayConfig} import scala.collection.mutable import scala.collection.JavaConversions._ private[core] class UniqueIdsLiferayConfigValidator extends LiferayConfigValidator with ListTypeUtils with TreeTypeUtils { val UNIQUE_VALUE_WEB_ID = "Company.webId" val UNIQUE_VALUE_VIRTUAL_HOST = "virtualHost" val UNIQUE_VALUE_USERGROUP_NAME = "UserGroup.name" val UNIQUE_VALUE_ROLE_NAME = "Role.name" val UNIQUE_VALUE_ORGANIZATION_NAME = "Organization.name" val UNIQUE_VALUE_USER_SCREENNAME = "User.screenName" val UNIQUE_VALUE_USER_EMAILADDRESS = "User.emailAddress" val UNIQUE_VALUE_SITE_NAME = "Site.name" val UNIQUE_VALUE_SITE_FRIENDLY_URL = "Site.friendlyURL" val UNIQUE_VALUE_PAGE_URL = "Page.url" val UNIQUE_VALUE_FILE_FOLDER_NAME = "Folder.name and File.name" val UNIQUE_VALUE_ARTICLE_ID = "Article.articleId" val UNIQUE_VALUE_ARTICLE_STRUCTURE_ID = "ArticleStructure.structureId" val UNIQUE_VALUE_ARTICLE_TEMPLATE_ID = "ArticleTemplate.templateId" var keyMap: mutable.HashMap[String, mutable.MutableList[String]] = _ override def validate(liferayConfig: LiferayConfig): List[ValidationError] = { assert(liferayConfig != null, "liferayConfig != null") keyMap = new mutable.HashMap[String, mutable.MutableList[String]]() val messages = new mutable.MutableList[ValidationError]() safeForeach(liferayConfig.getCompanies){ company => checkUnique(UNIQUE_VALUE_WEB_ID, null, company.getWebId, s"Company: ${company.identifiedBy()}", messages) if (company.getCompanyConfiguration != null) { checkUnique(UNIQUE_VALUE_VIRTUAL_HOST, null, company.getCompanyConfiguration.getVirtualHost, s"Company: ${company.identifiedBy()}", messages) } safeForeach(company.getRoles) { role => checkUnique(UNIQUE_VALUE_ROLE_NAME, company.identifiedBy(), role.getName, s"Company: ${company.identifiedBy()}, Role: ${role.identifiedBy()}", messages, ignoreCase = true) } safeForeach(company.getUserGroups) { userGroup => checkUnique(UNIQUE_VALUE_USERGROUP_NAME, company.identifiedBy(), userGroup.getName, s"Company: ${company.identifiedBy()}, UserGroup: ${userGroup.identifiedBy()}", messages, ignoreCase = true) } safeProcessRecursively(company.getOrganizations) { org => checkUnique(UNIQUE_VALUE_ORGANIZATION_NAME, company.identifiedBy(), org.getName, s"Company: ${company.identifiedBy()}, Organization: ${org.identifiedBy()}", messages, ignoreCase = true) } safeForeach(company.getUsers) { user => checkUnique(UNIQUE_VALUE_USER_SCREENNAME, company.identifiedBy(), user.getScreenName, s"Company: ${company.identifiedBy()}, User: ${user.identifiedBy()}", messages, ignoreCase = true) checkUnique(UNIQUE_VALUE_USER_EMAILADDRESS, company.identifiedBy(), user.getEmailAddress, s"Company: ${company.identifiedBy()}, User: ${user.identifiedBy()}", messages, ignoreCase = true) } safeForeach(company.getSites) { site => checkUnique(UNIQUE_VALUE_SITE_NAME, company.identifiedBy(), site.getName, s"Company: ${company.identifiedBy()}, Site:${site.identifiedBy()}", messages, ignoreCase = true) if (site.getSiteConfiguration != null) { checkUnique(UNIQUE_VALUE_SITE_FRIENDLY_URL, company.identifiedBy(), site.getSiteConfiguration.getFriendlyURL, s"Site:${site.identifiedBy()}", messages) checkUnique(UNIQUE_VALUE_VIRTUAL_HOST, null, site.getSiteConfiguration.getVirtualHostPublicPages, s"Company: ${company.identifiedBy()}, Site: ${site.identifiedBy()}, PublicPages", messages) checkUnique(UNIQUE_VALUE_VIRTUAL_HOST, null, site.getSiteConfiguration.getVirtualHostPrivatePages, s"Company: ${company.identifiedBy()}, Site: ${site.identifiedBy()}, PrivatePages", messages) } val subKeyBaseSite = company.identifiedBy() + "_" + site.identifiedBy() if (site.getPublicPages != null) safeProcessRecursivelyWithParent(site.getPublicPages.getPages) { (parent, page) => val parentPageName = if (parent == null) "/" else parent.identifiedBy() val subKey = subKeyBaseSite + "_" + "public" checkUnique(UNIQUE_VALUE_PAGE_URL, subKey, page.getFriendlyUrl, s"Company: ${company.identifiedBy()}, Site: ${site.identifiedBy()}, Public pages, Parent page:$parentPageName", messages) } if (site.getPrivatePages != null) safeProcessRecursivelyWithParent(site.getPrivatePages.getPages) { (parent, page) => val parentPageName = if (parent == null) "/" else parent.identifiedBy() val subKey = subKeyBaseSite + "_" + "private" + parentPageName checkUnique(UNIQUE_VALUE_PAGE_URL, subKey, page.getFriendlyUrl, s"Company: ${company.identifiedBy()}, Site: ${site.identifiedBy()}, Private pages, Parent page:$parentPageName", messages) } val siteContent = site.getSiteContent if (siteContent != null) { safeProcessRecursivelyWithParent(siteContent.getDocumentLibrary) { (parent, item) => item match { case folder: DocumentLibraryFolder => val folderName = if (folder.getName == null) "/" else folder.getName val subKey = UUID.randomUUID().toString if (folder.getSubItems != null) folder.getSubItems.foreach { subItem => checkUnique(UNIQUE_VALUE_FILE_FOLDER_NAME, subKey, subItem.getName, s"Company: ${company.identifiedBy()}, Site: ${site.identifiedBy()}, Parent folder: $folderName}", messages, ignoreCase = false) } case _ => } } if (siteContent.getWebContent != null) { safeProcessRecursively(siteContent.getWebContent.getStructures) { articleStructure => checkUnique(UNIQUE_VALUE_ARTICLE_STRUCTURE_ID, subKeyBaseSite, articleStructure.getStructureId, s"Company: ${company.identifiedBy()}, Site: ${site.identifiedBy()}, ArticleStructure: ${articleStructure.identifiedBy()}", messages) } safeForeach(siteContent.getWebContent.getTemplates) { articleTemplates => checkUnique(UNIQUE_VALUE_ARTICLE_TEMPLATE_ID, subKeyBaseSite, articleTemplates.getTemplateId, s"Company: ${company.identifiedBy()}, Site: ${site.identifiedBy()}, ArticleTemplate: ${articleTemplates.identifiedBy()}", messages) } safeForeach(siteContent.getWebContent.getArticles) { article => checkUnique(UNIQUE_VALUE_ARTICLE_ID, subKeyBaseSite, article.getArticleId, s"Company: ${company.identifiedBy()}, Site: ${site.identifiedBy()}, Article: ${article.identifiedBy()}", messages) } } } } } messages.toList } private def checkUnique(key: String, subKey: String, value: String, location: String, messages: mutable.MutableList[ValidationError], ignoreCase: Boolean = false) = { if (value != null) { val compareValue = if (ignoreCase) value.toLowerCase else value val fullKey = if (subKey == null) key else key + "_" + subKey if (!keyMap.contains(fullKey)) keyMap.put(fullKey, new mutable.MutableList[String]) val list = keyMap.get(fullKey).get if (list.contains(compareValue)) { messages += new ValidationError(s"$key must be unique! Duplicate value: '$value'.", location, null) } else { list += compareValue } } } }
nonblocking/cliwix
cliwix-core/src/main/scala/at/nonblocking/cliwix/core/validation/UniqueIdsLiferayConfigValidator.scala
Scala
agpl-3.0
8,350
/* *\\ ** Squants ** ** ** ** Scala Quantities and Units of Measure Library and DSL ** ** (c) 2013-2015, Gary Keorkunian ** ** ** \\* */ package squants.electro import squants._ import squants.energy.Joules import squants.time.{ Time, TimeIntegral } /** * @author garyKeorkunian * @since 0.1 * * @param value value in [[squants.electro.Coulombs]] */ final class ElectricCharge private (val value: Double, val unit: ElectricChargeUnit) extends Quantity[ElectricCharge] with TimeIntegral[ElectricCurrent] { def dimension = ElectricCharge protected def timeDerived = Amperes(toCoulombs) protected def time = Seconds(1) def *(that: ElectricPotential): Energy = Joules(this.toCoulombs * that.toVolts) def /(that: ElectricPotential): Capacitance = Farads(this.toCoulombs / that.toVolts) def /(that: Capacitance): ElectricPotential = Volts(this.toCoulombs / that.toFarads) def /(that: Length): LinearElectricChargeDensity = CoulombsPerMeter(this.toCoulombs / that.toMeters) def /(that: Area): AreaElectricChargeDensity = CoulombsPerSquareMeter(this.toCoulombs / that.toSquareMeters) def /(that: Volume): ElectricChargeDensity = CoulombsPerCubicMeter(this.toCoulombs / that.toCubicMeters) def /(that: Mass): ElectricChargeMassRatio = CoulombsPerKilogram(this.toCoulombs / that.toKilograms) def toCoulombs = to(Coulombs) def toPicocoulombs = to(Picocoulombs) def toNanocoulombs = to(Nanocoulombs) def toMicrocoulombs = to(Microcoulombs) def toMillcoulombs = to(Millicoulombs) def toAbcoulombs = to(Abcoulombs) def toAmpereHours = to(AmpereHours) def toMilliampereHours = to(MilliampereHours) def toMilliampereSeconds = to(MilliampereSeconds) } object ElectricCharge extends Dimension[ElectricCharge] { private[electro] def apply[A](n: A, unit: ElectricChargeUnit)(implicit num: Numeric[A]) = new ElectricCharge(num.toDouble(n), unit) def apply(value: Any) = parse(value) def name = "ElectricCharge" def primaryUnit = Coulombs def siUnit = Coulombs def units = Set(Coulombs, Picocoulombs, Nanocoulombs, Microcoulombs, Millicoulombs, Abcoulombs, AmpereHours, MilliampereHours, MilliampereSeconds) } trait ElectricChargeUnit extends UnitOfMeasure[ElectricCharge] with UnitConverter { def apply[A](n: A)(implicit num: Numeric[A]) = ElectricCharge(n, this) } object Coulombs extends ElectricChargeUnit with PrimaryUnit with SiUnit { val symbol = "C" } object Picocoulombs extends ElectricChargeUnit with SiUnit { val symbol = "pC" val conversionFactor = MetricSystem.Pico } object Nanocoulombs extends ElectricChargeUnit with SiUnit { val symbol = "nC" val conversionFactor = MetricSystem.Nano } object Microcoulombs extends ElectricChargeUnit with SiUnit { val symbol = "µC" val conversionFactor = MetricSystem.Micro } object Millicoulombs extends ElectricChargeUnit with SiUnit { val symbol = "mC" val conversionFactor = MetricSystem.Milli } object Abcoulombs extends ElectricChargeUnit { val symbol = "aC" val conversionFactor = 10d } object AmpereHours extends ElectricChargeUnit { val symbol = "Ah" val conversionFactor = Time.SecondsPerHour } object MilliampereHours extends ElectricChargeUnit { val symbol = "mAh" val conversionFactor = AmpereHours.conversionFactor * MetricSystem.Milli } object MilliampereSeconds extends ElectricChargeUnit { val symbol = "mAs" val conversionFactor = Coulombs.conversionFactor * MetricSystem.Milli } object ElectricChargeConversions { lazy val coulomb = Coulombs(1) lazy val picocoulomb = Picocoulombs(1) lazy val nanocoulomb = Nanocoulombs(1) lazy val microcoulomb = Microcoulombs(1) lazy val millicoulomb = Millicoulombs(1) lazy val abcoulomb = Abcoulombs(1) lazy val ampereHour = AmpereHours(1) lazy val milliampereHour = MilliampereHours(1) lazy val milliampereSecond = MilliampereSeconds(1) implicit class ElectricalChargeConversions[A](n: A)(implicit num: Numeric[A]) { def coulombs = Coulombs(n) def picocoulombs = Picocoulombs(n) def nanocoulombs = Nanocoulombs(n) def microcoulombs = Microcoulombs(n) def millicoulombs = Millicoulombs(n) def abcoulombs = Abcoulombs(n) def ampereHours = AmpereHours(n) def milliampereHours = MilliampereHours(n) def milliampereSeconds = MilliampereSeconds(n) } implicit object ElectricalChargeNumeric extends AbstractQuantityNumeric[ElectricCharge](ElectricCharge.primaryUnit) }
garyKeorkunian/squants
shared/src/main/scala/squants/electro/ElectricCharge.scala
Scala
apache-2.0
4,829
package delta.jdbc.mysql import java.sql.Connection import java.sql.SQLException import delta.jdbc.AbstractJdbcStore /** * MySQL syntax adapter for stream process stores. */ trait MySQLSyntax { self: AbstractJdbcStore => import MySQLDialect._ override protected def schemaDDL(schema: String): String = self.schemaDDL(schema).replace("SCHEMA", "DATABASE") override protected def createIndex(conn: Connection, ddl: String): Unit = { val validDDL = ddl.replace("IF NOT EXISTS", "") try self.createIndex(conn, validDDL) catch { case sqlEx: SQLException if isIndexAlreadyExists(sqlEx) => // Ignore } } override protected def dropIndex(conn: Connection, ddl: String): Unit = { val validDDL = ddl.replace("IF EXISTS", "") try self.dropIndex(conn, validDDL) catch { case sqlEx: SQLException if isIndexDoesNotExist(sqlEx) => // Ignore } } }
nilskp/delta
delta-jdbc/src/main/scala/delta/jdbc/mysql/MySQLSyntax.scala
Scala
mit
893
/** * Copyright 2017 Interel * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package core3.test.specs.unit.config import core3.test.specs.unit.UnitSpec import core3.config.DynamicConfig class DynamicConfigSpec extends UnitSpec { case class FixtureParam() def withFixture(test: OneArgTest) = withFixture(test.toNoArgTest(FixtureParam())) "A DynamicConfig object" should "successfully retrieve and reload the configuration" in { _ => val config = DynamicConfig.get.getConfig("testing.config") config.getString("valueOne") should be("1") config.getDouble("valueTwo") should be(2.3) config.getBoolean("valueThree") should be(true) DynamicConfig.reload() val reloadedConfig = DynamicConfig.get.getConfig("testing.config") reloadedConfig.getString("valueOne") should be("1") reloadedConfig.getDouble("valueTwo") should be(2.3) reloadedConfig.getBoolean("valueThree") should be(true) } }
Interel-Group/core3
src/test/scala/core3/test/specs/unit/config/DynamicConfigSpec.scala
Scala
apache-2.0
1,480
package org.jetbrains.plugins.scala package lang package psi package api package statements import org.jetbrains.plugins.scala.lang.psi.api.base.ScIdList import org.jetbrains.plugins.scala.lang.psi.api.toplevel.ScTypedDefinition /** * @author Alexander Podkhalyuzin */ trait ScVariableDeclaration extends ScVariable with ScTypedDeclaration { def getIdList: ScIdList def declaredElements : Seq[ScTypedDefinition] }
ilinum/intellij-scala
src/org/jetbrains/plugins/scala/lang/psi/api/statements/ScVariableDeclaration.scala
Scala
apache-2.0
419
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.ui.jobs import org.apache.spark.JobExecutionStatus import org.apache.spark.executor.TaskMetrics import org.apache.spark.scheduler.{AccumulableInfo, TaskInfo} import org.apache.spark.util.collection.OpenHashSet import scala.collection.mutable import scala.collection.mutable.HashMap private[spark] object UIData { class ExecutorSummary { var taskTime : Long = 0 var failedTasks : Int = 0 var succeededTasks : Int = 0 var inputBytes : Long = 0 var inputRecords : Long = 0 var outputBytes : Long = 0 var outputRecords : Long = 0 var shuffleRead : Long = 0 var shuffleReadRecords : Long = 0 var shuffleWrite : Long = 0 var shuffleWriteRecords : Long = 0 var memoryBytesSpilled : Long = 0 var diskBytesSpilled : Long = 0 } class JobUIData( var jobId: Int = -1, var submissionTime: Option[Long] = None, var completionTime: Option[Long] = None, var stageIds: Seq[Int] = Seq.empty, var jobGroup: Option[String] = None, var status: JobExecutionStatus = JobExecutionStatus.UNKNOWN, /* Tasks */ // `numTasks` is a potential underestimate of the true number of tasks that this job will run. // This may be an underestimate because the job start event references all of the result // stages' transitive stage dependencies, but some of these stages might be skipped if their // output is available from earlier runs. // See https://github.com/apache/spark/pull/3009 for a more extensive discussion. var numTasks: Int = 0, var numActiveTasks: Int = 0, var numCompletedTasks: Int = 0, var numSkippedTasks: Int = 0, var numFailedTasks: Int = 0, /* Stages */ var numActiveStages: Int = 0, // This needs to be a set instead of a simple count to prevent double-counting of rerun stages: var completedStageIndices: mutable.HashSet[Int] = new mutable.HashSet[Int](), var numSkippedStages: Int = 0, var numFailedStages: Int = 0 ) class StageUIData { var numActiveTasks: Int = _ var numCompleteTasks: Int = _ var completedIndices = new OpenHashSet[Int]() var numFailedTasks: Int = _ var executorRunTime: Long = _ var inputBytes: Long = _ var inputRecords: Long = _ var outputBytes: Long = _ var outputRecords: Long = _ var shuffleReadTotalBytes: Long = _ var shuffleReadRecords : Long = _ var shuffleWriteBytes: Long = _ var shuffleWriteRecords: Long = _ var memoryBytesSpilled: Long = _ var diskBytesSpilled: Long = _ var schedulingPool: String = "" var description: Option[String] = None var accumulables = new HashMap[Long, AccumulableInfo] var taskData = new HashMap[Long, TaskUIData] var executorSummary = new HashMap[String, ExecutorSummary] def hasInput: Boolean = inputBytes > 0 def hasOutput: Boolean = outputBytes > 0 def hasShuffleRead: Boolean = shuffleReadTotalBytes > 0 def hasShuffleWrite: Boolean = shuffleWriteBytes > 0 def hasBytesSpilled: Boolean = memoryBytesSpilled > 0 && diskBytesSpilled > 0 } /** * These are kept mutable and reused throughout a task's lifetime to avoid excessive reallocation. */ case class TaskUIData( var taskInfo: TaskInfo, var taskMetrics: Option[TaskMetrics] = None, var errorMessage: Option[String] = None) case class ExecutorUIData( val startTime: Long, var finishTime: Option[Long] = None, var finishReason: Option[String] = None) }
ArvinDevel/onlineAggregationOnSparkV2
core/src/main/scala/org/apache/spark/ui/jobs/UIData.scala
Scala
apache-2.0
4,303
package knot.data object ByteArrayIterator { def apply(bytes: Array[Byte]): ByteArrayIterator = new ByteArrayIterator(bytes, 0, bytes.length) def apply(bytes: Array[Byte], from: Int, until: Int) = new ByteArrayIterator(bytes, from, until) } class ByteArrayIterator(private var bytes: Array[Byte], private var from: Int, private var until: Int) extends BufferedIterator[Byte] { def len: Int = until - from override def head: Byte = bytes(from) override def hasNext: Boolean = from < until override def next(): Byte = { if (!hasNext) Iterator.empty.next else { val i = from from = from + 1 bytes(i) } } override def drop(n: Int): Iterator[Byte] = { if (n > 0) from = if (n < this.len) from + n else until this } override def copyToArray[B >: Byte](xs: Array[B], start: Int, len: Int): Unit = { val n = 0 max ((xs.length - start) min this.len min len) Array.copy(bytes, from, xs, start, n) this.drop(n) } }
defvar/knot
knot-data/src/main/scala/knot/data/ByteArrayIterator.scala
Scala
mit
985
package equellatests import com.tle.webtests.framework.{PageContext, ScreenshotTaker, TestConfig} import com.tle.webtests.pageobject.LoginPage import equellatests.TestChecker.withBrowserDriver import equellatests.domain.TestLogon import org.scalacheck.{Prop, Properties} import scala.util.{Success, Try} abstract class ShotProperties(name: String) extends Properties(name) { def withLogon[A](logon: TestLogon)(f: PageContext => Prop): Prop = { val testConfig = new TestConfig(GlobalConfig.baseFolderForInst(logon.inst), false) withBrowserDriver(testConfig) { driver => val context = new PageContext(driver, testConfig, testConfig.getInstitutionUrl) def quitDriver(shot: Boolean) = { if (shot) Try( ScreenshotTaker.takeScreenshot(driver, context.getTestConfig.getScreenshotFolder, name, context.getTestConfig.isChromeDriverSet)) Try(driver.quit()) } Try { new LoginPage(context).load().login(logon.username, logon.password) f(context) }.transform({ p => Success(p.map { r => quitDriver(r.failure) r }) }, { failure => quitDriver(true) throw failure }) .get } } }
equella/Equella
autotest/Tests/src/test/scala/equellatests/ShotProperties.scala
Scala
apache-2.0
1,384
/** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package kafka.server import kafka.utils.TestUtils import kafka.zk.ZooKeeperTestHarness import org.apache.kafka.common.KafkaException import org.apache.zookeeper.KeeperException.NodeExistsException import org.easymock.EasyMock import org.junit.Assert._ import org.junit.{After, Test} class ServerStartupTest extends ZooKeeperTestHarness { private var server: KafkaServer = null @After override def tearDown(): Unit = { if (server != null) TestUtils.shutdownServers(Seq(server)) super.tearDown() } @Test def testBrokerCreatesZKChroot(): Unit = { val brokerId = 0 val zookeeperChroot = "/kafka-chroot-for-unittest" val props = TestUtils.createBrokerConfig(brokerId, zkConnect) val zooKeeperConnect = props.get("zookeeper.connect") props.put("zookeeper.connect", zooKeeperConnect.toString + zookeeperChroot) server = TestUtils.createServer(KafkaConfig.fromProps(props)) val pathExists = zkClient.pathExists(zookeeperChroot) assertTrue(pathExists) } @Test def testConflictBrokerStartupWithSamePort(): Unit = { // Create and start first broker val brokerId1 = 0 val props1 = TestUtils.createBrokerConfig(brokerId1, zkConnect) server = TestUtils.createServer(KafkaConfig.fromProps(props1)) val port = TestUtils.boundPort(server) // Create a second broker with same port val brokerId2 = 1 val props2 = TestUtils.createBrokerConfig(brokerId2, zkConnect, port = port) try { TestUtils.createServer(KafkaConfig.fromProps(props2)) fail("Starting a broker with the same port should fail") } catch { case _: KafkaException => // expected } } @Test def testConflictBrokerRegistration(): Unit = { // Try starting a broker with the a conflicting broker id. // This shouldn't affect the existing broker registration. val brokerId = 0 val props1 = TestUtils.createBrokerConfig(brokerId, zkConnect) server = TestUtils.createServer(KafkaConfig.fromProps(props1)) val brokerRegistration = zkClient.getBroker(brokerId).getOrElse(fail("broker doesn't exists")) val props2 = TestUtils.createBrokerConfig(brokerId, zkConnect) try { TestUtils.createServer(KafkaConfig.fromProps(props2)) fail("Registering a broker with a conflicting id should fail") } catch { case _: NodeExistsException => // this is expected } // broker registration shouldn't change assertEquals(brokerRegistration, zkClient.getBroker(brokerId).getOrElse(fail("broker doesn't exists"))) } @Test def testBrokerSelfAware(): Unit = { val brokerId = 0 val props = TestUtils.createBrokerConfig(brokerId, zkConnect) server = TestUtils.createServer(KafkaConfig.fromProps(props)) TestUtils.waitUntilTrue(() => server.metadataCache.getAliveBrokers.nonEmpty, "Wait for cache to update") assertEquals(1, server.metadataCache.getAliveBrokers.size) assertEquals(brokerId, server.metadataCache.getAliveBrokers.head.id) } @Test def testBrokerStateRunningAfterZK(): Unit = { val brokerId = 0 val mockBrokerState: BrokerState = EasyMock.niceMock(classOf[BrokerState]) class BrokerStateInterceptor() extends BrokerState { override def newState(newState: BrokerStates): Unit = { val brokers = zkClient.getAllBrokersInCluster assertEquals(1, brokers.size) assertEquals(brokerId, brokers.head.id) } } class MockKafkaServer(override val config: KafkaConfig, override val brokerState: BrokerState = mockBrokerState) extends KafkaServer(config) {} val props = TestUtils.createBrokerConfig(brokerId, zkConnect) server = new MockKafkaServer(KafkaConfig.fromProps(props)) EasyMock.expect(mockBrokerState.newState(RunningAsBroker)).andDelegateTo(new BrokerStateInterceptor).once() EasyMock.replay(mockBrokerState) server.startup() } }
sslavic/kafka
core/src/test/scala/unit/kafka/server/ServerStartupTest.scala
Scala
apache-2.0
4,690
package io.udash.demos.files.rpc import io.udash.utils.{CallbacksHandler, Registration} class RPCService extends MainClientRPC { private val listeners = new CallbacksHandler[Unit] def listenStorageUpdate(callback: () => Unit): Registration = listeners.register({ case () => callback() }) override def fileStorageUpdated(): Unit = listeners.fire(()) }
UdashFramework/udash-demos
file-upload/frontend/src/main/scala/io/udash/demos/files/rpc/RPCService.scala
Scala
gpl-3.0
370
package lv.addresses.index import com.typesafe.scalalogging.Logger import org.slf4j.LoggerFactory import java.util import scala.collection.AbstractIterator import scala.collection.mutable.{ArrayBuffer => AB} import scala.collection.mutable.{Map => MM} import scala.language.postfixOps object Index { protected val logger = Logger(LoggerFactory.getLogger("lv.addresses.indexer")) sealed case class Refs(exact: AB[Int] = AB(), approx: AB[Int] = AB()) { def add(ref: Int, exactMatch: Boolean): Refs = { def coll = if (exactMatch) exact else approx if (coll.isEmpty) coll += ref else coll .lastOption.filterNot(_ == ref) .foreach(_ => coll += ref) //do not add code twice this } } sealed case class Result(word: String, refs: AB[Int], editDistance: Int) sealed case class FuzzyResult(word: String, refs: AB[Int], editDistance: Int, /** Split count of the original string. * Corresponds to space count in word field */ splitDepth: Int = 0) sealed case class PartialFuzzyResult(word: String, refs: AB[Int], editDistance: Int, rest: String) sealed case class IndexStats(nodeStats: NodeStats, repWordStats: AB[NodeStats]) { def render: String = s"${nodeStats.render}. Repeated words stats: ${ repWordStats.zipWithIndex.map { case (s, i) => s"${i + 2}: ${s.render}" }.mkString(", ") }" } sealed case class NodeStats(nodeCount: Long, refCount: Long) { def +(s: NodeStats): NodeStats = NodeStats(nodeCount + s.nodeCount, refCount + s.refCount) def render: String = s"Node count - $nodeCount, code ref count - $refCount" } sealed class MutableIndexBase(var children: AB[MutableIndexNode]) { def search(str: String): Refs = { if (children == null) return Refs() val c = str.head val idx = binarySearch[MutableIndexNode, Char](children, c, _.word.head, _ - _) if (idx < 0) Refs() else if (str.length == 1) children(idx).refs else children(idx).search(str.drop(1)) } def fuzzySearch(str: String, currentEditDistance: Int, maxEditDistance: Int, consumed: String, partial: MM[String, PartialFuzzyResult], calcMaxEditDist: String => Int): AB[FuzzyResult] = { def tryTransformedSearch(excludeChar: Char): AB[FuzzyResult] = { def replaceOrPrefix(s: String) = { var fuzzyResult = AB[FuzzyResult]() val l = children.size var i = 0 while (i < l) { val charToTry = children(i).word.head if (charToTry != excludeChar) { fuzzyResult ++= children(i) .fuzzySearch(s, currentEditDistance + 1, maxEditDistance, consumed + charToTry, partial, calcMaxEditDist) } i += 1 } fuzzyResult } if (currentEditDistance < maxEditDistance) { //try to prefix c with on of children word values replaceOrPrefix(str) ++ //try to omit c fuzzySearch(str drop 1, currentEditDistance + 1, maxEditDistance, consumed, partial, calcMaxEditDist) ++ //try to replace c with one of children word values replaceOrPrefix(str drop 1) } else AB() } if (str.isEmpty) return AB() val c = str.head val idx = binarySearch[MutableIndexNode, Char](children, c, _.word.head, _ - _) if (idx < 0) { tryTransformedSearch('\\u0000') //no char excluded } else { val r = children(idx) .fuzzySearch(str.drop(1), currentEditDistance, maxEditDistance, consumed + c, partial, calcMaxEditDist) r ++ tryTransformedSearch(c) //exclude found char from further fuzzy search } } def isEmpty = children == null || children.isEmpty def nonEmpty = !isEmpty def updateChildren(w: String, ref: Int, exact: Boolean): Unit = { if (isEmpty) children = AB() /* Strings are considered equal if they have common prefix */ val i = binarySearch[MutableIndexNode, String](children, w, _.word, _.head - _.head) if (i < 0) { children.insert(-(i + 1), new MutableIndexNode(w, Refs().add(ref, exact), null)) } else { children(i).update(w, ref, exact) } } /** Restores node from path */ def load(path: Vector[Int], word: String, refs: Refs): Unit = { val idx = path.head if (children == null) children = AB() if (idx > children.size) sys.error(s"Invalid index: $idx, children size: ${children.size}, cannot add node") else if (idx == children.size) { val n = new MutableIndexNode(null, null, null) n.load(path.drop(1), word, refs) children += n } else { children(idx).load(path.drop(1), word, refs) } } /** Calls writer function while traversing index */ def write(writer: (Vector[Int], String, Refs) => Unit, path: Vector[Int]): Unit = { if (children == null) return children.zipWithIndex.foreach { case (node, i) => val np = path.appended(i) node.writeNode(writer, np) node.write(writer, np) } } /** Debuging info */ def nodeStatistics: NodeStats = { if (isEmpty) NodeStats(0, 0) else children.foldLeft(NodeStats(children.size, 0)) { (st, n) => st + n.nodeStatistics } } private[Index] def validateNodeWord(path: String): AB[(String, String, Int)] = { if (isEmpty) AB() else children.flatMap(_.validateNodeWord(path)) } private[Index] def validateIndex(path: String): AB[(String, AB[Int])] = { if (isEmpty) AB() else children.flatMap(_.validateIndex(path)) } /** Node word must be of one character length if it does not contains multiplier '*'. * Returns tuple - (path, word, first address code) */ def invalidWords: AB[(String, String, Int)] = validateNodeWord("") /** Address codes in node must be unique and in ascending order. * Returns (invalid path|word, address codes) */ def invalidIndices: AB[(String, AB[Int])] = validateIndex("") } final class MutableIndex(_children: AB[MutableIndexNode], var repeatedWordChildren: AB[MutableIndexBase]) extends MutableIndexBase(_children) { /** Searches index down the tree */ def apply(str: String): Refs = { val rep_w_idx = str.indexOf('*') if (rep_w_idx != -1) { //repeated word found //repeated words start with 2 val idx = str.substring(0, rep_w_idx).toInt - 2 if (idx < repeatedWordChildren.size) { val ch = repeatedWordChildren(idx) if (ch != null) ch.search(str.substring(rep_w_idx + 1)) else Refs() } else Refs() } else search(str) } /** Searches index down the tree in fuzzy mode */ def apply(str: String, maxEditDistance: Int, calcMaxEditDist: String => Int): AB[FuzzyResult] = { def fuzzySearchInternal(node: MutableIndexBase, str: String): AB[FuzzyResult] = { def reduceResults(res: AB[FuzzyResult]): AB[FuzzyResult] = { val r = res .groupBy(_.word) .map[FuzzyResult] { case (_, searchResults) => searchResults.minBy(_.editDistance) } AB.from(r) } def completePartial(pr: PartialFuzzyResult, depth: Int): AB[FuzzyResult] = { if (pr.refs.isEmpty) return AB() val npartialRes = MM[String, PartialFuzzyResult]() val nr = reduceResults(node.fuzzySearch(pr.rest, 0, Math.min(maxEditDistance, calcMaxEditDist(pr.rest)), "", npartialRes, calcMaxEditDist) ) val presMap = MM[String, FuzzyResult]() npartialRes.foreach { case (_, npr) => val is = intersect(AB(pr.refs, npr.refs), 1024, null) if (is.nonEmpty) { val completedRes = completePartial(PartialFuzzyResult(pr.word + " " + npr.word, is, pr.editDistance + npr.editDistance, npr.rest), depth + 1) completedRes.foreach { fr => //select results with minimal edit distance presMap.get(fr.word).map { case FuzzyResult(_, _, ed, _) => if (fr.editDistance < ed) presMap(fr.word) = fr }.getOrElse(presMap.addOne((fr.word, fr))) } } } val pres = AB.from(presMap.values) if (nr.nonEmpty) nr.flatMap { fr => val is = intersect(AB(pr.refs, fr.refs), 1024, null) if (is.nonEmpty) AB(FuzzyResult(pr.word + " " + fr.word, is, pr.editDistance + fr.editDistance, depth)) else AB() } ++ pres else pres } val partialRes = MM[String, PartialFuzzyResult]() val r = node.fuzzySearch(str, 0, maxEditDistance, "", partialRes, calcMaxEditDist) if (r.isEmpty && partialRes.nonEmpty) { val res = AB[FuzzyResult]() partialRes.foreach { case (_, pr) => res ++= completePartial(pr, 1) } res //sort by edit distance asc first and then split depth desc and then reference count desc .sortBy { fr => (fr.editDistance << 25) - (fr.splitDepth << 24) - fr.refs.length } } else { reduceResults(r) //sort by edit distance asc first and then reference count desc .sortBy(fr => (fr.editDistance << 24) - fr.refs.length) } } val rep_w_idx = str.indexOf('*') if (rep_w_idx != -1) { //repeated word found //repeated words start with 2 val idx = str.substring(0, rep_w_idx).toInt - 2 if (idx < repeatedWordChildren.size) { val ch = repeatedWordChildren(idx) if (ch != null) { val wc = s"${idx + 2}*" fuzzySearchInternal(ch, str.substring(rep_w_idx + 1)) .map(fr => fr.copy(word = wc + fr.word)) } else AB() } else AB() } else { fuzzySearchInternal(this, str) } } override def updateChildren(w: String, ref: Int, exact: Boolean): Unit = { if (isEmpty) { children = AB() repeatedWordChildren = AB() } val rep_w_idx = w.indexOf('*') if (rep_w_idx != -1) { // repeated words start with 2 val idx = w.substring(0, rep_w_idx).toInt - 2 val repWord = w.substring(rep_w_idx + 1) if (repeatedWordChildren.size <= idx) repeatedWordChildren.padToInPlace(idx + 1, null) if (repeatedWordChildren(idx) == null) { val n = new MutableIndexBase(null) n.updateChildren(repWord, ref, exact) repeatedWordChildren(idx) = n } else repeatedWordChildren(idx).updateChildren(repWord, ref, exact) } else { super.updateChildren(w, ref, exact) } } override def load(path: Vector[Int], word: String, refs: Refs): Unit = { val idx = path.head val tail = path.tail if (repeatedWordChildren == null) repeatedWordChildren = AB() if (idx == -1) super.load(tail, word, refs) else if (idx > repeatedWordChildren.size) sys.error(s"Invalid index for repeated words: $idx, children size: ${ repeatedWordChildren.size }, cannot add node") else if (idx == repeatedWordChildren.size) { val n = new MutableIndexBase(null) n.load(tail, word, refs) repeatedWordChildren += n } else { repeatedWordChildren(idx).load(tail, word, refs) } } /** Calls writer function while traversing index */ def write(writer: (Vector[Int], String, Refs) => Unit): Unit = { write(writer, Vector(-1)) repeatedWordChildren.zipWithIndex.foreach { case (node, i) => node.write(writer, Vector(i)) } } def statistics: IndexStats = { val st = nodeStatistics val repSt = repeatedWordChildren.map(_.nodeStatistics) IndexStats(st, repSt) } } final class MutableIndexNode(var word: String, var refs: Refs, _children: AB[MutableIndexNode]) extends MutableIndexBase(_children) { override def fuzzySearch(str: String, currentEditDistance: Int, maxEditDistance: Int, consumed: String, partial: MM[String, PartialFuzzyResult], calcMaxEditDist: String => Int): AB[FuzzyResult] = { if (str.isEmpty) { //add exact refs to fuzzy result (if (currentEditDistance > 0 && refs.exact.isEmpty) AB() else AB(FuzzyResult(consumed, if (refs.exact.nonEmpty) refs.exact else refs.approx, currentEditDistance))) ++ //add children word values if current edit distance is less than max edit distance (if (currentEditDistance < maxEditDistance && children != null) { children.foldLeft(AB[FuzzyResult]()) { case (r, c) => r ++= c.fuzzySearch(str, currentEditDistance + 1, maxEditDistance, consumed + c.word, partial, calcMaxEditDist) } } else AB()) } else { if (refs.exact.nonEmpty) { if (currentEditDistance <= calcMaxEditDist(consumed)) { val key = consumed + " " + str def partialEntry = (key, PartialFuzzyResult(consumed, refs.exact, currentEditDistance + 1 /*space added*/ , str)) partial.get(key).map { pr => if (currentEditDistance < pr.editDistance) partial += partialEntry }.getOrElse(partial += partialEntry) } if (children == null) { val err = currentEditDistance + str.length if (err <= maxEditDistance) AB(FuzzyResult(consumed, refs.exact, err)) else AB() } else super.fuzzySearch(str, currentEditDistance, maxEditDistance, consumed, partial, calcMaxEditDist) } else if (children == null) AB() else super.fuzzySearch(str, currentEditDistance, maxEditDistance, consumed, partial, calcMaxEditDist) } } def update(w: String, ref: Int, exact: Boolean): Unit = { val (commonPart, nodeRest, wordRest) = split(word, w) if (nodeRest.isEmpty && wordRest.isEmpty) { //update node codes refs.add(ref, exact) } else { if (nodeRest.nonEmpty) { //make common part as nodes word, move remaining part deeper word = commonPart val onlyRep = commonPart.endsWith("*") val chRefs = if (onlyRep) refs.add(ref, exact) else refs refs = if (onlyRep) null else Refs().add(ref, exact) val nch = children children = AB(new MutableIndexNode(nodeRest, chRefs, nch)) //move children and refs to new child node } if (wordRest.nonEmpty) { //update children with remaining part of new word updateChildren(wordRest, ref, exact) } } } /** returns (common part from two args, rest from first arg, rest from second arg) */ def split(s1: String, s2: String): (String, String, String) = { val equalCharCount = s1 zip s2 count (t => t._1 == t._2) (s1.substring(0, equalCharCount), s1.substring(equalCharCount), s2.substring(equalCharCount)) } override def load(path: Vector[Int], word: String, refs: Refs): Unit = { if (path.isEmpty) { this.word = word this.refs = refs } else { super.load(path, word, refs) } } def writeNode(writer: (Vector[Int], String, Refs) => Unit, path: Vector[Int]): Unit = { writer(path, word, refs) } /** Debuging info */ override def nodeStatistics: NodeStats = Option(refs).map { r => NodeStats(0, r.exact.size + r.approx.size) }.getOrElse(NodeStats(0, 0)) + super.nodeStatistics override def validateNodeWord(path: String): AB[(String, String, Int)] = { (if (word.length > 1 && !word.contains("*")) AB((path, word, refs.exact.headOption.getOrElse(refs.approx.head))) else AB()) ++ super.validateNodeWord(path + word) } override def validateIndex(path: String): AB[(String, AB[Int])] = { val wrongCodes = AB[Int]() def findDuplicates(arr: AB[Int]): Int = { if (arr.isEmpty) return -1 arr.reduce { (prevCode, curCode) => if (prevCode >= curCode) wrongCodes += curCode curCode } } (if (refs != null) { findDuplicates(refs.exact) findDuplicates(refs.approx) if (wrongCodes.nonEmpty) AB(s"$path|$word" -> wrongCodes) else AB() } else AB()) ++ super.validateIndex(path + word) } } def searchCodes(words: AB[String], index: MutableIndex, calcMaxEditDist: String => Int)(limit: Int, filter: Int => Boolean = null): AB[Result] = { def searchParams(words: AB[String]) = { val ws = wordStatForSearch(words) .groupBy(_._1) .map[(String, Int)] { case (_, s) => s.sortBy(-_._2).head } .map { case (w, c) => if (c == 1) w else s"$c*$w" } AB.from(ws) } def search_idx(word: String) = index(word) def search_idx_fuzzy(word: String) = { index(word, calcMaxEditDist(word), calcMaxEditDist) } def exactSearch(p: AB[String], editDistance: Int, exactMatchWords: Set[String]): AB[Result] = { val result = p.map(w => search_idx(w) -> exactMatchWords(w)) .map { case (r, true) => AB(r.exact) case (r, false) => AB(r.exact, r.approx).filter(_.nonEmpty) } var refCount = 0 val intersection = AB[Int]() val combInit = (AB.fill[AB[Int]](result.size)(null), 0) //(refs, idx) foldCombinations[AB[Int], (AB[AB[Int]], Int), AB[Int]](result, combInit, (cr, d) => { cr._1(cr._2) = d (cr._1, cr._2 + 1) }, intersection, (r, cr) => { val intr = intersect(cr._1, limit, filter) r ++= intr refCount += intr.length (r, refCount < limit) } ) intersection match { case a if a.isEmpty => AB() case a => AB(Result(p.mkString(" "), if (a.size > limit) a.take(limit) else a, editDistance)) } } def exactSearchWithMerge(params: AB[String]): AB[Result] = { if (params.isEmpty) AB() else { var count = 0 var result = AB[Result]() binCombinations(params.size - 1, spaces => { var i = 1 var j = 0 var editDistance = 0 val ab = AB[String](params(0)) spaces foreach { s => if (s == 0) { //separate word ab += params(i) j += 1 } else { //merge words ab(j) = ab(j) + params(i) editDistance += 1 } i += 1 } result = exactSearch(searchParams(ab), editDistance, Set()) count += 1 result.isEmpty && count < 32 }) result } } exactSearchWithMerge(words) match { case a if a.nonEmpty => a case _ => // fuzzy search val params = searchParams(words) //reset ref count var refCount = 0 val fuzzyRes = params map search_idx_fuzzy var productiveIntersectionCount = 0 var intersectionCount = 0 val MaxProductiveIntersectionCount = 32 val MaxIntersectionCount = 1024 foldCombinations[FuzzyResult, AB[FuzzyResult], AB[Result]]( fuzzyRes, AB(), (frs, fr) => frs += fr, AB[Result](), (r, frs) => { val res = exactSearch( searchParams(frs .flatMap(fr => if (fr.splitDepth == 0) AB(fr.word) else AB.from(fr.word.split(' ')))), frs.foldLeft(0)((ed, fr) => ed + fr.editDistance), frs.collect { case fr if fr.editDistance > 0 => fr.word }.toSet ) if (res.nonEmpty) { r ++= res refCount += res.foldLeft(0)(_ + _.refs.length) productiveIntersectionCount += 1 } intersectionCount += 1 if (intersectionCount >= MaxIntersectionCount && productiveIntersectionCount == 0) logger.debug(s"A LOT OF FUZZY RESULTS: ${fuzzyRes.map(_.size).mkString("(", ",", ")")}\\n ${ fuzzyRes.map(_.map(fr => fr.word -> fr.editDistance) .mkString("(", ",", ")")).mkString("[", ",", "]") }") (r, refCount < limit && intersectionCount < MaxIntersectionCount && productiveIntersectionCount < MaxProductiveIntersectionCount ) } ) } } val accents = "ēūīāšģķļžčņ" zip "euiasgklzcn" toMap def unaccent(str: String) = str .toLowerCase .foldLeft(new scala.collection.mutable.StringBuilder(str.length))( (b, c) => b.append(accents.getOrElse(c, c))) .toString def isWhitespaceOrSeparator(c: Char) = c.isWhitespace || "-,/.\\"'\\n".contains(c) //better performance, whitespaces are eliminated in the same run as unaccent operation def normalize(str: String) = str .toLowerCase .foldLeft(AB[scala.collection.mutable.StringBuilder]() -> true) { case ((s, b), c) => if (isWhitespaceOrSeparator(c)) (s, true) else { if (b) s.append(new scala.collection.mutable.StringBuilder) s.last.append(accents.getOrElse(c, c)) (s, false) } }._1 .map(_.toString) def wordStatForSearch(words: AB[String]): AB[(String, Int)] = { val stats = AB.fill(words.size)(1) 0 until words.size foreach { i => (i + 1) until words.size foreach { j => if (words(j).length > words(i).length) { if (words(j) startsWith words(i)) stats(i) += 1 } else if (words(i) startsWith words(j)) stats(j) += 1 } } words zip stats } def wordStatForIndex(phrase: String) = normalize(phrase) .foldLeft(Map[String, Int]())((stat, w) => (0 until w.length) .map(w.dropRight(_)) .foldLeft(stat)((stat, w) => stat + (w -> stat.get(w).map(_ + 1).getOrElse(1)))) def extractWords(phrase: String) = wordStatForIndex(phrase) .flatMap(t => List(t._1) ++ (2 to t._2).map(s => s"$s*${t._1}")) def editDistance(s1: String, s2: String): Int = { val lx = s1.length + 1 val ly = s2.length + 1 if (lx > 1 && ly > 1) { val vals = new Array[Int](lx) var x = 0 while (x < lx) { vals(x) = x x += 1 } x = 1 var y = 1 var dist = 0 while (y < ly) { var xm1 = y while (x < lx) { val dxy = vals(x - 1) + (if (s1.charAt(x - 1) == s2.charAt(y - 1)) 0 else 1) val d = Math.min(xm1 + 1, Math.min(vals(x) + 1, dxy)) vals(x - 1) = xm1 xm1 = d x += 1 } x = 1 y += 1 dist = xm1 } dist } else Math.max(lx - 1, ly - 1) } def binarySearch[T, K](arr: AB[T], key: K, keyFunc: T => K, comparator: (K, K) => Int): Int = { binarySearchFromUntil(arr, 0, arr.length, key, keyFunc, comparator) } def binarySearchFromUntil[T, K](arr: AB[T], fromIdx: Int, toIdx: Int, key: K, keyFunc: T => K, comparator: (K, K) => Int): Int = { var from = fromIdx var to = toIdx - 1 while (from <= to) { val i = from + to >>> 1 val r = comparator(keyFunc(arr(i)), key) if (r < 0) from = i + 1 else if (r > 0) to = i - 1 else return i } -(from + 1) } def intersect(idx: AB[AB[Int]], limit: Int, filter: Int => Boolean): AB[Int] = { val result = AB[Int]() val pos = Array.fill(idx.length)(0) def check_register = { val v = idx(0)(pos(0)) val l = pos.length var i = 1 while (i < l && v == idx(i)(pos(i))) i += 1 if (i == l) { if (filter == null || filter(v)) result append v i = 0 while (i < l) { pos(i) += 1 i += 1 } } } def find_equal(a_pos: Int, b_pos: Int) = { def search(arr: AB[Int], from: Int, until: Int, code: Int) = { val i = binarySearchFromUntil[Int, Int](arr, from, until, code, identity _, _ - _) if (i < 0) -(i + 1) else i } val a: AB[Int] = idx(a_pos) val b: AB[Int] = idx(b_pos) val al = a.length val bl = b.length var ai = pos(a_pos) var bi = pos(b_pos) while (ai < al && bi < bl && a(ai) != b(bi)) if (a(ai) < b(bi)) ai = search(a, ai + 1, al, b(bi)) else bi = search(b, bi + 1, bl, a(ai)) pos(a_pos) = ai pos(b_pos) = bi } def continue = { var i = 0 val l = pos.length while (i < l && pos(i) < idx(i).length) i += 1 i == l } while (result.length < limit && continue) { check_register var i = 0 val l = pos.length - 1 while (i < l) { find_equal(i, i + 1) i += 1 } } result } def hasIntersection(idx: AB[AB[Int]]): Boolean = { val pos = Array.fill(idx.length)(0) var hasCommon = false def checkEquals = { val v = idx(0)(pos(0)) val l = pos.length var i = 1 while (i < l && v == idx(i)(pos(i))) i += 1 hasCommon = i == l hasCommon } def find_equal(a_pos: Int, b_pos: Int) = { def search(arr: AB[Int], from: Int, until: Int, code: Int) = { val i = binarySearchFromUntil[Int, Int](arr, from, until, code, identity _, _ - _) if (i < 0) -(i + 1) else i } val a: AB[Int] = idx(a_pos) val b: AB[Int] = idx(b_pos) val al = a.length val bl = b.length var ai = pos(a_pos) var bi = pos(b_pos) while (ai < al && bi < bl && a(ai) != b(bi)) if (a(ai) < b(bi)) ai = search(a, ai + 1, al, b(bi)) else bi = search(b, bi + 1, bl, a(ai)) pos(a_pos) = ai pos(b_pos) = bi } def continue = { var i = 0 val l = pos.length while (i < l && pos(i) < idx(i).length) i += 1 i == l && !checkEquals } while (continue) { var i = 0 val l = pos.length - 1 while (i < l) { find_equal(i, i + 1) i += 1 } } hasCommon } /** Merge ordered collections removing duplicates */ def merge(arrs: AB[AB[Int]]): AB[Int] = { def merge(r1: AB[Int], r2: AB[Int]) = { var i1 = 0 var i2 = 0 val l1 = r1.length val l2 = r2.length val res = new AB[Int](Math.max(l1, l2)) var prevCode = -1 while (i1 < l1 && i2 < l2) { val c1 = r1(i1) val c2 = r2(i2) if (c1 < c2) { if (prevCode < c1) { res += r1(i1) prevCode = c1 } i1 += 1 } else if (c1 > c2) { if (prevCode < c2) { res += r2(i2) prevCode = c2 } i2 += 1 } else { if (prevCode < c1) { res += r1(i1) prevCode = c1 } i1 += 1 i2 += 1 } } def addDistinct(a: AB[Int], start: Int, l: Int) = { var i = start while (i < l) { val c = a(i) if (prevCode < c) { res += a(i) prevCode = c } i += 1 } } if (i1 < l1) addDistinct(r1, i1, l1) else if (i2 < l2) addDistinct(r2, i2, l2) res } if (arrs.isEmpty) AB() else arrs.reduce(merge) } /** Removes duplicates from collections going forward i.e. from collection at index 1 are removed elements * contained by collection at index 0, and so on. * Collections are ordered */ def pruneRight(arrs: AB[AB[Int]]): AB[AB[Int]] = { def prune(l: AB[Int], r: AB[Int]): AB[Int] = { if (l.isEmpty && r.isEmpty) return r var li = 0 var ri = 0 val ll = l.length while (li < ll && ri < r.length) { if (l(li) < r(ri)) li += 1 else if (l(li) > r(ri)) ri += 1 else { r.remove(ri) li += 1 } } r } if (arrs.length < 2) return arrs var i = 0 val l = arrs.length while (i < l) { var j = i + 1 while (j < l) { arrs(j) = prune(arrs(i), arrs(j)) j += 1 } i += 1 } arrs } def foldCombinations[A, B, C](data: AB[AB[A]], combInit: => B, combFun: (B, A) => B, init: C, folder: (C, B) => (C, Boolean)): C = { if (data.exists(_.isEmpty)) return init data.sortInPlaceBy(_.size) val count = data.size var res = init val limits = Array.tabulate(count)(data(_).size - 1) val max_sum = limits.sum var s = 0 var continue = true while(s <= max_sum && continue) { val it = new PermutationsItrOverSumEls(count, s, limits) while (continue && it.hasNext) { val idxs = it.next() var combRes = combInit var i = 0 while (i < count) { combRes = combFun(combRes, data(i)(idxs(i))) i += 1 } val (fr, cont) = folder(res, combRes) res = fr continue = cont } s += 1 } res } class PermutationsItrOverSumEls(el_count: Int, sum: Int, limits: Array[Int] /** NOTE: limits must be sorted! */) extends AbstractIterator[Array[Int]] { private val elms = new Array[Int](el_count) //y private val cur_l = new Array[Int](el_count) //l private val cur_s = new Array[Int](el_count) //s private val result = new Array[Int](el_count) //res private val permutator = new PermutationsItr(el_count, limits) private var _hasNext = el_count > 0 && init private def init: Boolean = { var i = el_count - 1 var s = sum cur_l(i) = Math.min(limits(i), s) while (i >= 0) { cur_s(i) = s if (i == 0) { elms(0) = s cur_l(0) = limits(0) } else { elms(i) = Math.min(s, cur_l(i)) val in = i - 1 s = s - elms(i) cur_l(in) = Math.min(limits(in), elms(i)) } i -= 1 } s <= cur_l(0) } private def cont_adjust(idx: Int): Boolean = { var i = idx elms(i) -= 1 i -= 1 while (i >= 0) { val ip = i + 1 cur_s(i) = cur_s(ip) - elms(ip) cur_l(i) = Math.min(limits(i), elms(ip)) elms(i) = Math.min(cur_s(i), cur_l(i)) i -= 1 } cur_s(0) > cur_l(0) } private def calc_next: Boolean = { var i = 1 while (i < el_count && cont_adjust(i)) i += 1 i < el_count } def hasNext = _hasNext || permutator.hasNext @throws[NoSuchElementException] def next(): Array[Int] = { if (!hasNext) Iterator.empty.next() if (permutator.hasNext) permutator.next() else { System.arraycopy(elms, 0, result, 0, el_count) permutator.init(result) permutator.next() _hasNext = calc_next result } } //recursive implementation of element combinations generation for sum // private def se(c: Int, s: Int, l: List[Int]): (List[List[Int]], Int) = { // if (c == 0) (Nil, 0) // else if (c == 1) { // if (s <= l.head) (List(List(s)), s) // else (Nil, 0) // } else { // def r(y: Int, res: List[List[Int]]): (List[List[Int]], Int) = { // se(c - 1, s - y, Math.min(l.tail.head, y) :: l.tail.tail) match { // case (x, z) if x.nonEmpty && y >= z => r(y - 1, res ::: x.map(y :: _)) // case _ => (res, y) // } // } // r(Math.min(s, l.head), Nil) // } // } //ported from scala standard library class PermutationsItr(size: Int, limits: Array[Int]) extends AbstractIterator[Array[Int]] { private[this] var result: Array[Int] = _ private[this] val elms: Array[Int] = new Array[Int](size) private[this] var _hasNext = false def hasNext = _hasNext @throws[NoSuchElementException] def next(): Array[Int] = { if (!hasNext) Iterator.empty.next() System.arraycopy(elms, 0, result, 0, size) var i = elms.length - 2 while(i >= 0 && elms(i) >= elms(i + 1)) i -= 1 if (i < 0) _hasNext = false else { var j = elms.length - 1 while(elms(j) <= elms(i)) j -= 1 if (elms(j) > limits(i)) { // check limit j = i - 1 while (j >= 0 && (elms(j + 1) > limits(j) || elms(j + 1) <= elms(j))) j -= 1 if (j < 0) _hasNext = false else swap(j, j + 1) } else swap(i, j) // limit ok val len = (elms.length - i) / 2 var k = 1 while (k <= len) { swap(i + k, elms.length - k) k += 1 } } result } private def swap(i: Int, j: Int): Unit = { val tmpE = elms(i) elms(i) = elms(j) elms(j) = tmpE } def init(res: Array[Int]) = { // NOTE: res must be sorted! result = res _hasNext = true //val m = scala.collection.mutable.HashMap[Int, Int]() //idxs = result map (m.getOrElseUpdate(_, m.size)) //util.Arrays.sort(idxs) System.arraycopy(res, 0, elms, 0, size) } } } def binCombinations(n: Int, f: Array[Int] => Boolean): Unit = { val a = new Array[Int](n) var b = true def go(d: Int): Unit = { if (d == 0) b = f(a.clone) else { var i = 0 while (i <= 1 && b) { a(n - d) = i go(d - 1) i += 1 } } } go(n) } }
mrumkovskis/addresses
indexer/src/main/scala/index/Index.scala
Scala
mit
34,452
package blended.prickle.akka.http import akka.http.scaladsl.marshalling.{Marshaller, ToEntityMarshaller} import akka.http.scaladsl.model.{ContentTypeRange, MediaTypes} import akka.http.scaladsl.unmarshalling.{FromEntityUnmarshaller, Unmarshaller} import blended.util.logging.Logger import microjson.JsValue import prickle._ trait PrickleSupport { private[this] val log = Logger[PrickleSupport] val prickleMediaType = MediaTypes.`application/json` implicit def toEntityMarshaller[T](implicit p : Pickler[T], config : PConfig[JsValue]) : ToEntityMarshaller[T] = { // Marshaller.stringMarshaller(prickleMediaType) { // Marshaller.charArrayMarshaller(prickleMediaType).wrap(prickleMediaType) { Marshaller.StringMarshaller.wrap(prickleMediaType) { in : T => log.debug(s"About to pickle: ${in}") val pickled = Pickle.intoString(in) log.debug(s"pickled: ${pickled}") pickled } } implicit def fromEntityUnmarshaller[T](implicit u : Unpickler[T], config : PConfig[JsValue]) : FromEntityUnmarshaller[T] = { Unmarshaller.stringUnmarshaller.forContentTypes(ContentTypeRange(prickleMediaType.toContentType)).map { jsonString : String => // Unmarshaller.charArrayUnmarshaller.forContentTypes(ContentTypeRange(prickleMediaType.toContentType)).map { // in: Array[Char] => // val jsonString = String.valueOf(in) log.debug(s"About to unpickle from json string: ${jsonString}") val unpickled = Unpickle[T].fromString(jsonString) log.debug(s"unpickled: ${unpickled}") unpickled.get } } } object PrickleSupport extends PrickleSupport
woq-blended/blended
blended.prickle.akka.http/src/main/scala/blended/prickle/akka/http/PrickleSupport.scala
Scala
apache-2.0
1,679
package com.mesosphere.universe.v3.model import com.mesosphere.Generators.nonNegNum import org.scalacheck.Gen import org.scalatest.FreeSpec import org.scalatest.prop.PropertyChecks final class PackageDefinitionSpec extends FreeSpec with PropertyChecks { "PackageDefinition$.ReleaseVersion" - { "ReleaseVersion$.validate should" - { "succeed on non-negative numbers" in { forAll (nonNegNum[Long]) { n => whenever (n >= 0) { assert(ReleaseVersion.validate(n).isReturn) } } } "fail on negative numbers" in { forAll (Gen.negNum[Long]) { n => whenever (n < 0) { assert(ReleaseVersion.validate(n).isThrow) } } } } "ReleaseVersion.value" in { forAll (nonNegNum[Long]) { n => assertResult(n)(ReleaseVersion(n).value) } } "ReleaseVersion$.ordering orders by value" in { forAll (nonNegNum[Long], nonNegNum[Long]) { (a, b) => whenever (a >= 0 && b >= 0) { val aVersion = ReleaseVersion(a) val bVersion = ReleaseVersion(b) assertResult(Ordering[Long].compare(a, b)) { Ordering[ReleaseVersion].compare(aVersion, bVersion) } } } } } }
dcos/cosmos
cosmos-test-common/src/test/scala/com/mesosphere/universe/v3/model/PackageDefinitionSpec.scala
Scala
apache-2.0
1,281
package com.technophobia.substeps.intellij.parser import com.intellij.lang.{ASTNode, PsiBuilder, PsiParser} import com.intellij.psi.tree.IElementType import com.technophobia.substeps.intellij.lexer._ import scala.util.parsing.combinator.Parsers import com.technophobia.substeps.nodes._ import com.technophobia.substeps.nodes.BasicScenario import scala.Some import com.technophobia.substeps.nodes.UnresolvedSubstepUsage import com.technophobia.substeps.nodes.Feature import scala.util.parsing.input.{Position, Reader} class FeaturePsiParser extends PsiParser { def parse(root: IElementType, builder: PsiBuilder): ASTNode = { val start = builder.mark() new FeatureParser().apply(builder) start.done(root) builder.getTreeBuilt } } class FeatureParser extends Parsers { override type Elem = (IElementType, String) override type Input = Reader[Elem] def apply(in: PsiBuilder) { featureFile.apply(PsiBuilderImmutableAdapter(in)) } implicit class ElementParser(tokenToMatch: IElementType) extends Parser[String] { def apply(in: Reader[Elem]): ParseResult[String] = { def createSuccess = { in match { case psiReader: PsiBuilderImmutableAdapter => { val marker = psiReader.mark() val success = Success(in.first._2, in.rest) marker.done(tokenToMatch) success } case _ => throw new RuntimeException("Wrong Reader Type") } } val (token, tokenText) = in.first token match { case x if x == tokenToMatch => createSuccess case _ => { print(s"Parsing failed at ${tokenText}, expected ${tokenToMatch}") Failure(s"Expected ${tokenToMatch} but found ${token}", in) } } } } implicit class MarkingParser(wrapped: Parser[String]) extends Parser[String] { def apply(in: FeatureParser.this.type#Input): FeatureParser.this.type#ParseResult[String] = { val psiBuilder = in.asInstanceOf[PsiBuilderImmutableAdapter] val mark = psiBuilder.mark() val result = wrapped(in) result match { case Success(_,_) => mark.done(FeatureNameElement) case _ => mark.rollbackTo() } result } } private def featureFile: Parser[Feature] = opt(tagDef <~ rep1(EolElement)) ~ (featureDef <~ rep1(EolElement)) ~ (rep(scenario) <~ rep(EolElement)) ^^ { case (Some(tags) ~ featureName ~ scenarios) => Feature(featureName, tags, scenarios) case (None ~ featureName ~ scenarios) => Feature(featureName, Nil, scenarios) } private def tagDef: Parser[List[String]] = TagsMarkerElement ~> rep(tag) private def tag: Parser[String] = TextElement private def featureDef: MarkingParser = FeatureMarkerElement ~> rep(TextElement) ^^ (x => x.mkString(" ")) private def scenario: Parser[BasicScenario] = (opt(tagDef <~ rep1(EolElement)) ~ scenarioDef <~ rep1(EolElement)) ~ rep1sep(substepUsage, EolElement) <~ rep(EolElement) ^^ { case (Some(tags) ~ scenarioName ~ substeps) => BasicScenario(scenarioName, tags, substeps) case (None ~ scenarioName ~ substeps) => BasicScenario(scenarioName, Nil, substeps) } def substepUsage: Parser[SubstepUsage] = rep(TextElement) ^^ ((x) => UnresolvedSubstepUsage(x.mkString(" "))) private def scenarioDef: Parser[String] = ScenarioMarkerElement ~> rep(TextElement) ^^ (x => x.mkString(" ")) case class PsiBuilderImmutableAdapter(builder: PsiBuilder) extends Reader[FeatureParser.this.Elem] { val first = (builder.getTokenType, builder.getTokenText) val advanced = false def mark() = builder.mark() val pos: Position = new Position { val column: Int = builder.getCurrentOffset val line: Int = 0 protected val lineContents = builder.getOriginalText.toString } val atEnd: Boolean = first == null def rest: Input = { if(advanced) throw new RuntimeException("Builder already advanced") builder.advanceLexer() PsiBuilderImmutableAdapter(builder) } } }
rickybarefield/Substeps-IDEA-Plugin
src/main/scala/com/technophobia/substeps/intellij/parser/FeaturePsiParser.scala
Scala
mit
4,072
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.sql.hive.thriftserver import java.io._ import java.nio.charset.StandardCharsets import java.sql.Timestamp import java.util.Date import scala.collection.mutable.ArrayBuffer import scala.concurrent.Promise import scala.concurrent.duration._ import org.apache.hadoop.hive.conf.HiveConf.ConfVars import org.scalatest.{BeforeAndAfterAll, BeforeAndAfterEach} import org.apache.spark.SparkFunSuite import org.apache.spark.internal.Logging import org.apache.spark.sql.hive.test.HiveTestJars import org.apache.spark.sql.internal.StaticSQLConf import org.apache.spark.sql.test.ProcessTestUtils.ProcessOutputCapturer import org.apache.spark.util.{ThreadUtils, Utils} /** * A test suite for the `spark-sql` CLI tool. */ class CliSuite extends SparkFunSuite with BeforeAndAfterAll with BeforeAndAfterEach with Logging { val warehousePath = Utils.createTempDir() val metastorePath = Utils.createTempDir() val scratchDirPath = Utils.createTempDir() val sparkWareHouseDir = Utils.createTempDir() override def beforeAll(): Unit = { super.beforeAll() warehousePath.delete() metastorePath.delete() scratchDirPath.delete() } override def afterAll(): Unit = { try { Utils.deleteRecursively(warehousePath) Utils.deleteRecursively(metastorePath) Utils.deleteRecursively(scratchDirPath) } finally { super.afterAll() } } override def afterEach(): Unit = { // Only running `runCliWithin` in a single test case will share the same temporary // Hive metastore Utils.deleteRecursively(metastorePath) } /** * Run a CLI operation and expect all the queries and expected answers to be returned. * * @param timeout maximum time for the commands to complete * @param extraArgs any extra arguments * @param errorResponses a sequence of strings whose presence in the stdout of the forked process * is taken as an immediate error condition. That is: if a line containing * with one of these strings is found, fail the test immediately. * The default value is `Seq("Error:")` * @param queriesAndExpectedAnswers one or more tuples of query + answer */ def runCliWithin( timeout: FiniteDuration, extraArgs: Seq[String] = Seq.empty, errorResponses: Seq[String] = Seq("Error:"), maybeWarehouse: Option[File] = Some(warehousePath), useExternalHiveFile: Boolean = false)( queriesAndExpectedAnswers: (String, String)*): Unit = { val (queries, expectedAnswers) = queriesAndExpectedAnswers.unzip // Explicitly adds ENTER for each statement to make sure they are actually entered into the CLI. val queriesString = queries.map(_ + "\n").mkString val extraHive = if (useExternalHiveFile) { s"--driver-class-path ${System.getProperty("user.dir")}/src/test/noclasspath" } else { "" } val warehouseConf = maybeWarehouse.map(dir => s"--hiveconf ${ConfVars.METASTOREWAREHOUSE}=$dir").getOrElse("") val command = { val cliScript = "../../bin/spark-sql".split("/").mkString(File.separator) val jdbcUrl = s"jdbc:derby:;databaseName=$metastorePath;create=true" s"""$cliScript | --master local | --driver-java-options -Dderby.system.durability=test | $extraHive | --conf spark.ui.enabled=false | --hiveconf ${ConfVars.METASTORECONNECTURLKEY}=$jdbcUrl | --hiveconf ${ConfVars.SCRATCHDIR}=$scratchDirPath | --hiveconf conf1=conftest | --hiveconf conf2=1 | $warehouseConf """.stripMargin.split("\\s+").toSeq ++ extraArgs } var next = 0 val foundAllExpectedAnswers = Promise.apply[Unit]() val buffer = new ArrayBuffer[String]() val lock = new Object def captureOutput(source: String)(line: String): Unit = lock.synchronized { // This test suite sometimes gets extremely slow out of unknown reason on Jenkins. Here we // add a timestamp to provide more diagnosis information. buffer += s"${new Timestamp(new Date().getTime)} - $source> $line" // If we haven't found all expected answers and another expected answer comes up... if (next < expectedAnswers.size && line.contains(expectedAnswers(next))) { next += 1 // If all expected answers have been found... if (next == expectedAnswers.size) { foundAllExpectedAnswers.trySuccess(()) } } else { errorResponses.foreach { r => if (line.contains(r)) { foundAllExpectedAnswers.tryFailure( new RuntimeException(s"Failed with error line '$line'")) } } } } val process = new ProcessBuilder(command: _*).start() val stdinWriter = new OutputStreamWriter(process.getOutputStream, StandardCharsets.UTF_8) stdinWriter.write(queriesString) stdinWriter.flush() stdinWriter.close() new ProcessOutputCapturer(process.getInputStream, captureOutput("stdout")).start() new ProcessOutputCapturer(process.getErrorStream, captureOutput("stderr")).start() try { ThreadUtils.awaitResult(foundAllExpectedAnswers.future, timeout) } catch { case cause: Throwable => val message = s""" |======================= |CliSuite failure output |======================= |Spark SQL CLI command line: ${command.mkString(" ")} |Exception: $cause |Executed query $next "${queries(next)}", |But failed to capture expected output "${expectedAnswers(next)}" within $timeout. | |${buffer.mkString("\n")} |=========================== |End CliSuite failure output |=========================== """.stripMargin logError(message, cause) fail(message, cause) } finally { process.destroy() } } test("load warehouse dir from hive-site.xml") { runCliWithin(1.minute, maybeWarehouse = None, useExternalHiveFile = true)( "desc database default;" -> "hive_one", "set spark.sql.warehouse.dir;" -> "hive_one") } test("load warehouse dir from --hiveconf") { // --hiveconf will overrides hive-site.xml runCliWithin(2.minute, useExternalHiveFile = true)( "desc database default;" -> warehousePath.getAbsolutePath, "create database cliTestDb;" -> "", "desc database cliTestDb;" -> warehousePath.getAbsolutePath, "set spark.sql.warehouse.dir;" -> warehousePath.getAbsolutePath) } test("load warehouse dir from --conf spark(.hadoop).hive.*") { // override conf from hive-site.xml runCliWithin( 2.minute, extraArgs = Seq("--conf", s"spark.hadoop.${ConfVars.METASTOREWAREHOUSE}=$sparkWareHouseDir"), maybeWarehouse = None, useExternalHiveFile = true)( "desc database default;" -> sparkWareHouseDir.getAbsolutePath, "create database cliTestDb;" -> "", "desc database cliTestDb;" -> sparkWareHouseDir.getAbsolutePath, "set spark.sql.warehouse.dir;" -> sparkWareHouseDir.getAbsolutePath) // override conf from --hiveconf too runCliWithin( 2.minute, extraArgs = Seq("--conf", s"spark.${ConfVars.METASTOREWAREHOUSE}=$sparkWareHouseDir"))( "desc database default;" -> sparkWareHouseDir.getAbsolutePath, "create database cliTestDb;" -> "", "desc database cliTestDb;" -> sparkWareHouseDir.getAbsolutePath, "set spark.sql.warehouse.dir;" -> sparkWareHouseDir.getAbsolutePath) } test("load warehouse dir from spark.sql.warehouse.dir") { // spark.sql.warehouse.dir overrides all hive ones runCliWithin( 2.minute, extraArgs = Seq("--conf", s"${StaticSQLConf.WAREHOUSE_PATH.key}=${sparkWareHouseDir}1", "--conf", s"spark.hadoop.${ConfVars.METASTOREWAREHOUSE}=${sparkWareHouseDir}2"))( "desc database default;" -> sparkWareHouseDir.getAbsolutePath.concat("1")) } test("Simple commands") { val dataFilePath = Thread.currentThread().getContextClassLoader.getResource("data/files/small_kv.txt") runCliWithin(3.minute)( "CREATE TABLE hive_test(key INT, val STRING) USING hive;" -> "", "SHOW TABLES;" -> "hive_test", s"LOAD DATA LOCAL INPATH '$dataFilePath' OVERWRITE INTO TABLE hive_test;" -> "", "CACHE TABLE hive_test;" -> "", "SELECT COUNT(*) FROM hive_test;" -> "5", "DROP TABLE hive_test;" -> "" ) } test("Single command with -e") { runCliWithin(2.minute, Seq("-e", "SHOW DATABASES;"))("" -> "") } test("Single command with --database") { runCliWithin(2.minute)( "CREATE DATABASE hive_test_db;" -> "", "USE hive_test_db;" -> "", "CREATE TABLE hive_test(key INT, val STRING);" -> "", "SHOW TABLES;" -> "hive_test" ) runCliWithin(2.minute, Seq("--database", "hive_test_db", "-e", "SHOW TABLES;"))( "" -> "hive_test" ) } test("Commands using SerDe provided in --jars") { val jarFile = HiveTestJars.getHiveHcatalogCoreJar().getCanonicalPath val dataFilePath = Thread.currentThread().getContextClassLoader.getResource("data/files/small_kv.txt") runCliWithin(3.minute, Seq("--jars", s"$jarFile"))( """CREATE TABLE t1(key string, val string) |ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'; """.stripMargin -> "", "CREATE TABLE sourceTable (key INT, val STRING) USING hive;" -> "", s"LOAD DATA LOCAL INPATH '$dataFilePath' OVERWRITE INTO TABLE sourceTable;" -> "", "INSERT INTO TABLE t1 SELECT key, val FROM sourceTable;" -> "", "SELECT collect_list(array(val)) FROM t1;" -> """[["val_238"],["val_86"],["val_311"],["val_27"],["val_165"]]""", "DROP TABLE t1;" -> "", "DROP TABLE sourceTable;" -> "" ) } test("SPARK-29022: Commands using SerDe provided in --hive.aux.jars.path") { val dataFilePath = Thread.currentThread().getContextClassLoader.getResource("data/files/small_kv.txt") val hiveContribJar = HiveTestJars.getHiveHcatalogCoreJar().getCanonicalPath runCliWithin( 3.minute, Seq("--conf", s"spark.hadoop.${ConfVars.HIVEAUXJARS}=$hiveContribJar"))( """CREATE TABLE addJarWithHiveAux(key string, val string) |ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'; """.stripMargin -> "", "CREATE TABLE sourceTableForWithHiveAux (key INT, val STRING) USING hive;" -> "", s"LOAD DATA LOCAL INPATH '$dataFilePath' OVERWRITE INTO TABLE sourceTableForWithHiveAux;" -> "", "INSERT INTO TABLE addJarWithHiveAux SELECT key, val FROM sourceTableForWithHiveAux;" -> "", "SELECT collect_list(array(val)) FROM addJarWithHiveAux;" -> """[["val_238"],["val_86"],["val_311"],["val_27"],["val_165"]]""", "DROP TABLE addJarWithHiveAux;" -> "", "DROP TABLE sourceTableForWithHiveAux;" -> "" ) } test("SPARK-11188 Analysis error reporting") { runCliWithin(timeout = 2.minute, errorResponses = Seq("AnalysisException"))( "select * from nonexistent_table;" -> "Error in query: Table or view not found: nonexistent_table;" ) } test("SPARK-11624 Spark SQL CLI should set sessionState only once") { runCliWithin(2.minute, Seq("-e", "!echo \"This is a test for Spark-11624\";"))( "" -> "This is a test for Spark-11624") } test("list jars") { val jarFile = Thread.currentThread().getContextClassLoader.getResource("TestUDTF.jar") runCliWithin(2.minute)( s"ADD JAR $jarFile;" -> "", s"LIST JARS;" -> "TestUDTF.jar" ) } test("list jar <jarfile>") { val jarFile = Thread.currentThread().getContextClassLoader.getResource("TestUDTF.jar") runCliWithin(2.minute)( s"ADD JAR $jarFile;" -> "", s"List JAR $jarFile;" -> "TestUDTF.jar" ) } test("list files") { val dataFilePath = Thread.currentThread(). getContextClassLoader.getResource("data/files/small_kv.txt") runCliWithin(2.minute)( s"ADD FILE $dataFilePath;" -> "", s"LIST FILES;" -> "small_kv.txt" ) } test("list file <filepath>") { val dataFilePath = Thread.currentThread(). getContextClassLoader.getResource("data/files/small_kv.txt") runCliWithin(2.minute)( s"ADD FILE $dataFilePath;" -> "", s"LIST FILE $dataFilePath;" -> "small_kv.txt" ) } test("apply hiveconf from cli command") { runCliWithin(2.minute)( "SET conf1;" -> "conftest", "SET conf2;" -> "1", "SET conf3=${hiveconf:conf1};" -> "conftest", "SET conf3;" -> "conftest" ) } test("Support hive.aux.jars.path") { val hiveContribJar = HiveTestJars.getHiveContribJar().getCanonicalPath runCliWithin( 1.minute, Seq("--conf", s"spark.hadoop.${ConfVars.HIVEAUXJARS}=$hiveContribJar"))( "CREATE TEMPORARY FUNCTION example_format AS " + "'org.apache.hadoop.hive.contrib.udf.example.UDFExampleFormat';" -> "", "SELECT example_format('%o', 93);" -> "135" ) } test("SPARK-28840 test --jars command") { val jarFile = new File("../../sql/hive/src/test/resources/SPARK-21101-1.0.jar").getCanonicalPath runCliWithin( 1.minute, Seq("--jars", s"$jarFile"))( "CREATE TEMPORARY FUNCTION testjar AS" + " 'org.apache.spark.sql.hive.execution.UDTFStack';" -> "", "SELECT testjar(1,'TEST-SPARK-TEST-jar', 28840);" -> "TEST-SPARK-TEST-jar\t28840" ) } test("SPARK-28840 test --jars and hive.aux.jars.path command") { val jarFile = new File("../../sql/hive/src/test/resources/SPARK-21101-1.0.jar").getCanonicalPath val hiveContribJar = HiveTestJars.getHiveContribJar().getCanonicalPath runCliWithin( 1.minute, Seq("--jars", s"$jarFile", "--conf", s"spark.hadoop.${ConfVars.HIVEAUXJARS}=$hiveContribJar"))( "CREATE TEMPORARY FUNCTION testjar AS" + " 'org.apache.spark.sql.hive.execution.UDTFStack';" -> "", "SELECT testjar(1,'TEST-SPARK-TEST-jar', 28840);" -> "TEST-SPARK-TEST-jar\t28840", "CREATE TEMPORARY FUNCTION example_max AS " + "'org.apache.hadoop.hive.contrib.udaf.example.UDAFExampleMax';" -> "", "SELECT concat_ws(',', 'First', example_max(1234321), 'Third');" -> "First,1234321,Third" ) } test("SPARK-29022 Commands using SerDe provided in ADD JAR sql") { val dataFilePath = Thread.currentThread().getContextClassLoader.getResource("data/files/small_kv.txt") val hiveContribJar = HiveTestJars.getHiveHcatalogCoreJar().getCanonicalPath runCliWithin( 3.minute)( s"ADD JAR ${hiveContribJar};" -> "", """CREATE TABLE addJarWithSQL(key string, val string) |ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'; """.stripMargin -> "", "CREATE TABLE sourceTableForWithSQL(key INT, val STRING) USING hive;" -> "", s"LOAD DATA LOCAL INPATH '$dataFilePath' OVERWRITE INTO TABLE sourceTableForWithSQL;" -> "", "INSERT INTO TABLE addJarWithSQL SELECT key, val FROM sourceTableForWithSQL;" -> "", "SELECT collect_list(array(val)) FROM addJarWithSQL;" -> """[["val_238"],["val_86"],["val_311"],["val_27"],["val_165"]]""", "DROP TABLE addJarWithSQL;" -> "", "DROP TABLE sourceTableForWithSQL;" -> "" ) } test("SPARK-26321 Should not split semicolon within quoted string literals") { runCliWithin(3.minute)( """select 'Test1', "^;^";""" -> "Test1\t^;^", """select 'Test2', "\";";""" -> "Test2\t\";", """select 'Test3', "\';";""" -> "Test3\t';", "select concat('Test4', ';');" -> "Test4;" ) } test("Pad Decimal numbers with trailing zeros to the scale of the column") { runCliWithin(1.minute)( "SELECT CAST(1 AS DECIMAL(38, 18));" -> "1.000000000000000000" ) } test("SPARK-30049 Should not complain for quotes in commented lines") { runCliWithin(1.minute)( """SELECT concat('test', 'comment') -- someone's comment here |;""".stripMargin -> "testcomment" ) } test("SPARK-30049 Should not complain for quotes in commented with multi-lines") { runCliWithin(1.minute)( """SELECT concat('test', 'comment') -- someone's comment here \\ | comment continues here with single ' quote \\ | extra ' \\ |;""".stripMargin -> "testcomment" ) runCliWithin(1.minute)( """SELECT concat('test', 'comment') -- someone's comment here \\ | comment continues here with single ' quote \\ | extra ' \\ | ;""".stripMargin -> "testcomment" ) } }
matthewfranglen/spark
sql/hive-thriftserver/src/test/scala/org/apache/spark/sql/hive/thriftserver/CliSuite.scala
Scala
mit
17,665
package euler import scala.reflect.internal.MissingRequirementError import scala.reflect.runtime.universe._ import scala.reflect.runtime.{ universe => ru } import Utils._ object ProjectEuler extends App { implicit val m = ru.runtimeMirror(getClass.getClassLoader) val eulerProblems = Iterator.from(1).map(eulerProblem).takeWhile(_.isDefined).flatten val (totalElapsed, _) = elapsed { eulerProblems.zipWithIndex foreach { case (prob, n) => val (elapsedTime, result) = elapsed(prob.result) println(f"Problem $n%3d completed in $elapsedTime%5d ms. Result: $result") } } println(s"Total elapsed time: $totalElapsed ms") private def eulerProblem(n: Int)(implicit m: Mirror): Option[EulerProblem] = { // pkg for 1 to 10 = til10, 11 to 20 = til20 etc val pkg = 10 + (n - 1) / 10 % 10 * 10 try { val module = m.staticModule(s"euler.til$pkg.Euler" + n) val eulerProblem = m.reflectModule(module).instance.asInstanceOf[EulerProblem] Some(eulerProblem) } catch { case e: MissingRequirementError => None } } }
TrustNoOne/Euler
scala/src/main/scala/euler/ProjectEuler.scala
Scala
mit
1,101
/* * Copyright 2016 The BigDL Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.intel.analytics.bigdl.nn.tf import com.intel.analytics.bigdl.numeric.NumericFloat import com.intel.analytics.bigdl.tensor.Tensor import com.intel.analytics.bigdl.utils.T import com.intel.analytics.bigdl.utils.serializer.ModuleSerializationTest import org.scalatest.{FlatSpec, Matchers} import scala.util.Random class ShapeSpec extends FlatSpec with Matchers { "Shape forward" should "be success" in { val layer = Shape() val input = Tensor(T(T(0.1f, 0.2f), T(0.1f, 0.2f), T(0.1f, 0.2f))) layer.forward(input) should be(Tensor[Int](T(3, 2))) } "Shape backward" should "be correct" in { val layer = Shape() val input = Tensor(T(T(0.1f, 0.2f), T(0.1f, 0.2f), T(0.1f, 0.2f))) val gradOutput = Tensor[Int](T(3, 2)) layer.forward(input) should be(Tensor[Int](T(3, 2))) layer.backward(input, gradOutput) should be(Tensor(T( T(0.0f, 0.0f), T(0.0f, 0.0f), T(0.0f, 0.0f) ))) } } class ShapeSerialTest extends ModuleSerializationTest { override def test(): Unit = { val shape = Shape[Float]().setName("shape") val input = Tensor[Float](3).apply1(_ => Random.nextFloat()) runSerializationTest(shape, input) } }
yiheng/BigDL
spark/dl/src/test/scala/com/intel/analytics/bigdl/nn/tf/ShapeSpec.scala
Scala
apache-2.0
1,797
package breeze.linalg.operators import breeze.generic.{ MappingUFunc, UFunc } import breeze.generic.UFunc.UImpl import breeze.math.{ Field, Ring, Semiring } /* Copyright 2012 Daniel Ramage Licensed under the Apache License, Version 2.0 (the "License") you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /** * Marker sealed trait for some operation, be it UnaryOp, BinaryOp, or * BinaryUpdateOp. * * @author dramage */ sealed trait OpType /** * Type marker for BinaryOp A :+ B and BinaryUpdateOp A :+= B. * * @author dramage */ sealed trait OpAdd extends OpType object OpAdd extends OpAdd with UFunc { implicit def opAddFromSemiring[S:Semiring]: Impl2[S, S, S] = new Impl2[S, S, S] { def apply(v: S, v2: S): S = implicitly[Semiring[S]].+(v, v2) } } /** * Type marker for BinaryOp A :- B and BinaryUpdateOp A :-= B. * * @author dramage */ sealed trait OpSub extends OpType object OpSub extends OpSub with UFunc { implicit def opSubFromRing[S:Ring]: Impl2[S, S, S] = new Impl2[S, S, S] { def apply(v: S, v2: S): S = implicitly[Ring[S]].-(v, v2) } } /** * Type marker for BinaryOp A :* B and BinaryUpdateOp A :*= B. * * @author dramage */ sealed trait OpMulScalar extends OpType object OpMulScalar extends OpMulScalar with UFunc { implicit def opMulScalarFromSemiring[S:Semiring]: Impl2[S, S, S] = new Impl2[S, S, S] { def apply(v: S, v2: S): S = implicitly[Semiring[S]].*(v, v2) } } /** * Type marker for BinaryOp A :/ B and BinaryUpdateOp A:/= B. * * @author dramage */ sealed trait OpDiv extends OpType object OpDiv extends OpDiv with UFunc { implicit def opDivFromField[S:Field]: Impl2[S, S, S] = new Impl2[S, S, S] { def apply(v: S, v2: S): S = implicitly[Field[S]]./(v, v2) } } /** * Type marker for BinaryOp A :% B and BinaryUpdateOp A:%= B. * * @author dramage */ sealed trait OpMod extends OpType object OpMod extends OpMod with UFunc /** * Type marker for BinaryOp A :^ B and BinaryUpdateOp A:^= B. * * @author dramage */ sealed trait OpPow extends OpType object OpPow extends OpPow with UFunc /** * Type marker for BinaryOp A :&lt B. * * @author dramage */ sealed trait OpLT extends OpType object OpLT extends OpLT with UFunc { implicit def impl2FromOrdering[T:Ordering]:Impl2[T, T, Boolean] = { val ord = implicitly[Ordering[T]] new Impl2[T, T, Boolean] { def apply(v: T, v2: T): Boolean = ord.lt(v, v2) } } } /** * Type marker for BinaryOp A :&lt= B. * * @author dramage */ sealed trait OpLTE extends OpType object OpLTE extends OpLTE with UFunc { implicit def impl2FromOrdering[T:Ordering]:Impl2[T, T, Boolean] = { val ord = implicitly[Ordering[T]] new Impl2[T, T, Boolean] { def apply(v: T, v2: T): Boolean = ord.lteq(v, v2) } } } /** * Type marker for BinaryOp A :&gt B. * * @author dramage */ sealed trait OpGT extends OpType object OpGT extends OpGT with UFunc { implicit def impl2FromOrdering[T:Ordering]:Impl2[T, T, Boolean] = { val ord = implicitly[Ordering[T]] new Impl2[T, T, Boolean] { def apply(v: T, v2: T): Boolean = ord.gt(v, v2) } } } /** * Type marker for BinaryOp A :&gt= B. * * @author dramage */ sealed trait OpGTE extends OpType object OpGTE extends OpGTE with UFunc { implicit def impl2FromOrdering[T:Ordering]:Impl2[T, T, Boolean] = { val ord = implicitly[Ordering[T]] new Impl2[T, T, Boolean] { def apply(v: T, v2: T): Boolean = ord.gteq(v, v2) } } } /** * Type marker for BinaryOp A :== B. * * @author dramage */ sealed trait OpEq extends OpType object OpEq extends OpEq with UFunc { implicit def impl2FromOrdering[T:Ordering]:Impl2[T, T, Boolean] = { val ord = implicitly[Ordering[T]] new Impl2[T, T, Boolean] { def apply(v: T, v2: T): Boolean = ord.equiv(v, v2) } } } /** * Type marker for BinaryOp A :!= B. * * @author dramage */ sealed trait OpNe extends OpType object OpNe extends OpNe with UFunc { implicit def impl2FromOrdering[T:Ordering]:Impl2[T, T, Boolean] = { val ord = implicitly[Ordering[T]] new Impl2[T, T, Boolean] { def apply(v: T, v2: T): Boolean = !ord.equiv(v, v2) } } } /** * Type marker for BinaryUpdateOp A := B. * * @author dramage */ sealed trait OpSet extends OpType object OpSet extends OpSet with UFunc /** * Type marker for BinaryOp A :& B * * @author dramage */ sealed trait OpAnd extends OpType object OpAnd extends OpAnd with UFunc { implicit object opAndBoolean extends Impl2[Boolean, Boolean, Boolean] { override def apply(v: Boolean, v2: Boolean): Boolean = v && v2 } } /** * Type marker for BinaryOp A :| B * * @author dramage */ sealed trait OpOr extends OpType object OpOr extends OpOr with UFunc { implicit object opOrBoolean extends Impl2[Boolean, Boolean, Boolean] { override def apply(v: Boolean, v2: Boolean): Boolean = v || v2 } } /** * Type marker for BinaryOp A :^^ B * * @author dramage */ sealed trait OpXor extends OpType object OpXor extends OpXor with UFunc { implicit object opXorBoolean extends Impl2[Boolean, Boolean, Boolean] { override def apply(v: Boolean, v2: Boolean): Boolean = v ^ v2 } } /** * Type marker for UnaryOp -A. * * @author dramage */ sealed trait OpNeg extends OpType object OpNeg extends OpNeg with UFunc { implicit def ringNegation[S:Ring]: UImpl[OpNeg.this.type, S, S] = new Impl[S, S] { def apply(v: S): S = implicitly[Ring[S]].negate(v) } } /** * Type marker for UnaryOp !A. * * @author dramage */ sealed trait OpNot extends OpType object OpNot extends OpNot with UFunc with MappingUFunc { implicit object opNotBoolean extends Impl[Boolean, Boolean] { override def apply(v: Boolean): Boolean = !v } } /** * Type marker for inner (dot) product of A and B. * * @author dramage */ sealed trait OpMulInner extends OpType object OpMulInner extends OpMulInner with UFunc { def opMulInnerFromSemiring[S:Semiring]: OpMulInner.Impl2[S, S, S] = new Impl2[S, S, S] { def apply(v: S, v2: S): S = implicitly[Semiring[S]].*(v, v2) } } /** * Type marker for BinaryOp A \ B when A is a matrix. * * @author dramage */ sealed trait OpSolveMatrixBy extends OpType object OpSolveMatrixBy extends OpSolveMatrixBy with UFunc /** * Type marker for inner (dot) product of A and B. * * @author dramage */ sealed trait OpMulMatrix extends OpType object OpMulMatrix extends OpMulMatrix with UFunc { implicit def opMulMatrixFromSemiring[S:Semiring]: Impl2[S, S, S] = new Impl2[S, S, S] { def apply(v: S, v2: S): S = implicitly[Semiring[S]].*(v, v2) } } /** * Type marker for inner power of A and p. * * @author claydonkey */ sealed trait OpPowerMatrix extends OpType object OpPowerMatrix extends OpPowerMatrix with UFunc { implicit def opPowMatrixFromSemiring[S:Semiring]: Impl2[S, S, S] = new Impl2[S, S, S] { def apply(v: S, v2: S): S = implicitly[Semiring[S]].*(v, v2) } }
claydonkey/breeze
math/src/main/scala/breeze/linalg/operators/OpType.scala
Scala
apache-2.0
7,346
/* Copyright 2012 Twitter, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package com.twitter.algebird import org.scalacheck.Arbitrary import org.scalatest.{ PropSpec, Matchers } import org.scalatest.prop.PropertyChecks class AdjoinedRingSpecification extends PropSpec with PropertyChecks with Matchers { import BaseProperties._ implicit def adjoined[T: Arbitrary]: Arbitrary[AdjoinedUnit[T]] = Arbitrary { implicitly[Arbitrary[T]].arbitrary.map { t => AdjoinedUnit(t) } } // AdjoinedUnit requires this method to be correct, so it is tested here: property("intTimes works correctly") { forAll { (bi0: BigInt, bi1: BigInt) => assert(Group.intTimes(bi0, bi1) == (bi0 * bi1)) } } property("AdjoinedUnit[Int] is a Ring") { ringLaws[AdjoinedUnit[Int]] } property("AdjoinedUnit[Long] is a Ring") { ringLaws[AdjoinedUnit[Long]] } }
avibryant/algebird
algebird-test/src/test/scala/com/twitter/algebird/AdJoinedUnitRing.scala
Scala
apache-2.0
1,360
package slamdata.engine.physical.mongodb import slamdata.Predef._ import org.scalacheck._ import org.specs2.mutable._ import org.specs2.ScalaCheck import scalaz._ import slamdata.engine._ import slamdata.specs2._ class PipelineSpec extends Specification with ScalaCheck with ArbBsonField with PendingWithAccurateCoverage { import slamdata.engine.physical.mongodb.accumulator._ import slamdata.engine.physical.mongodb.expression._ import Workflow._ import ArbitraryExprOp._ implicit def arbitraryOp: Arbitrary[PipelineOp] = Arbitrary { Gen.resize(5, Gen.sized { size => // Note: Gen.oneOf is overridden and this variant requires two explicit args val ops = pipelineOpGens(size - 1) Gen.oneOf(ops(0), ops(1), ops.drop(2): _*) }) } def genProject(size: Int): Gen[$Project[Unit]] = for { fields <- Gen.nonEmptyListOf(for { c <- Gen.alphaChar cs <- Gen.alphaStr field = c.toString + cs value <- if (size <= 0) genExpr.map(-\\/(_)) else Gen.oneOf(genExpr.map(-\\/(_)), genProject(size - 1).map(p => \\/-(p.shape))) } yield BsonField.Name(field) -> value) id <- Gen.oneOf(IdHandling.ExcludeId, IdHandling.IncludeId) } yield $Project((), Reshape(ListMap(fields: _*)), id) implicit def arbProject = Arbitrary[$Project[Unit]](Gen.resize(5, Gen.sized(genProject))) def genRedact = for { value <- Gen.oneOf($Redact.DESCEND, $Redact.KEEP, $Redact.PRUNE) } yield $Redact((), $var(value)) def unwindGen = for { c <- Gen.alphaChar } yield $Unwind((), DocField(BsonField.Name(c.toString))) def genGroup = for { i <- Gen.chooseNum(1, 10) } yield $Group((), Grouped(ListMap(BsonField.Name("docsByAuthor" + i.toString) -> $sum($literal(Bson.Int32(1))))), -\\/($var(DocField(BsonField.Name("author" + i))))) def genGeoNear = for { i <- Gen.chooseNum(1, 10) } yield $GeoNear((), (40.0, -105.0), BsonField.Name("distance" + i), None, None, None, None, None, None, None) def genOut = for { i <- Gen.chooseNum(1, 10) } yield $Out((), Collection("db", "result" + i)) def pipelineOpGens(size: Int): List[Gen[PipelineOp]] = { genProject(size) :: genRedact :: unwindGen :: genGroup :: genGeoNear :: genOut :: arbitraryShapePreservingOpGens.map(g => for { sp <- g } yield sp.op) } case class ShapePreservingPipelineOp(op: PipelineOp) //implicit def arbitraryProject: Arbitrary[Project] = Arbitrary(genProject) implicit def arbitraryShapePreservingOp: Arbitrary[ShapePreservingPipelineOp] = Arbitrary { // Note: Gen.oneOf is overridden and this variant requires two explicit args val gens = arbitraryShapePreservingOpGens Gen.oneOf(gens(0), gens(1), gens.drop(2): _*) } def arbitraryShapePreservingOpGens = { def matchGen = for { c <- Gen.alphaChar } yield ShapePreservingPipelineOp($Match((), Selector.Doc(BsonField.Name(c.toString) -> Selector.Eq(Bson.Int32(-1))))) def skipGen = for { i <- Gen.chooseNum(1, 10) } yield ShapePreservingPipelineOp($Skip((), i)) def limitGen = for { i <- Gen.chooseNum(1, 10) } yield ShapePreservingPipelineOp($Limit((), i)) def sortGen = for { c <- Gen.alphaChar } yield ShapePreservingPipelineOp($Sort((), NonEmptyList(BsonField.Name("name1") -> Ascending))) List(matchGen, limitGen, skipGen, sortGen) } case class PairOfOpsWithSameType(op1: PipelineOp, op2: PipelineOp) implicit def arbitraryPair: Arbitrary[PairOfOpsWithSameType] = Arbitrary { Gen.resize(5, Gen.sized { size => for { gen <- Gen.oneOf(pipelineOpGens(size)) op1 <- gen op2 <- gen } yield PairOfOpsWithSameType(op1, op2) }) } "Project.id" should { "be idempotent" ! prop { (p: $Project[Unit]) => p.id must_== p.id.id } } "Project.get" should { "retrieve whatever value it was set to" ! prop { (p: $Project[Unit], f: BsonField) => val One = $literal(Bson.Int32(1)) p.set(f, -\\/(One)).get(DocVar.ROOT(f)) must (beSome(-\\/ (One))) } } "Project.setAll" should { "actually set all" ! prop { (p: $Project[Unit]) => p.setAll(p.getAll.map(t => t._1 -> -\\/(t._2))) must_== p }.pendingUntilFixed("result could have `_id -> _id` inserted without changing semantics") } "Project.deleteAll" should { "return empty when everything is deleted" ! prop { (p: $Project[Unit]) => p.deleteAll(p.getAll.map(_._1)) must_== p.empty } } "SimpleMap.deleteAll" should { import javascript._ import JsCore._ "remove one un-nested field" in { val op = $SimpleMap( $read(Collection("db", "foo")), NonEmptyList(MapExpr(JsFn(Ident("x"), Obj(ListMap( "a" -> Select(Ident("x").fix, "x").fix, "b" -> Select(Ident("x").fix, "y").fix)).fix))), ListMap()) val exp = $SimpleMap( $read(Collection("db", "foo")), NonEmptyList(MapExpr(JsFn(Ident("x"), Obj(ListMap( "a" -> Select(Ident("x").fix, "x").fix)).fix))), ListMap()) op.deleteAll(List(BsonField.Name("b"))) must_== exp } "remove one nested field" in { val op = $SimpleMap( $read(Collection("db", "foo")), NonEmptyList(MapExpr(JsFn(Ident("x"), Obj(ListMap( "a" -> Select(Ident("x").fix, "x").fix, "b" -> Obj(ListMap( "c" -> Select(Ident("x").fix, "y").fix, "d" -> Select(Ident("x").fix, "z").fix)).fix)).fix))), ListMap()) val exp = $SimpleMap( $read(Collection("db", "foo")), NonEmptyList(MapExpr(JsFn(Ident("x"), Obj(ListMap( "a" -> Select(Ident("x").fix, "x").fix, "b" -> Obj(ListMap( "d" -> Select(Ident("x").fix, "z").fix)).fix)).fix))), ListMap()) op.deleteAll(List(BsonField.Name("b") \\ BsonField.Name("c"))) must_== exp } "remove whole nested object" in { val op = $SimpleMap( $read(Collection("db", "foo")), NonEmptyList(MapExpr(JsFn(Ident("x"), Obj(ListMap( "a" -> Select(Ident("x").fix, "x").fix, "b" -> Obj(ListMap( "c" -> Select(Ident("x").fix, "y").fix)).fix)).fix))), ListMap()) val exp = $SimpleMap( $read(Collection("db", "foo")), NonEmptyList(MapExpr(JsFn(Ident("x"), Obj(ListMap( "a" -> Select(Ident("x").fix, "x").fix)).fix))), ListMap()) op.deleteAll(List(BsonField.Name("b") \\ BsonField.Name("c"))) must_== exp } } }
wemrysi/quasar
core/src/test/scala/slamdata/engine/physical/mongodb/pipeline.scala
Scala
apache-2.0
6,572
/** * Created on February 17, 2011 * Copyright (c) 2011, Wei-ju Wu * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Wei-ju Wu nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY WEI-JU WU ''AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL WEI-JU WU BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package org.dmpp.adf.logical /** * Trait to decorate blocks that are reading a BCPL string field. */ trait ReadsBcplStrings { self : HeaderBlock => /** * Read the BCPL string at the specified position. * @param offset the data offset within the data * @param maxChars the maximum number of characters */ def bcplStringAt(offset: Int, maxChars: Int) = { val nameLength = scala.math.min(sector(offset), maxChars) val builder = new StringBuilder for (i <- 0 until nameLength) { builder.append(sector(offset + 1 + i).asInstanceOf[Char]) } builder.toString } def setBcplStringAt(offset: Int, maxChars: Int, str: String) = { val nameLength = scala.math.min(str.length, maxChars) sector(offset) = nameLength for (i <- 0 until nameLength) { sector(offset + 1 + i) = str.charAt(i).asInstanceOf[Byte] } } }
weiju/adf-tools
adf-core/src/main/scala/org/dmpp/adf/logical/ReadsBcplStrings.scala
Scala
bsd-3-clause
2,452
package org.template.recommendation import org.apache.predictionio.controller.PDataSource import org.apache.predictionio.controller.EmptyEvaluationInfo import org.apache.predictionio.controller.EmptyActualResult import org.apache.predictionio.controller.Params import org.apache.predictionio.data.storage.{DataMap, Event, Storage} import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import grizzled.slf4j.Logger case class DataSourceParams(appId: Int) extends Params case class Item(creationYear: Option[Int]) object Item { object Fields { val CreationYear = "creationYear" } } class DataSource(val dsp: DataSourceParams) extends PDataSource[TrainingData, EmptyEvaluationInfo, Query, EmptyActualResult] { @transient lazy val logger = Logger[this.type] private lazy val EntityType = "movie" override def readTraining(sc: SparkContext): TrainingData = { val eventsDb = Storage.getPEvents() // create a RDD of (entityID, Item) // HOWTO: collecting items(movies) val itemsRDD = eventsDb.aggregateProperties( appId = dsp.appId, entityType = "item" )(sc).flatMap { case (entityId, properties) ⇒ ItemMarshaller.unmarshall(properties).map(entityId → _) } // get all user rate events val rateEventsRDD: RDD[Event] = eventsDb.find( appId = dsp.appId, entityType = Some("user"), eventNames = Some(List("rate")), // read "rate" // targetEntityType is optional field of an event. targetEntityType = Some(Some(EntityType)))(sc) // collect ratings val ratingsRDD = rateEventsRDD.flatMap { event ⇒ try { (event.event match { case "rate" => event.properties.getOpt[Double]("rating") case _ ⇒ None }).map(Rating(event.entityId, event.targetEntityId.get, _)) } catch { case e: Exception ⇒ logger.error(s"Cannot convert ${event} to Rating. Exception: ${e}.") throw e } }.cache() new TrainingData(ratingsRDD, itemsRDD) } } object ItemMarshaller { // HOWTO: implemented unmarshaller to collect properties for filtering. def unmarshall(properties: DataMap): Option[Item] = Some(Item(properties.getOpt[Int](Item.Fields.CreationYear))) } case class Rating(user: String, item: String, rating: Double) class TrainingData(val ratings: RDD[Rating], val items: RDD[(String, Item)]) extends Serializable { override def toString = s"ratings: [${ratings.count()}] (${ratings.take(2).toList}...)" + s"items: [${items.count()} (${items.take(2).toList}...)]" }
alex9311/PredictionIO
examples/scala-parallel-recommendation/custom-query/src/main/scala/DataSource.scala
Scala
apache-2.0
2,580
package com.malaska.spark.training.windowing.big import org.apache.log4j.{Level, Logger} import org.apache.spark.Partitioner import org.apache.spark.sql.SparkSession /** * Big windowing. This is when you have over 50k records per key or the * records can be on bound, but you still have many keys. * * If you only have one key or very few keys then you will want the * super big windowing implementations */ object BigWindowing { Logger.getLogger("org").setLevel(Level.OFF) Logger.getLogger("akka").setLevel(Level.OFF) def main(args: Array[String]): Unit = { val jsonPath = args(0) val sparkSession = SparkSession.builder .master("local") .appName("my-spark-app") .config("spark.some.config.option", "config-value") .config("spark.driver.host","127.0.0.1") .getOrCreate() val jsonDf = sparkSession.read.json(jsonPath) val timeDifRdd = jsonDf.rdd.map(row => { val group = row.getAs[String]("group") val time = row.getAs[Long]("time") val value = row.getAs[Long]("value") ((group, time), value) }).repartitionAndSortWithinPartitions(new GroupPartitioner(2)). mapPartitions(it => { var lastValue = 0l var currentGroup = "n/a" it.map{ case((group, time), value) => if (!group.equals(currentGroup)) { lastValue = 0l currentGroup = group } val dif = value - lastValue lastValue = value (group, time, value, dif) } }) timeDifRdd.collect().foreach(r => { println(r) }) sparkSession.stop() } } /** * Our customer partitioner will only partition on the first tuple * then it will allow for the sorting on the whole key * @param numParts */ class GroupPartitioner(val numParts:Int) extends Partitioner { override def numPartitions: Int = numParts override def getPartition(key: Any): Int = { key.asInstanceOf[(String, Long)]._1.hashCode % numPartitions } }
TedBear42/spark_training
src/main/scala/com/malaska/spark/training/windowing/big/BigWindowing.scala
Scala
apache-2.0
2,007
/* * Copyright (C) 2012 Pavel Fatin <http://pavelfatin.com> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package com.pavelfatin.fs package internal package wrapfs import java.io import io.IOException import java.util.Calendar /** A wrapper for basic file system entry properties. * * @see [[com.pavelfatin.fs.FileSystemEntry]] */ private trait EntryWrapper extends FileSystemEntry { protected def root: io.File protected def entry: io.File def parent = if (entry == root) None else Option(entry.getParentFile).map(new DirectoryWrapper(root, _)) def name = if (entry == root) "" else entry.getName def name_=(it: String) { if (entry == root) throw new UnsupportedOperationException("Root directory name can't be modified") val renamed = entry.renameTo(new io.File(entry.getParent, it)) if (!renamed) throw new IOException(s"Unable to rename '${entry.getPath}' to '$it'") } def date = { val it = Calendar.getInstance it.setTimeInMillis(entry.lastModified) it } def date_=(it: Calendar) { if (entry == root) throw new UnsupportedOperationException("Root directory date can't be modified") val changed = entry.setLastModified(it.getTimeInMillis) if (!changed) throw new IOException(s"Unable to change modification time of '${entry.getPath}'") } def hidden = entry.isHidden // Can be implemented only in Java 7+ def hidden_=(it: Boolean) { if (entry == root) throw new UnsupportedOperationException("Root directory visibility can't be modified") // Files.setAttribute(entry, "dos:hidden", it) } def delete() { if (entry == root) throw new UnsupportedOperationException("Root directory can't be deleted") val deleted = entry.delete() if (!deleted) throw new IOException(s"Unable to delete '${entry.getPath}'") } }
pavelfatin/toyfs
src/main/scala/com/pavelfatin/fs/internal/wrapfs/EntryWrapper.scala
Scala
gpl-3.0
2,431
package ai.agnos.sparql.util import java.net.ServerSocket /** * HttpEndpoint construction factory */ object HttpEndpoint { /** * Get an HTTP endpoint bound to 'localhost' where a free port is automatically assigned * and can be used to be bound to. * * The generated endpoint will be '''http://localhost:{assigned-port}{path}''' * * @param path the desired path part for the endpoint * @return */ def localhostWithAutomaticPort(path: String): HttpEndpoint = new HttpEndpointBuilder(assignPortAutomatically = true, useResourcePath = path, authentication = None).endpoint /** * Construct an endpoint from a string URL representation, * which corresponds to '''[{protocol}://]{host}[:{port}][{path}]''' * Protocol, port and path are optional. Default protocol is http://, * default port is 80, the default path is empty. * * @param endpointString * @return */ def apply(endpointString: String): HttpEndpoint = new HttpEndpointBuilder(Some(endpointString), false, "", None).endpoint /** * Construct an endpoint from a string URL representation, * which corresponds to '''[{protocol}://]{host}[:{port}][{path}]''' * Protocol, port and path are optional. Default protocol is http://, * default port is 80, the default path is empty. * * @param endpointString * @return */ def apply(endpointString: String, authentication: Option[Authentication]): HttpEndpoint = new HttpEndpointBuilder(Some(endpointString), false, "", authentication).endpoint /** * Construct an endpoint from individual parts. * @param protocol * @param host * @param port * @param path * @return */ def apply(protocol: String, host: String, port: Integer, path: String, authentication: Option[Authentication]): HttpEndpoint = new HttpEndpoint(protocol, host, port, path, authentication) /** * Construct an HTTP endpoint from individual parts. * * @param host * @param port * @return */ def apply(host: String, port: Integer, authentication: Option[Authentication]): HttpEndpoint = new HttpEndpoint(defaultProtocol, host, port, "", authentication) /** * Construct an endpoint from individual parts with the desired path. * * @param host * @param port * @param path * @return */ // JC: really don't like the logic of this method. environmentEndpoint is matched with the EndpointRegex multiple times // to extract different parts of the URL. should be done only once. // Andy why not use URL class in Java? https://docs.oracle.com/javase/7/docs/api/java/net/URL.html //SSZ: yes, you are right, not optimal. Will make an effort to refactor this. def apply(host: String, port: Integer, path: String, authentication: Option[Authentication] = None): HttpEndpoint = new HttpEndpoint(defaultProtocol, host, port, path, authentication) private val defaultProtocol: String = "http" private val defaultHost: String = "localhost" private sealed class HttpEndpointBuilder( environmentEndpoint: Option[String] = None, assignPortAutomatically: Boolean, useResourcePath: String = "", authentication: Option[Authentication] = None) { private val EndpointRegex = "(http[s]{0,1}://)?([a-zA-Z\\\\-\\\\.0-9]+)(:\\\\d{1,6})?(/.+)?".r val protocol = environmentEndpoint match { case Some(EndpointRegex(protocol, _, _, _)) if protocol != null => protocol.replace("://", "") case _ => defaultProtocol } private val defaultPort: Int = protocol match { case "http" => 80 case "https" => 443 } val host = environmentEndpoint match { case Some(EndpointRegex(_, host, _, _)) if host != null => host case _ => defaultHost } val port: Int = environmentEndpoint match { case Some(EndpointRegex(_, _, port, _)) if port != null => port.replace(":","").toInt case Some(EndpointRegex(_, _, null, _)) => defaultPort case _ if assignPortAutomatically => val socket = new ServerSocket(0) val p = socket.getLocalPort socket.close() p case _ => defaultPort } val path: String = environmentEndpoint match { case Some(EndpointRegex(_, _, _, path)) if path != null => path case _ => useResourcePath } val endpoint = HttpEndpoint(protocol, host, port, path, authentication) } } /** * Internal representation of an HttpEndpoint. * * @param protocol * @param host * @param port * @param path */ case class HttpEndpoint(protocol: String, host: String, port: Int, path: String, authentication: Option[Authentication]) { /** * Shows the desired fully qualified URL of the endpoint built from the individual components */ val url: String = s"$protocol://$host${ (protocol, port) match { case ("http", 80) => "" case ("https", 443) => "" case (p, x) => s":$x" } }$path" } /** * Internal representation of the HTTP endpoint's user authentication. */ sealed trait Authentication /** * Basic HTTP authentication credential (username & "cleartext" password) . * * @param username * @param password */ case class BasicAuthentication(username: String, password: String) extends Authentication
modelfabric/reactive-sparql
src/main/scala/ai/agnos/sparql/util/HttpEndpoint.scala
Scala
mit
5,291
package geek.lawsof.physics.lib.machine.recipes import net.minecraft.inventory.InventoryCrafting import net.minecraft.item.ItemStack import net.minecraft.world.World /** * Created by anshuman on 22-07-2014. */ trait MachineRecipe[I <: MachineRecipeInput, O <: MachineRecipeOutput] { def matches(input: I): Boolean def time(input: I): Int def result(input: I): O }
GeckoTheGeek42/TheLawsOfPhysics
src/main/scala/geek/lawsof/physics/lib/machine/recipes/MachineRecipe.scala
Scala
mit
376
/* * Copyright 2016 Miroslav Janíček * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package net.sandius.rembulan.test import net.sandius.rembulan.compiler.CompilerSettings.CPUAccountingMode import net.sandius.rembulan.compiler.{CompilerChunkLoader, CompilerSettings} import net.sandius.rembulan.env.RuntimeEnvironments import net.sandius.rembulan.exec._ import net.sandius.rembulan.impl.StateContexts import net.sandius.rembulan.lib._ import net.sandius.rembulan.load.{ChunkClassLoader, ChunkLoader} import net.sandius.rembulan.runtime.RuntimeCallInitialiser import net.sandius.rembulan.test.FragmentExpectations.Env import net.sandius.rembulan.test.Util.{BufferPrinter, Printer} import net.sandius.rembulan.{Conversions, StateContext, Table, Variable} import org.scalatest.{FunSpec, MustMatchers} import scala.util.{Failure, Success} trait FragmentExecTestSuite extends FunSpec with MustMatchers { def bundles: Seq[FragmentBundle] def expectations: Seq[FragmentExpectations] def contexts: Seq[FragmentExpectations.Env] def steps: Seq[Int] def compilerConfigs: CompilerConfigs = CompilerConfigs.DefaultOnly protected val Empty = FragmentExpectations.Env.Empty protected val Basic = FragmentExpectations.Env.Basic protected val Mod = FragmentExpectations.Env.Module protected val Coro = FragmentExpectations.Env.Coro protected val Math = FragmentExpectations.Env.Math protected val Str = FragmentExpectations.Env.Str protected val IO = FragmentExpectations.Env.IO protected val Tab = FragmentExpectations.Env.Tab protected val Debug = FragmentExpectations.Env.Debug protected val Full = FragmentExpectations.Env.Full protected def envForContext(state: StateContext, ctx: Env, ldr: ChunkLoader, printer: Printer): Table = { val env = state.newTable() val runtimeEnv = RuntimeEnvironments.system() // FIXME val moduleClassLoader = this.getClass().getClassLoader ctx match { case Empty => // no-op case Basic => BasicLib.installInto(state, env, runtimeEnv, ldr) case Mod => BasicLib.installInto(state, env, runtimeEnv, ldr) ModuleLib.installInto(state, env, runtimeEnv, ldr, moduleClassLoader) case Coro => BasicLib.installInto(state, env, runtimeEnv, ldr) CoroutineLib.installInto(state, env) case Math => BasicLib.installInto(state, env, runtimeEnv, ldr) MathLib.installInto(state, env) case Str => BasicLib.installInto(state, env, runtimeEnv, ldr) StringLib.installInto(state, env) case IO => BasicLib.installInto(state, env, runtimeEnv, ldr) IoLib.installInto(state, env, runtimeEnv) case Tab => BasicLib.installInto(state, env, runtimeEnv, ldr) TableLib.installInto(state, env) case Debug => BasicLib.installInto(state, env, runtimeEnv, ldr) DebugLib.installInto(state, env) case Full => BasicLib.installInto(state, env, runtimeEnv, ldr) ModuleLib.installInto(state, env, runtimeEnv, ldr, moduleClassLoader) CoroutineLib.installInto(state, env) MathLib.installInto(state, env) StringLib.installInto(state, env) IoLib.installInto(state, env, runtimeEnv) OsLib.installInto(state, env, runtimeEnv) TableLib.installInto(state, env) Utf8Lib.installInto(state, env) DebugLib.installInto(state, env) } env } sealed trait ChkLoader { def name: String def loader(): ChunkLoader } def compilerSettingsToString(settings: CompilerSettings): String = { val cpu = settings.cpuAccountingMode() match { case CPUAccountingMode.NO_CPU_ACCOUNTING => "n" case CPUAccountingMode.IN_EVERY_BASIC_BLOCK => "a" } val cfold = settings.constFolding() match { case true => "t" case false => "f" } val ccache = settings.constCaching() match { case true => "t" case false => "f" } val nlimit = settings.nodeSizeLimit() match { case 0 => "0" case n => n.toString } cpu + cfold + ccache + "_" + nlimit } case class RembulanChkLoader(settings: CompilerSettings) extends ChkLoader { def name = "RemC" + "_" + compilerSettingsToString(settings) def loader() = CompilerChunkLoader.of(new ChunkClassLoader(), settings, "fragment_test_") } class CompilerConfigs private (configs: Seq[CompilerSettings]) { def loaders: Seq[RembulanChkLoader] = configs.distinct map RembulanChkLoader } object CompilerConfigs { val bools = Seq(true, false) val limits = Seq(0, 10) // val limits = Seq(0) val allConfigs = for ( cpu <- CPUAccountingMode.values(); cfold <- bools; ccache <- bools; nlimit <- limits ) yield CompilerSettings.defaultSettings() .withCPUAccountingMode(cpu) .withConstFolding(cfold) .withConstCaching(ccache) .withNodeSizeLimit(nlimit) case object DefaultOnly extends CompilerConfigs(Seq(CompilerSettings.defaultSettings())) case object All extends CompilerConfigs(allConfigs) } val ldrs = compilerConfigs.loaders for (bundle <- bundles; fragment <- bundle.all; ctx <- contexts) { val prefix = "" describe (prefix + fragment.description + " in " + ctx + ":") { for (s <- steps; l <- ldrs) { val stepDesc = s match { case Int.MaxValue => "max" case i => i.toString } it (l.name + " / " + stepDesc) { val printer = new BufferPrinter() val (state, func) = Util.timed(printer, "Compilation and setup") { val ldr = l.loader() val state = StateContexts.newDefaultInstance() val env = envForContext(state, ctx, ldr, printer) val func = ldr.loadTextChunk(new Variable(env), "test", fragment.code) (state, func) } var steps = 0 val before = System.nanoTime() val callExecutor = DirectCallExecutor.newExecutorWithTickLimit(s) var resultValues: Array[AnyRef] = null var continuation: Continuation = RuntimeCallInitialiser.forState(state).newCall(func) var error: CallException = null do { try { steps += 1 resultValues = callExecutor.resume(continuation) } catch { case ex: CallPausedException => continuation = ex.getContinuation case ex: CallException => error = ex } } while (error == null && resultValues == null) val res = if (error != null) { Failure(error.getCause) } else { require (resultValues != null, "result must not be null") Success(resultValues.toSeq) } val after = System.nanoTime() val totalTimeMillis = (after - before) / 1000000.0 // val totalCPUUnitsSpent = preemptionContext.totalCost // val avgTimePerCPUUnitNanos = (after - before).toDouble / totalCPUUnitsSpent.toDouble // val avgCPUUnitsPerSecond = (1000000000.0 * totalCPUUnitsSpent) / (after - before) printer.println("Execution took %.1f ms".format(totalTimeMillis)) // println("Total CPU cost: " + preemptionContext.totalCost + " LI") printer.println("Computation steps: " + steps) // println() // println("Avg time per unit: %.2f ns".format(avgTimePerCPUUnitNanos)) // println("Avg units per second: %.1f LI/s".format(avgCPUUnitsPerSecond)) printer.println() res match { case Success(result) => printer.println("Result: success (" + result.size + " values):") for ((v, i) <- result.zipWithIndex) { printer.println(i + ":" + "\t" + Conversions.toHumanReadableString(v) + " (" + (if (v != null) v.getClass.getName else "null") + ")") } case Failure(ex) => printer.println("Result: error: " + ex.getMessage) } for (expects <- expectations; ctxExp <- expects.expectationFor(fragment); exp <- ctxExp.get(ctx)) { exp.tryMatch(res, { () => scala.Predef.print(printer.get) })(this) } } } } } }
mjanicek/rembulan
rembulan-tests/src/test/scala/net/sandius/rembulan/test/FragmentExecTestSuite.scala
Scala
apache-2.0
8,867
/* * _ _ * _ __ ___ | |__ | | ___ * | '_ \\ / _ \\| '_ \\| |/ _ \\ noble :: norcane blog engine * | | | | (_) | |_) | | __/ Copyright (c) 2016-2018 norcane * |_| |_|\\___/|_.__/|_|\\___| * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except * in compliance with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express * or implied. See the License for the specific language governing permissions and limitations under * the License. */ package com.norcane.noble.api.models /** * Model class representing the configuration of one blog. * * @param name internal name of the blog * @param path the path of the blog * @param reloadToken token used to authenticate blog reload requests * @param storageConfig configuration of blog storage * @author Vaclav Svejcar ([email protected]) */ case class BlogConfig(name: String, path: String, reloadToken: Option[String], storageConfig: StorageConfig)
norcane/noble
sdk/noble-api/src/main/scala/com/norcane/noble/api/models/BlogConfig.scala
Scala
apache-2.0
1,292
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.ui.jobs import java.net.URLEncoder import java.util.Date import javax.servlet.http.HttpServletRequest import scala.collection.JavaConverters._ import scala.collection.mutable.{HashMap, ListBuffer} import scala.xml._ import org.apache.commons.lang3.StringEscapeUtils import org.apache.spark.JobExecutionStatus import org.apache.spark.scheduler._ import org.apache.spark.ui._ import org.apache.spark.ui.jobs.UIData.{JobUIData, StageUIData} import org.apache.spark.util.Utils /** Page showing list of all ongoing and recently finished jobs */ private[ui] class AllJobsPage(parent: JobsTab) extends WebUIPage("") { private val JOBS_LEGEND = <div class="legend-area"><svg width="150px" height="85px"> <rect class="succeeded-job-legend" x="5px" y="5px" width="20px" height="15px" rx="2px" ry="2px"></rect> <text x="35px" y="17px">Succeeded</text> <rect class="failed-job-legend" x="5px" y="30px" width="20px" height="15px" rx="2px" ry="2px"></rect> <text x="35px" y="42px">Failed</text> <rect class="running-job-legend" x="5px" y="55px" width="20px" height="15px" rx="2px" ry="2px"></rect> <text x="35px" y="67px">Running</text> </svg></div>.toString.filter(_ != '\n') private val EXECUTORS_LEGEND = <div class="legend-area"><svg width="150px" height="55px"> <rect class="executor-added-legend" x="5px" y="5px" width="20px" height="15px" rx="2px" ry="2px"></rect> <text x="35px" y="17px">Added</text> <rect class="executor-removed-legend" x="5px" y="30px" width="20px" height="15px" rx="2px" ry="2px"></rect> <text x="35px" y="42px">Removed</text> </svg></div>.toString.filter(_ != '\n') private def getLastStageNameAndDescription(job: JobUIData): (String, String) = { val lastStageInfo = Option(job.stageIds) .filter(_.nonEmpty) .flatMap { ids => parent.jobProgresslistener.stageIdToInfo.get(ids.max)} val lastStageData = lastStageInfo.flatMap { s => parent.jobProgresslistener.stageIdToData.get((s.stageId, s.attemptId)) } val name = lastStageInfo.map(_.name).getOrElse("(Unknown Stage Name)") val description = lastStageData.flatMap(_.description).getOrElse("") (name, description) } private def makeJobEvent(jobUIDatas: Seq[JobUIData]): Seq[String] = { jobUIDatas.filter { jobUIData => jobUIData.status != JobExecutionStatus.UNKNOWN && jobUIData.submissionTime.isDefined }.map { jobUIData => val jobId = jobUIData.jobId val status = jobUIData.status val (jobName, jobDescription) = getLastStageNameAndDescription(jobUIData) val displayJobDescription = if (jobDescription.isEmpty) { jobName } else { UIUtils.makeDescription(jobDescription, "", plainText = true).text } val submissionTime = jobUIData.submissionTime.get val completionTimeOpt = jobUIData.completionTime val completionTime = completionTimeOpt.getOrElse(System.currentTimeMillis()) val classNameByStatus = status match { case JobExecutionStatus.SUCCEEDED => "succeeded" case JobExecutionStatus.FAILED => "failed" case JobExecutionStatus.RUNNING => "running" case JobExecutionStatus.UNKNOWN => "unknown" } // The timeline library treats contents as HTML, so we have to escape them. We need to add // extra layers of escaping in order to embed this in a Javascript string literal. val escapedDesc = Utility.escape(displayJobDescription) val jsEscapedDesc = StringEscapeUtils.escapeEcmaScript(escapedDesc) val jobEventJsonAsStr = s""" |{ | 'className': 'job application-timeline-object ${classNameByStatus}', | 'group': 'jobs', | 'start': new Date(${submissionTime}), | 'end': new Date(${completionTime}), | 'content': '<div class="application-timeline-content"' + | 'data-html="true" data-placement="top" data-toggle="tooltip"' + | 'data-title="${jsEscapedDesc} (Job ${jobId})<br>' + | 'Status: ${status}<br>' + | 'Submitted: ${UIUtils.formatDate(new Date(submissionTime))}' + | '${ if (status != JobExecutionStatus.RUNNING) { s"""<br>Completed: ${UIUtils.formatDate(new Date(completionTime))}""" } else { "" } }">' + | '${jsEscapedDesc} (Job ${jobId})</div>' |} """.stripMargin jobEventJsonAsStr } } private def makeExecutorEvent(executorUIDatas: Seq[SparkListenerEvent]): Seq[String] = { val events = ListBuffer[String]() executorUIDatas.foreach { case a: SparkListenerExecutorAdded => val addedEvent = s""" |{ | 'className': 'executor added', | 'group': 'executors', | 'start': new Date(${a.time}), | 'content': '<div class="executor-event-content"' + | 'data-toggle="tooltip" data-placement="bottom"' + | 'data-title="Executor ${a.executorId}<br>' + | 'Added at ${UIUtils.formatDate(new Date(a.time))}"' + | 'data-html="true">Executor ${a.executorId} added</div>' |} """.stripMargin events += addedEvent case e: SparkListenerExecutorRemoved => val removedEvent = s""" |{ | 'className': 'executor removed', | 'group': 'executors', | 'start': new Date(${e.time}), | 'content': '<div class="executor-event-content"' + | 'data-toggle="tooltip" data-placement="bottom"' + | 'data-title="Executor ${e.executorId}<br>' + | 'Removed at ${UIUtils.formatDate(new Date(e.time))}' + | '${ if (e.reason != null) { s"""<br>Reason: ${e.reason.replace("\n", " ")}""" } else { "" } }"' + | 'data-html="true">Executor ${e.executorId} removed</div>' |} """.stripMargin events += removedEvent } events.toSeq } private def makeTimeline( jobs: Seq[JobUIData], executors: Seq[SparkListenerEvent], startTime: Long): Seq[Node] = { val jobEventJsonAsStrSeq = makeJobEvent(jobs) val executorEventJsonAsStrSeq = makeExecutorEvent(executors) val groupJsonArrayAsStr = s""" |[ | { | 'id': 'executors', | 'content': '<div>Executors</div>${EXECUTORS_LEGEND}', | }, | { | 'id': 'jobs', | 'content': '<div>Jobs</div>${JOBS_LEGEND}', | } |] """.stripMargin val eventArrayAsStr = (jobEventJsonAsStrSeq ++ executorEventJsonAsStrSeq).mkString("[", ",", "]") <span class="expand-application-timeline"> <span class="expand-application-timeline-arrow arrow-closed"></span> <a data-toggle="tooltip" title={ToolTips.JOB_TIMELINE} data-placement="right"> Event Timeline </a> </span> ++ <div id="application-timeline" class="collapsed"> <div class="control-panel"> <div id="application-timeline-zoom-lock"> <input type="checkbox"></input> <span>Enable zooming</span> </div> </div> </div> ++ <script type="text/javascript"> {Unparsed(s"drawApplicationTimeline(${groupJsonArrayAsStr}," + s"${eventArrayAsStr}, ${startTime}, ${UIUtils.getTimeZoneOffset()});")} </script> } private def jobsTable( request: HttpServletRequest, tableHeaderId: String, jobTag: String, jobs: Seq[JobUIData], killEnabled: Boolean): Seq[Node] = { val allParameters = request.getParameterMap.asScala.toMap val parameterOtherTable = allParameters.filterNot(_._1.startsWith(jobTag)) .map(para => para._1 + "=" + para._2(0)) val someJobHasJobGroup = jobs.exists(_.jobGroup.isDefined) val jobIdTitle = if (someJobHasJobGroup) "Job Id (Job Group)" else "Job Id" val parameterJobPage = request.getParameter(jobTag + ".page") val parameterJobSortColumn = request.getParameter(jobTag + ".sort") val parameterJobSortDesc = request.getParameter(jobTag + ".desc") val parameterJobPageSize = request.getParameter(jobTag + ".pageSize") val parameterJobPrevPageSize = request.getParameter(jobTag + ".prevPageSize") val jobPage = Option(parameterJobPage).map(_.toInt).getOrElse(1) val jobSortColumn = Option(parameterJobSortColumn).map { sortColumn => UIUtils.decodeURLParameter(sortColumn) }.getOrElse(jobIdTitle) val jobSortDesc = Option(parameterJobSortDesc).map(_.toBoolean).getOrElse( // New jobs should be shown above old jobs by default. if (jobSortColumn == jobIdTitle) true else false ) val jobPageSize = Option(parameterJobPageSize).map(_.toInt).getOrElse(100) val jobPrevPageSize = Option(parameterJobPrevPageSize).map(_.toInt).getOrElse(jobPageSize) val page: Int = { // If the user has changed to a larger page size, then go to page 1 in order to avoid // IndexOutOfBoundsException. if (jobPageSize <= jobPrevPageSize) { jobPage } else { 1 } } val currentTime = System.currentTimeMillis() try { new JobPagedTable( jobs, tableHeaderId, jobTag, UIUtils.prependBaseUri(parent.basePath), "jobs", // subPath parameterOtherTable, parent.jobProgresslistener.stageIdToInfo, parent.jobProgresslistener.stageIdToData, killEnabled, currentTime, jobIdTitle, pageSize = jobPageSize, sortColumn = jobSortColumn, desc = jobSortDesc ).table(page) } catch { case e @ (_ : IllegalArgumentException | _ : IndexOutOfBoundsException) => <div class="alert alert-error"> <p>Error while rendering job table:</p> <pre> {Utils.exceptionString(e)} </pre> </div> } } def render(request: HttpServletRequest): Seq[Node] = { val listener = parent.jobProgresslistener listener.synchronized { val startTime = listener.startTime val endTime = listener.endTime val activeJobs = listener.activeJobs.values.toSeq val completedJobs = listener.completedJobs.reverse.toSeq val failedJobs = listener.failedJobs.reverse.toSeq val activeJobsTable = jobsTable(request, "active", "activeJob", activeJobs, killEnabled = parent.killEnabled) val completedJobsTable = jobsTable(request, "completed", "completedJob", completedJobs, killEnabled = false) val failedJobsTable = jobsTable(request, "failed", "failedJob", failedJobs, killEnabled = false) val shouldShowActiveJobs = activeJobs.nonEmpty val shouldShowCompletedJobs = completedJobs.nonEmpty val shouldShowFailedJobs = failedJobs.nonEmpty val completedJobNumStr = if (completedJobs.size == listener.numCompletedJobs) { s"${completedJobs.size}" } else { s"${listener.numCompletedJobs}, only showing ${completedJobs.size}" } val summary: NodeSeq = <div> <ul class="unstyled"> <li> <strong>User:</strong> {parent.getSparkUser} </li> <li> <strong>Total Uptime:</strong> { if (endTime < 0 && parent.sc.isDefined) { UIUtils.formatDuration(System.currentTimeMillis() - startTime) } else if (endTime > 0) { UIUtils.formatDuration(endTime - startTime) } } </li> <li> <strong>Scheduling Mode: </strong> {listener.schedulingMode.map(_.toString).getOrElse("Unknown")} </li> { if (shouldShowActiveJobs) { <li> <a href="#active"><strong>Active Jobs:</strong></a> {activeJobs.size} </li> } } { if (shouldShowCompletedJobs) { <li id="completed-summary"> <a href="#completed"><strong>Completed Jobs:</strong></a> {completedJobNumStr} </li> } } { if (shouldShowFailedJobs) { <li> <a href="#failed"><strong>Failed Jobs:</strong></a> {listener.numFailedJobs} </li> } } </ul> </div> var content = summary val executorListener = parent.executorListener content ++= makeTimeline(activeJobs ++ completedJobs ++ failedJobs, executorListener.executorEvents, startTime) if (shouldShowActiveJobs) { content ++= <h4 id="active">Active Jobs ({activeJobs.size})</h4> ++ activeJobsTable } if (shouldShowCompletedJobs) { content ++= <h4 id="completed">Completed Jobs ({completedJobNumStr})</h4> ++ completedJobsTable } if (shouldShowFailedJobs) { content ++= <h4 id ="failed">Failed Jobs ({failedJobs.size})</h4> ++ failedJobsTable } val helpText = """A job is triggered by an action, like count() or saveAsTextFile().""" + " Click on a job to see information about the stages of tasks inside it." UIUtils.headerSparkPage("Spark Jobs", content, parent, helpText = Some(helpText)) } } } private[ui] class JobTableRowData( val jobData: JobUIData, val lastStageName: String, val lastStageDescription: String, val duration: Long, val formattedDuration: String, val submissionTime: Long, val formattedSubmissionTime: String, val jobDescription: NodeSeq, val detailUrl: String) private[ui] class JobDataSource( jobs: Seq[JobUIData], stageIdToInfo: HashMap[Int, StageInfo], stageIdToData: HashMap[(Int, Int), StageUIData], basePath: String, currentTime: Long, pageSize: Int, sortColumn: String, desc: Boolean) extends PagedDataSource[JobTableRowData](pageSize) { // Convert JobUIData to JobTableRowData which contains the final contents to show in the table // so that we can avoid creating duplicate contents during sorting the data private val data = jobs.map(jobRow).sorted(ordering(sortColumn, desc)) private var _slicedJobIds: Set[Int] = null override def dataSize: Int = data.size override def sliceData(from: Int, to: Int): Seq[JobTableRowData] = { val r = data.slice(from, to) _slicedJobIds = r.map(_.jobData.jobId).toSet r } private def getLastStageNameAndDescription(job: JobUIData): (String, String) = { val lastStageInfo = Option(job.stageIds) .filter(_.nonEmpty) .flatMap { ids => stageIdToInfo.get(ids.max)} val lastStageData = lastStageInfo.flatMap { s => stageIdToData.get((s.stageId, s.attemptId)) } val name = lastStageInfo.map(_.name).getOrElse("(Unknown Stage Name)") val description = lastStageData.flatMap(_.description).getOrElse("") (name, description) } private def jobRow(jobData: JobUIData): JobTableRowData = { val (lastStageName, lastStageDescription) = getLastStageNameAndDescription(jobData) val duration: Option[Long] = { jobData.submissionTime.map { start => val end = jobData.completionTime.getOrElse(System.currentTimeMillis()) end - start } } val formattedDuration = duration.map(d => UIUtils.formatDuration(d)).getOrElse("Unknown") val submissionTime = jobData.submissionTime val formattedSubmissionTime = submissionTime.map(UIUtils.formatDate).getOrElse("Unknown") val jobDescription = UIUtils.makeDescription(lastStageDescription, basePath, plainText = false) val detailUrl = "%s/jobs/job?id=%s".format(basePath, jobData.jobId) new JobTableRowData ( jobData, lastStageName, lastStageDescription, duration.getOrElse(-1), formattedDuration, submissionTime.getOrElse(-1), formattedSubmissionTime, jobDescription, detailUrl ) } /** * Return Ordering according to sortColumn and desc */ private def ordering(sortColumn: String, desc: Boolean): Ordering[JobTableRowData] = { val ordering: Ordering[JobTableRowData] = sortColumn match { case "Job Id" | "Job Id (Job Group)" => Ordering.by(_.jobData.jobId) case "Description" => Ordering.by(x => (x.lastStageDescription, x.lastStageName)) case "Submitted" => Ordering.by(_.submissionTime) case "Duration" => Ordering.by(_.duration) case "Stages: Succeeded/Total" | "Tasks (for all stages): Succeeded/Total" => throw new IllegalArgumentException(s"Unsortable column: $sortColumn") case unknownColumn => throw new IllegalArgumentException(s"Unknown column: $unknownColumn") } if (desc) { ordering.reverse } else { ordering } } } private[ui] class JobPagedTable( data: Seq[JobUIData], tableHeaderId: String, jobTag: String, basePath: String, subPath: String, parameterOtherTable: Iterable[String], stageIdToInfo: HashMap[Int, StageInfo], stageIdToData: HashMap[(Int, Int), StageUIData], killEnabled: Boolean, currentTime: Long, jobIdTitle: String, pageSize: Int, sortColumn: String, desc: Boolean ) extends PagedTable[JobTableRowData] { val parameterPath = basePath + s"/$subPath/?" + parameterOtherTable.mkString("&") override def tableId: String = jobTag + "-table" override def tableCssClass: String = "table table-bordered table-condensed table-striped " + "table-head-clickable table-cell-width-limited" override def pageSizeFormField: String = jobTag + ".pageSize" override def prevPageSizeFormField: String = jobTag + ".prevPageSize" override def pageNumberFormField: String = jobTag + ".page" override val dataSource = new JobDataSource( data, stageIdToInfo, stageIdToData, basePath, currentTime, pageSize, sortColumn, desc) override def pageLink(page: Int): String = { val encodedSortColumn = URLEncoder.encode(sortColumn, "UTF-8") parameterPath + s"&$pageNumberFormField=$page" + s"&$jobTag.sort=$encodedSortColumn" + s"&$jobTag.desc=$desc" + s"&$pageSizeFormField=$pageSize" + s"#$tableHeaderId" } override def goButtonFormPath: String = { val encodedSortColumn = URLEncoder.encode(sortColumn, "UTF-8") s"$parameterPath&$jobTag.sort=$encodedSortColumn&$jobTag.desc=$desc#$tableHeaderId" } override def headers: Seq[Node] = { // Information for each header: title, cssClass, and sortable val jobHeadersAndCssClasses: Seq[(String, String, Boolean)] = Seq( (jobIdTitle, "", true), ("Description", "", true), ("Submitted", "", true), ("Duration", "", true), ("Stages: Succeeded/Total", "", false), ("Tasks (for all stages): Succeeded/Total", "", false) ) if (!jobHeadersAndCssClasses.filter(_._3).map(_._1).contains(sortColumn)) { throw new IllegalArgumentException(s"Unknown column: $sortColumn") } val headerRow: Seq[Node] = { jobHeadersAndCssClasses.map { case (header, cssClass, sortable) => if (header == sortColumn) { val headerLink = Unparsed( parameterPath + s"&$jobTag.sort=${URLEncoder.encode(header, "UTF-8")}" + s"&$jobTag.desc=${!desc}" + s"&$jobTag.pageSize=$pageSize" + s"#$tableHeaderId") val arrow = if (desc) "&#x25BE;" else "&#x25B4;" // UP or DOWN <th class={cssClass}> <a href={headerLink}> {header}<span> &nbsp;{Unparsed(arrow)} </span> </a> </th> } else { if (sortable) { val headerLink = Unparsed( parameterPath + s"&$jobTag.sort=${URLEncoder.encode(header, "UTF-8")}" + s"&$jobTag.pageSize=$pageSize" + s"#$tableHeaderId") <th class={cssClass}> <a href={headerLink}> {header} </a> </th> } else { <th class={cssClass}> {header} </th> } } } } <thead>{headerRow}</thead> } override def row(jobTableRow: JobTableRowData): Seq[Node] = { val job = jobTableRow.jobData val killLink = if (killEnabled) { val confirm = s"if (window.confirm('Are you sure you want to kill job ${job.jobId} ?')) " + "{ this.parentNode.submit(); return true; } else { return false; }" // SPARK-6846 this should be POST-only but YARN AM won't proxy POST /* val killLinkUri = s"$basePathUri/jobs/job/kill/" <form action={killLinkUri} method="POST" style="display:inline"> <input type="hidden" name="id" value={job.jobId.toString}/> <a href="#" onclick={confirm} class="kill-link">(kill)</a> </form> */ val killLinkUri = s"$basePath/jobs/job/kill/?id=${job.jobId}" <a href={killLinkUri} onclick={confirm} class="kill-link">(kill)</a> } else { Seq.empty } <tr id={"job-" + job.jobId}> <td> {job.jobId} {job.jobGroup.map(id => s"($id)").getOrElse("")} </td> <td> {jobTableRow.jobDescription} {killLink} <a href={jobTableRow.detailUrl} class="name-link">{jobTableRow.lastStageName}</a> </td> <td> {jobTableRow.formattedSubmissionTime} </td> <td>{jobTableRow.formattedDuration}</td> <td class="stage-progress-cell"> {job.completedStageIndices.size}/{job.stageIds.size - job.numSkippedStages} {if (job.numFailedStages > 0) s"(${job.numFailedStages} failed)"} {if (job.numSkippedStages > 0) s"(${job.numSkippedStages} skipped)"} </td> <td class="progress-cell"> {UIUtils.makeProgressBar(started = job.numActiveTasks, completed = job.numCompletedTasks, failed = job.numFailedTasks, skipped = job.numSkippedTasks, killed = job.numKilledTasks, total = job.numTasks - job.numSkippedTasks)} </td> </tr> } }
u2009cf/spark-radar
core/src/main/scala/org/apache/spark/ui/jobs/AllJobsPage.scala
Scala
apache-2.0
23,526
/** * Licensed to Big Data Genomics (BDG) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The BDG licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.bdgenomics.adam.algorithms.consensus import org.apache.spark.rdd.RDD import org.bdgenomics.adam.rdd.ADAMContext._ import org.bdgenomics.adam.rich.RichAlignmentRecord import org.bdgenomics.adam.util.ADAMFunSuite import org.bdgenomics.formats.avro.AlignmentRecord class ConsensusGeneratorFromReadsSuite extends ADAMFunSuite { val cg = new ConsensusGeneratorFromReads def artificial_reads: RDD[AlignmentRecord] = { val path = ClassLoader.getSystemClassLoader.getResource("artificial.sam").getFile sc.loadAlignments(path) } sparkTest("checking search for consensus list for artificial reads") { val consensus = cg.findConsensus(artificial_reads.map(new RichAlignmentRecord(_)) .collect() .toSeq) assert(consensus.size === 2) } }
FusionWorks/adam
adam-core/src/test/scala/org/bdgenomics/adam/algorithms/consensus/ConsensusGeneratorFromReadsSuite.scala
Scala
apache-2.0
1,576
package com.twitter.zipkin.storage.hbase.mapping import org.apache.hadoop.hbase.util.Bytes case class SpanNameMapping(id: Long, value: Array[Byte], parent: Option[ServiceMapping]) extends Mapping { val mappingType: Byte = 1 lazy val name = Bytes.toString(value) }
pteichman/zipkin
zipkin-hbase/src/main/scala/com/twitter/zipkin/storage/hbase/mapping/SpanNameMapping.scala
Scala
apache-2.0
270
import sbt._ import Keys._ object TestProjectBuild extends Build { lazy val root = Project(id = "root", base = file(".")) lazy val footprint = Project(id = "foo", base = file("foo")) lazy val bar = Project(id = "bar", base = file("bar")) val deleteFileOnExitHook = Command.single("deleteFileOnExitHook") { (state: State, arg: String) => state.addExitHook { new File(arg).delete() } } override lazy val settings = super.settings ++ Seq(Keys.commands += deleteFileOnExitHook) }
luismfonseca/sbt-autojump
src/sbt-test/global/avoid-execute-exit-hooks/project/Build.scala
Scala
mit
505
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark import org.scalatest.BeforeAndAfterAll import org.apache.spark.network.TransportContext import org.apache.spark.network.netty.SparkTransportConf import org.apache.spark.network.server.TransportServer import org.apache.spark.network.shuffle.{ExternalShuffleBlockHandler, ExternalShuffleClient} /** * This suite creates an external shuffle server and routes all shuffle fetches through it. * Note that failures in this suite may arise due to changes in Spark that invalidate expectations * set up in [[ExternalShuffleBlockHandler]], such as changing the format of shuffle files or how * we hash files into folders. */ class ExternalShuffleServiceSuite extends ShuffleSuite with BeforeAndAfterAll { var server: TransportServer = _ var rpcHandler: ExternalShuffleBlockHandler = _ override def beforeAll() { val transportConf = SparkTransportConf.fromSparkConf(conf, numUsableCores = 2) rpcHandler = new ExternalShuffleBlockHandler(transportConf) val transportContext = new TransportContext(transportConf, rpcHandler) server = transportContext.createServer() conf.set("spark.shuffle.manager", "sort") conf.set("spark.shuffle.service.enabled", "true") conf.set("spark.shuffle.service.port", server.getPort.toString)//端口随机 } override def afterAll() { server.close() } // This test ensures that the external shuffle service is actually in use for the other tests. //此测试确保外部shuffle服务,在其他测试中实际使用 /** test("using external shuffle service") { sc = new SparkContext("local-cluster[2,1,1024]", "test", conf) sc.env.blockManager.externalShuffleServiceEnabled should equal(true) sc.env.blockManager.shuffleClient.getClass should equal(classOf[ExternalShuffleClient]) // In a slow machine, one slave may register hundreds of milliseconds ahead of the other one. // If we don't wait for all slaves, it's possible that only one executor runs all jobs. Then // all shuffle blocks will be in this executor, ShuffleBlockFetcherIterator will directly fetch // local blocks from the local BlockManager and won't send requests to ExternalShuffleService. // In this case, we won't receive FetchFailed. And it will make this test fail. // Therefore, we should wait until all slaves are up //在一个缓慢的机器中,一个从节点可能会在另一个机器前登记数百毫秒 //如果我们不等待所有的从节点,这是可能的,只有一个执行者运行所有的工作,然后所有的shuffle块将在这个执行者 sc.jobProgressListener.waitUntilExecutorsUp(2, 10000) val rdd = sc.parallelize(0 until 1000, 10).map(i => (i, 1)).reduceByKey(_ + _) rdd.count() rdd.count() // Invalidate the registered executors, disallowing access to their shuffle blocks (without // deleting the actual shuffle files, so we could access them without the shuffle service). //无效的注册者,不允许访问他们的shuffle块 rpcHandler.applicationRemoved(sc.conf.getAppId, false /* cleanupLocalDirs */) // Now Spark will receive FetchFailed, and not retry the stage due to "spark.test.noStageRetry" // being set. val e = intercept[SparkException] { rdd.count() } e.getMessage should include ("Fetch failure will not retry stage due to testing config") }**/ }
tophua/spark1.52
core/src/test/scala/org/apache/spark/ExternalShuffleServiceSuite.scala
Scala
apache-2.0
4,181
package monocle.std import monocle.function.{At, Empty} import monocle.{Lens, Prism} import scalaz.{ISet, Order} object iset extends ISetOptics trait ISetOptics { implicit def emptyISet[A]: Empty[ISet[A]] = new Empty[ISet[A]] { def empty = Prism[ISet[A], Unit](s => if(s.isEmpty) Some(()) else None)(_ => ISet.empty[A]) } implicit def atISet[A: Order]: At[ISet[A], A, Unit] = new At[ISet[A], A, Unit] { def at(a: A) = Lens[ISet[A], Option[Unit]](s => if(s member a) Some(()) else None)( optA => set => optA.fold(set delete a)(_ => set insert a) ) } }
NightRa/Monocle
core/src/main/scala/monocle/std/ISet.scala
Scala
mit
584
package drt.shared object SplitRatiosNs { // type SplitRatios = List[SplitRatio] case class SplitRatios(splits: List[SplitRatio]=Nil) object SplitRatios { def apply(ratios: SplitRatio*): SplitRatios = SplitRatios(ratios.toList) } case class SplitRatio(paxType: PaxTypeAndQueue, ratio: Double) }
somanythings/drt-scalajs-spa-exploration
shared/src/main/scala/spatutorial/shared/SplitRatiosNs.scala
Scala
apache-2.0
310
def combine(x: M): (M => M)
hmemcpy/milewski-ctfp-pdf
src/content/3.6/code/scala/snippet04.scala
Scala
gpl-3.0
27
package org.littlewings.infinispan.persistence import org.infinispan.Cache import org.infinispan.configuration.cache.{CacheMode, ConfigurationBuilder} import org.infinispan.manager.DefaultCacheManager import org.scalatest.FunSpec import org.scalatest.Matchers._ class SimpleMapCacheStoreSpec extends FunSpec { describe("simple map cache store spec") { it("persistence") { val storeSize = 2 val numInstances = 1 SimpleMapCacheStore.instances(storeSize) withStoreCache[String, String]("storeCache", numInstances) { cache => println(s"Cache size => ${cache.size}") val range = 1 to 10 (1 to 3).foreach(i => cache.remove(s"key$i")) (4 to 6).foreach(i => cache.put(s"key$i", "valueXXXXX")) range.foreach(i => println(s"key[${s"key$i"}] => ${cache.get(s"key$i")}")) withStoreCache[String, String]("storeCache", numInstances) { cache2 => range.foreach(i => println(s"key[${s"key$i"}] => ${cache2.get(s"key$i")}")) (1 to 10) foreach (i => cache2.put(s"key$i", s"value$i")) } // (1 to 10) foreach (i => cache.put(s"key$i", s"value$i")) /* println("Wait...") Thread.sleep(5000L) range.foreach(i => println(s"key[${s"key$i"}] => ${cache.get(s"key$i")}")) */ } } } def withStoreCache[K, V](cacheName: String, numInstances: Int = 1)(fun: Cache[K, V] => Unit): Unit = { val managers = (1 to numInstances).map { _ => val manager = new DefaultCacheManager("infinispan.xml") val persistenceBuilder = new ConfigurationBuilder() .clustering .cacheMode(CacheMode.DIST_SYNC) .expiration // .maxIdle(3000L) // .wakeUpInterval(500L) .persistence manager.defineConfiguration(cacheName, persistenceBuilder .addStore(new SimpleMapCacheStoreConfigurationBuilder(persistenceBuilder)) .fetchPersistentState(false) .preload(false) .shared(false) .purgeOnStartup(false) .ignoreModifications(false) .build) manager } try { managers.foreach(_.getCache[K, V](cacheName)) fun(managers.head.getCache[K, V](cacheName)) } finally { managers.foreach(_.stop()) } } }
kazuhira-r/infinispan-examples
infinispan-persistence/src/test/scala/org/littlewings/infinispan/persistence/SimpleMapCacheStoreSpec.scala
Scala
mit
2,522
val cont: Unit => Unit = null /*start*/cont/*end*/ //(Unit) => Unit
LPTK/intellij-scala
testdata/typeInference/bugs4/SCL2816.scala
Scala
apache-2.0
67
package com.antiparagon.cvexperimenter.chessscanner import org.opencv.core.{Core, Rect} import org.opencv.imgcodecs.Imgcodecs import org.scalatest._ /** * This test file is meant to test all the example chessboard images saved in the * 'CVExperimenter/images/Chess Scanner/Starting Position/Chessboard Failures' folder. * These images are the ones that the current algorithms do not work on. If these images * are made to work then all saved images will have the algorithms find the chessboards. * * Created by wmckay on 11/5/16. */ class ChessboardFinderFailuresTester extends FlatSpec with Matchers { System.loadLibrary(Core.NATIVE_LIBRARY_NAME) val IMG_FOLDER = "images/Chess Scanner/Starting Position/Chessboard Failures/" val OUTPUT_FOLDER = "Debug Images/" val BOARD_SETUP = "BoardSetup.jpg" val BOARD_SETUP_RECT = new Rect(13, 13, 223, 223) val CHESS_BOARD_SET_UP = "chess_board_set_up.jpg" val CHESS_BOARD_SET_UP_RECT = new Rect(0, 0, 350, 350) val CHESS_BOARD_SET_UP_MODIFIED = "chess_board_set_up_modified.jpg" val CHESS_BOARD_SET_UP_MODIFIED_RECT = new Rect(9, 9, 350, 350) val CHESS = "chess.png" val CHESS_RECT = new Rect(2, 0, 241, 245) val CHESS_MODIFIED = "chess_modified.png" val CHESS_MODIFIED_RECT = new Rect(2, 0, 241, 245) val CHESS_KID = "chesskid.png" val CHESS_KID_RECT = new Rect(42, 10, 632, 632) val CHESS_KID_MODIFIED = "chesskid_modified.png" val CHESS_KID_MODIFIED_RECT = new Rect(42, 10, 632, 632) val DIAGRAM_OF_CHESS_BOARD_SETUP = "diagram-of-chess-board-setup.png" val DIAGRAM_OF_CHESS_BOARD_SETUP_RECT = new Rect(16, 11, 266, 274) val DIAGRAM_OF_CHESS_BOARD_SETUP_MODIFIED = "diagram-of-chess-board-setup_modified.png" val DIAGRAM_OF_CHESS_BOARD_SETUP_MODIFIED_RECT = new Rect(16, 11, 266, 274) val STAGRAM = "stagram.png" val STAGRAM_RECT = new Rect(15, 13, 298, 300) val STAGRAM_MODIFIED = "stagram_modified.png" val STAGRAM_MODIFIED_RECT = new Rect(15, 13, 298, 300) val VP_BLACKARRAY = "VP-Blackarray.png" val VP_BLACKARRAY_RECT = new Rect(6, 8, 280, 279) val VP_BLACKARRAY_MODIFIED = "VP-Blackarray_modified.png" val VP_BLACKARRAY_MODIFIED_RECT = new Rect(6, 8, 280, 279) /** * This board only has a few squares found using contours. The fix was to * only require a least 3 inner squares to determine a chessboard. * * Note: The debug images look like it should work fine. Should take * a second look at why there is a problem. */ "ChessboardFinder" should "return Rect when given image " + BOARD_SETUP in { val img = Imgcodecs.imread(IMG_FOLDER + BOARD_SETUP) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(BOARD_SETUP) + "_").findChessboard(img) assert(rect.isDefined) rect.get should be (BOARD_SETUP_RECT) } /** * This board is hard to find because the chessboard is the full image with no background. * The test below this one uses the same board with a black border around it. * * Note: How should an image that is only a chessboard be handled? Should a border be * required? */ "ChessboardFinder" should "return Rect when given image " + CHESS_BOARD_SET_UP in { val img = Imgcodecs.imread(IMG_FOLDER + CHESS_BOARD_SET_UP) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(CHESS_BOARD_SET_UP) + "_").findChessboard(img) rect should be (None) // The lines are commented out until a way to handle a chessbaord with no border is found. //assert(rect.isDefined) //rect.get should be (CHESS_BOARD_SET_UP_RECT) } "ChessboardFinder" should "return Rect when given image " + CHESS_BOARD_SET_UP_MODIFIED in { val img = Imgcodecs.imread(IMG_FOLDER + CHESS_BOARD_SET_UP_MODIFIED) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(CHESS_BOARD_SET_UP_MODIFIED) + "_").findChessboard(img) assert(rect.isDefined) rect.get should be (CHESS_BOARD_SET_UP_MODIFIED_RECT) } /** * The chessboard needed a outlined rectangle on the outside of the chess squares. */ "ChessboardFinder" should "return Rect when given image " + CHESS in { val img = Imgcodecs.imread(IMG_FOLDER + CHESS) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(CHESS) + "_").findChessboard(img) rect should be (None) //assert(rect.isDefined) //rect.get should be (CHESS_RECT) } "ChessboardFinder" should "return Rect when given image " + CHESS_MODIFIED in { val img = Imgcodecs.imread(IMG_FOLDER + CHESS_MODIFIED) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(CHESS_MODIFIED) + "_").findChessboard(img) assert(rect.isDefined) rect.get should be (CHESS_MODIFIED_RECT) } /** * This board was hard to find because the background was close to the dark square color. */ "ChessboardFinder" should "return Rect when given image " + CHESS_KID in { val img = Imgcodecs.imread(IMG_FOLDER + CHESS_KID) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(CHESS_KID) + "_").findChessboard(img) rect should be (None) //assert(rect.isDefined) //rect.get should be (CHESS_KID_RECT) } "ChessboardFinder" should "return Rect when given image " + CHESS_KID_MODIFIED in { val img = Imgcodecs.imread(IMG_FOLDER + CHESS_KID_MODIFIED) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(CHESS_KID_MODIFIED) + "_").findChessboard(img) assert(rect.isDefined) rect.get should be (CHESS_KID_MODIFIED_RECT) } /** * This board was hard to find because the background was close to the dark square color. */ "ChessboardFinder" should "return Rect when given image " + DIAGRAM_OF_CHESS_BOARD_SETUP in { val img = Imgcodecs.imread(IMG_FOLDER + DIAGRAM_OF_CHESS_BOARD_SETUP) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(DIAGRAM_OF_CHESS_BOARD_SETUP) + "_").findChessboard(img) rect should be (None) //assert(rect.isDefined) //rect.get should be (DIAGRAM_OF_CHESS_BOARD_SETUP_RECT) } "ChessboardFinder" should "return Rect when given image " + DIAGRAM_OF_CHESS_BOARD_SETUP_MODIFIED in { val img = Imgcodecs.imread(IMG_FOLDER + DIAGRAM_OF_CHESS_BOARD_SETUP_MODIFIED) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(DIAGRAM_OF_CHESS_BOARD_SETUP_MODIFIED) + "_").findChessboard(img) assert(rect.isDefined) rect.get should be (DIAGRAM_OF_CHESS_BOARD_SETUP_MODIFIED_RECT) } /** * The contrast between light and dark squares was not enough. The adaptive * thresholding was making all the squares white. */ "ChessboardFinder" should "return Rect when given image " + STAGRAM in { val img = Imgcodecs.imread(IMG_FOLDER + STAGRAM) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(STAGRAM) + "_").findChessboard(img) rect should be (None) //assert(rect.isDefined) //rect.get should be (STAGRAM_RECT) } "ChessboardFinder" should "return Rect when given image " + STAGRAM_MODIFIED in { val img = Imgcodecs.imread(IMG_FOLDER + STAGRAM_MODIFIED) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(STAGRAM_MODIFIED) + "_").findChessboard(img) assert(rect.isDefined) rect.get should be (STAGRAM_MODIFIED_RECT) } /** * The chessboard image was too small. Resizing the image made the test pass. */ "ChessboardFinder" should "return Rect when given image " + VP_BLACKARRAY in { val img = Imgcodecs.imread(IMG_FOLDER + VP_BLACKARRAY) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(VP_BLACKARRAY) + "_").findChessboard(img) rect should be (None) //assert(rect.isDefined) //rect.get should be (VP_BLACKARRAY_RECT) } "ChessboardFinder" should "return Rect when given image " + VP_BLACKARRAY_MODIFIED in { val img = Imgcodecs.imread(IMG_FOLDER + VP_BLACKARRAY_MODIFIED) assert(!img.empty()) val rect = ChessboardFinder(OUTPUT_FOLDER + removeExt(VP_BLACKARRAY_MODIFIED) + "_").findChessboard(img) assert(rect.isDefined) rect.get should be (VP_BLACKARRAY_MODIFIED_RECT) } def removeExt(filename: String): String = { if(filename.contains(".")) filename.substring(0, filename.lastIndexOf('.')) else filename } }
antiparagon/CVExperimenter
src/test/scala/com/antiparagon/cvexperimenter/chessscanner/ChessboardFinderFailuresTester.scala
Scala
mit
8,419
/** * Copyright (c) 2015, Cloudera, Inc. All Rights Reserved. * * Cloudera, Inc. licenses this file to you under the Apache License, * Version 2.0 (the "License"). You may not use this file except in * compliance with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * This software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for * the specific language governing permissions and limitations under the * License. */ package com.cloudera.sparkts import breeze.linalg._ object Lag { /** * Makes a lag matrix from the given time series with the given lag, trimming both rows and * columns so that every element in the matrix is full. */ private[sparkts] def lagMatTrimBoth(x: Array[Double], maxLag: Int): Array[Array[Double]] = { lagMatTrimBoth(x, maxLag, false) } /** * Makes a lag matrix from the given time series with the given lag, trimming both rows and * columns so that every element in the matrix is full. */ private[sparkts] def lagMatTrimBoth(x: Array[Double], maxLag: Int, includeOriginal: Boolean) : Array[Array[Double]] = { val numObservations = x.length val numRows = numObservations - maxLag val numCols = maxLag + (if (includeOriginal) 1 else 0) val lagMat = Array.ofDim[Double](numRows, numCols) val initialLag = if (includeOriginal) 0 else 1 for (r <- 0 until numRows) { for (c <- initialLag to maxLag) { lagMat(r)(c - initialLag) = x(r + maxLag - c) } } lagMat } /** * Makes a lag matrix from the given time series with the given lag, trimming both rows and * columns so that every element in the matrix is full. */ private[sparkts] def lagMatTrimBoth(x: Vector[Double], maxLag: Int): Matrix[Double] = { lagMatTrimBoth(x, maxLag, false) } /** * Makes a lag matrix from the given time series with the given lag, trimming both rows and * columns so that every element in the matrix is full. */ private[sparkts] def lagMatTrimBoth(x: Vector[Double], maxLag: Int, includeOriginal: Boolean) : Matrix[Double] = { val numObservations = x.size val numRows = numObservations - maxLag val numCols = maxLag + (if (includeOriginal) 1 else 0) val lagMat = new DenseMatrix[Double](numRows, numCols) val initialLag = if (includeOriginal) 0 else 1 for (r <- 0 until numRows) { for (c <- initialLag to maxLag) { lagMat(r, (c - initialLag)) = x(r + maxLag - c) } } lagMat } private[sparkts] def lagMatTrimBoth( x: Vector[Double], outputMat: DenseMatrix[Double], maxLag: Int, includeOriginal: Boolean): Unit = { val numObservations = x.size val numRows = numObservations - maxLag val initialLag = if (includeOriginal) 0 else 1 for (r <- 0 until numRows) { for (c <- initialLag to maxLag) { outputMat(r, (c - initialLag)) = x(r + maxLag - c) } } } }
superwaiwjia/spark-timeseries
src/main/scala/com/cloudera/sparkts/Lag.scala
Scala
apache-2.0
3,062
package net.reactivecore.mongofaker import java.io.{IOException, File} import org.apache.commons.io.FileUtils import java.nio.file.Files private[mongofaker] class ManagedDatabaseDirException (msg : String, cause : Throwable = null) extends MongoFakerException (msg, cause) /** * Managed Database Directory. */ private[mongofaker] class ManagedDatabaseDir extends DatabaseDir{ val tmpDir = FileUtils.getTempDirectory() if (!tmpDir.exists()) { throw new ManagedDatabaseDirException(s"TMP directory ${tmpDir} does not exist") } val subDir = try { Files.createTempDirectory(tmpDir.toPath(), "mongofaker_") } catch { case e : Throwable => throw new ManagedDatabaseDirException(s"Could not create database directory ${e.getMessage()}", e) } def directory : File = { subDir.toFile } def uninit() : Unit = { try { FileUtils.deleteDirectory(directory) } catch { case ioError : IOException => throw new ManagedDatabaseDirException(s"Could not delete database directory ${directory.getAbsolutePath}", ioError) } } }
reactivecore/mongofaker
src/main/scala/net/reactivecore/mongofaker/ManagedDatabaseDir.scala
Scala
mit
1,083
package org.http4s package server import cats.Monad import cats.data.{Kleisli, OptionT} object ContextMiddleware { def apply[F[_]: Monad, T]( getContext: Kleisli[OptionT[F, ?], Request[F], T]): ContextMiddleware[F, T] = _.compose(Kleisli((r: Request[F]) => getContext(r).map(ContextRequest(_, r)))) }
ChristopherDavenport/http4s
server/src/main/scala/org/http4s/server/ContextMiddleware.scala
Scala
apache-2.0
315
package com.orendainx.trucking.storm.bolts import java.nio.charset.StandardCharsets import java.util import com.typesafe.scalalogging.Logger import org.apache.nifi.storm.NiFiDataPacket import org.apache.storm.task.{OutputCollector, TopologyContext} import org.apache.storm.topology.OutputFieldsDeclarer import org.apache.storm.topology.base.BaseRichBolt import org.apache.storm.tuple.{Fields, Tuple, Values} /** * Convert Tuples in the form of NiFiDataPackets into Tuples of their respective JVM objects. * * @author Edgar Orendain <[email protected]> */ class NiFiPacketToSerialized extends BaseRichBolt { private lazy val log = Logger(this.getClass) private var outputCollector: OutputCollector = _ override def prepare(stormConf: util.Map[_, _], context: TopologyContext, collector: OutputCollector): Unit = { outputCollector = collector } override def execute(tuple: Tuple): Unit = { val dp = tuple.getValueByField("nifiDataPacket").asInstanceOf[NiFiDataPacket] val content = dp.getContent val str = new String(content, StandardCharsets.UTF_8) log.info(s"Content: $content") log.info(s"str: $str") //import java.util.Base64 //val dec = Base64.getDecoder.decode(content) outputCollector.emit(new Values(dp.getAttributes.get("dataType"), str)) outputCollector.ack(tuple) } override def declareOutputFields(declarer: OutputFieldsDeclarer): Unit = declarer.declare(new Fields("dataType", "data")) }
orendain/trucking-iot
storm-topology/src/main/scala/com/orendainx/trucking/storm/bolts/NiFiPacketToSerialized.scala
Scala
apache-2.0
1,474
package is.hail.utils.richUtils import is.hail.annotations.Region import is.hail.asm4s._ import is.hail.expr.ir.EmitCodeBuilder import is.hail.types.physical._ import is.hail.io.OutputBuffer import is.hail.types.physical.stypes.{SCode, SValue} import is.hail.types.virtual._ class RichCodeOutputBuffer( val ob: Value[OutputBuffer] ) extends AnyVal { def flush(): Code[Unit] = ob.invoke[Unit]("flush") def close(): Code[Unit] = ob.invoke[Unit]("close") def indexOffset(): Code[Long] = ob.invoke[Long]("indexOffset") def writeByte(b: Code[Byte]): Code[Unit] = ob.invoke[Byte, Unit]("writeByte", b) def write(buf: Code[Array[Byte]]): Code[Unit] = ob.invoke[Array[Byte], Unit]("write", buf) def write(buf: Code[Array[Byte]], startPos: Code[Int], endPos: Code[Int]): Code[Unit] = ob.invoke[Array[Byte], Int, Int, Unit]("write", buf, startPos, endPos) def writeInt(i: Code[Int]): Code[Unit] = ob.invoke[Int, Unit]("writeInt", i) def writeLong(l: Code[Long]): Code[Unit] = ob.invoke[Long, Unit]("writeLong", l) def writeFloat(f: Code[Float]): Code[Unit] = ob.invoke[Float, Unit]("writeFloat", f) def writeDouble(d: Code[Double]): Code[Unit] = ob.invoke[Double, Unit]("writeDouble", d) def writeBytes(region: Code[Region], off: Code[Long], n: Code[Int]): Code[Unit] = ob.invoke[Region, Long, Int, Unit]("writeBytes", region, off, n) def writeBytes(addr: Code[Long], n: Code[Int]): Code[Unit] = ob.invoke[Long, Int, Unit]("writeBytes", addr, n) def writeDoubles(from: Code[Array[Double]], fromOff: Code[Int], n: Code[Int]): Code[Unit] = ob.invoke[Array[Double], Int, Int, Unit]("writeDoubles", from, fromOff, n) def writeDoubles(from: Code[Array[Double]]): Code[Unit] = ob.invoke[Array[Double], Unit]("writeDoubles", from) def writeBoolean(b: Code[Boolean]): Code[Unit] = ob.invoke[Boolean, Unit]("writeBoolean", b) def writeUTF(s: Code[String]): Code[Unit] = ob.invoke[String, Unit]("writeUTF", s) def writePrimitive(cb: EmitCodeBuilder, pc: SValue): Unit = pc.st.virtualType match { case TBoolean => cb += writeBoolean(pc.asBoolean.value) case TInt32 => cb += writeInt(pc.asInt.value) case TInt64 => cb += writeLong(pc.asLong.value) case TFloat32 => cb += writeFloat(pc.asFloat.value) case TFloat64 => cb += writeDouble(pc.asDouble.value) } }
hail-is/hail
hail/src/main/scala/is/hail/utils/richUtils/RichCodeOutputBuffer.scala
Scala
mit
2,376
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.ml.examples import collection.mutable.HashMap import org.apache.commons.math3.linear._ import org.apache.spark.rdd.RDD import org.apache.spark.SparkContext._ import org.apache.spark.HashPartitioner import org.apache.spark.broadcast.Broadcast import org.apache.spark.sql.Row; import org.apache.spark.sql.types.{ StructType, StructField, LongType, DoubleType }; import org.apache.spark.sql.DataFrame import org.apache.spark.sql.SQLContext import org.apache.spark.mllib.linalg.{ Vector, Vectors, VectorUDT } import org.apache.spark.ml.classification.LogisticRegression import org.apache.spark.{ SparkConf, SparkContext } import scala.util._ /** * SparkALR for Spark */ object SparkALR { // Number of users val U = 5000 // Number of movies val M = 100 // Number of features val F = 5 // Number of iterations val ITERATIONS = 5 // Number of regression iterations val REGMAXITER = 2 // Regularization parameter val REGP = 1e-4 // Elastic-net parameter val ENET = 0.00 // Number of partitions for data (set to number of machines in cluster) val NUMPARTITIONS = 4 // File name to read data val fileName = "data/mllib/SparkALR.data.nu5000_nm100_nl10_k2_N10000.csv" val outputDir = "./" // scala context that is visible to all in SparkALR val sparkConf = new SparkConf().setAppName("SparkALR") val sc = new SparkContext(sparkConf) val sqlContext = new SQLContext(sc) private def formSuffStat(data: RDD[((Long, Long), (Double, Int))], link: String) : RDD[(Long, HashMap[Long,(Double, Double)])] = link match { // RDD[(u, HashMap[m,(t, n)])] case "logistic" => val initialMap = HashMap.empty[Long, (Double, Double)] val addToMap = (s: HashMap[Long, (Double, Double)], v: (Long, (Double, Double))) => s+= (v._1 -> v._2) val mergePartitionMap = (p1: HashMap[Long, (Double, Double)], p2: HashMap[Long, (Double, Double)]) => p1 ++= p2 data.reduceByKey((a, b) => (a._1 + b._1, a._2 + b._2)).mapValues(v => (v._1, v._2-v._1)). map(v => (v._1._1, (v._1._2, v._2))).aggregateByKey(initialMap)(addToMap, mergePartitionMap) } private def makeTrainDF_u(m_id: Long, um_us: RDD[(Long, (HashMap[Long,(Double, Double)], Vector))]) : DataFrame = { // Generate the schema based on the string of schema val schema = StructType( StructField("label", DoubleType, true) :: StructField("weight", DoubleType, true) :: StructField("features", new VectorUDT, true) :: Nil) val um_us_im = um_us.filter(v => v._2._1.contains(m_id)). mapValues(v => (v._1(m_id), v._2)). flatMap(v => Seq((1.0, v._2._1._1, v._2._2), (0.0, v._2._1._2, v._2._2))). map(v => Row(v._1, v._2, v._3)) sqlContext.createDataFrame(um_us_im, schema) } private def update_us(lr: LogisticRegression, data_u: HashMap[Long,(Double, Double)], ms: Array[Vector]) : Vector = { val mu_features = data_u.keySet.toArray.map(v => v.toInt -1) collect ms val u_instance = data_u.values.toArray.zipWithIndex.flatMap(v => Seq((1.0, v._1._1, mu_features(v._2)), (0.0, v._1._2, mu_features(v._2)))) lr.localTrain(u_instance).coefficients.toDense } def main(args: Array[String]) { sc.setLogLevel("WARN") printf("Running with M=%d, U=%d, rank=%d, iters=(%d, %d), reg=(%f, %f)\\n", M, U, F, ITERATIONS, REGMAXITER, REGP, ENET) printf("Reading file from %s \\n.", fileName) val t0 = System.nanoTime() // Create data in the form of RDD[((Long, Long), (Double, Int))] val data = sc.textFile(fileName).map(_.split(",")). map(v => ((v(0).toLong, v(1).toLong), (v(2).toDouble, 1))) // *** row indexed sufficicnet stat data // RDD[(Long, HashMap[Long,(Double, Double)])] val um_data = formSuffStat(data, "logistic").partitionBy(new HashPartitioner(NUMPARTITIONS)) // *** row index user features // RDD[(Long, Vector)] var us = um_data.mapValues(v => Vectors.dense(Array.fill(F)(math.random-0.5))) // *** column index movie features // Array[Vector] var ms = Array.fill(M)(Vectors.dense(Array.fill(F)(math.random-0.5))) var msb = sc.broadcast(ms) var um_us = um_data.join(us) // *** LogisticRegression models for both distributed and local calculation val lr_u = new LogisticRegression() .setMaxIter(REGMAXITER) .setRegParam(REGP) .setElasticNetParam(ENET) .setFitIntercept(false) .setStandardization(false) val lr_m = new LogisticRegression() .setMaxIter(REGMAXITER) .setRegParam(REGP) .setElasticNetParam(ENET) .setFitIntercept(false) .setStandardization(false) .setWeightCol("weight") val t1 = System.nanoTime() for (iter <- 1 to ITERATIONS) { println("Iteration " + iter + ":") // *** Update ms *** // println("Update ms") // join data with us um_us = um_data.join(us) // loop over entries of ms for( m_id <- 1 to M ){ ms(m_id-1) = lr_m.fit(makeTrainDF_u(m_id, um_us)).coefficients.toDense } // *** Update us *** // println("Update us") // broadcast ms msb = sc.broadcast(ms) // map the local trainer with data us = um_data.mapValues(v => update_us(lr_u, v, msb.value)) } val t2 = System.nanoTime() println("t1 - t0: " + (t1 - t0)/1.0e9 + "sec", ", t2 - t1:" + (t2 - t1)/ITERATIONS/1.0e9 + "sec") // write ouput us.coalesce(1,true).saveAsTextFile(outputDir + "us.csv") sc.parallelize(ms).coalesce(1,true).saveAsTextFile(outputDir + "ms.csv") sc.stop() } }
haowu80s/spark
examples/src/main/scala/org/apache/spark/examples/SparkALR/SparkALR.scala
Scala
apache-2.0
6,725
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.ml.classification import org.apache.spark.annotation.DeveloperApi import org.apache.spark.ml.param.shared._ import org.apache.spark.ml.util.SchemaUtils import org.apache.spark.mllib.linalg.{DenseVector, Vector, VectorUDT, Vectors} import org.apache.spark.sql.DataFrame import org.apache.spark.sql.functions._ import org.apache.spark.sql.types.{DataType, StructType} /** * (private[classification]) Params for probabilistic classification. */ private[classification] trait ProbabilisticClassifierParams extends ClassifierParams with HasProbabilityCol with HasThresholds { override protected def validateAndTransformSchema( schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType = { val parentSchema = super.validateAndTransformSchema(schema, fitting, featuresDataType) SchemaUtils.appendColumn(parentSchema, $(probabilityCol), new VectorUDT) } } /** * :: DeveloperApi :: * * Single-label binary or multiclass classifier which can output class conditional probabilities. * * @tparam FeaturesType Type of input features. E.g., [[Vector]] * @tparam E Concrete Estimator type * @tparam M Concrete Model type */ @DeveloperApi abstract class ProbabilisticClassifier[ FeaturesType, E <: ProbabilisticClassifier[FeaturesType, E, M], M <: ProbabilisticClassificationModel[FeaturesType, M]] extends Classifier[FeaturesType, E, M] with ProbabilisticClassifierParams { /** @group setParam */ def setProbabilityCol(value: String): E = set(probabilityCol, value).asInstanceOf[E] /** @group setParam */ def setThresholds(value: Array[Double]): E = set(thresholds, value).asInstanceOf[E] } /** * :: DeveloperApi :: * * Model produced by a [[ProbabilisticClassifier]]. * Classes are indexed {0, 1, ..., numClasses - 1}. * * @tparam FeaturesType Type of input features. E.g., [[Vector]] * @tparam M Concrete Model type */ @DeveloperApi abstract class ProbabilisticClassificationModel[ FeaturesType, M <: ProbabilisticClassificationModel[FeaturesType, M]] extends ClassificationModel[FeaturesType, M] with ProbabilisticClassifierParams { /** @group setParam */ def setProbabilityCol(value: String): M = set(probabilityCol, value).asInstanceOf[M] /** @group setParam */ def setThresholds(value: Array[Double]): M = set(thresholds, value).asInstanceOf[M] /** * Transforms dataset by reading from [[featuresCol]], and appending new columns as specified by * parameters: * - predicted labels as [[predictionCol]] of type [[Double]] * - raw predictions (confidences) as [[rawPredictionCol]] of type [[Vector]] * - probability of each class as [[probabilityCol]] of type [[Vector]]. * * @param dataset input dataset * @return transformed dataset */ override def transform(dataset: DataFrame): DataFrame = { transformSchema(dataset.schema, logging = true) if (isDefined(thresholds)) { require($(thresholds).length == numClasses, this.getClass.getSimpleName + ".transform() called with non-matching numClasses and thresholds.length." + s" numClasses=$numClasses, but thresholds has length ${$(thresholds).length}") } // Output selected columns only. // This is a bit complicated since it tries to avoid repeated computation. var outputData = dataset var numColsOutput = 0 if ($(rawPredictionCol).nonEmpty) { val predictRawUDF = udf { (features: Any) => predictRaw(features.asInstanceOf[FeaturesType]) } outputData = outputData.withColumn(getRawPredictionCol, predictRawUDF(col(getFeaturesCol))) numColsOutput += 1 } if ($(probabilityCol).nonEmpty) { val probUDF = if ($(rawPredictionCol).nonEmpty) { udf(raw2probability _).apply(col($(rawPredictionCol))) } else { val probabilityUDF = udf { (features: Any) => predictProbability(features.asInstanceOf[FeaturesType]) } probabilityUDF(col($(featuresCol))) } outputData = outputData.withColumn($(probabilityCol), probUDF) numColsOutput += 1 } if ($(predictionCol).nonEmpty) { val predUDF = if ($(rawPredictionCol).nonEmpty) { udf(raw2prediction _).apply(col($(rawPredictionCol))) } else if ($(probabilityCol).nonEmpty) { udf(probability2prediction _).apply(col($(probabilityCol))) } else { val predictUDF = udf { (features: Any) => predict(features.asInstanceOf[FeaturesType]) } predictUDF(col($(featuresCol))) } outputData = outputData.withColumn($(predictionCol), predUDF) numColsOutput += 1 } if (numColsOutput == 0) { this.logWarning(s"$uid: ProbabilisticClassificationModel.transform() was called as NOOP" + " since no output columns were set.") } outputData } /** * Estimate the probability of each class given the raw prediction, * doing the computation in-place. * These predictions are also called class conditional probabilities. * * This internal method is used to implement [[transform()]] and output [[probabilityCol]]. * * @return Estimated class conditional probabilities (modified input vector) */ protected def raw2probabilityInPlace(rawPrediction: Vector): Vector /** Non-in-place version of [[raw2probabilityInPlace()]] */ protected def raw2probability(rawPrediction: Vector): Vector = { val probs = rawPrediction.copy raw2probabilityInPlace(probs) } override protected def raw2prediction(rawPrediction: Vector): Double = { if (!isDefined(thresholds)) { rawPrediction.argmax } else { probability2prediction(raw2probability(rawPrediction)) } } /** * Predict the probability of each class given the features. * These predictions are also called class conditional probabilities. * * This internal method is used to implement [[transform()]] and output [[probabilityCol]]. * * @return Estimated class conditional probabilities */ protected def predictProbability(features: FeaturesType): Vector = { val rawPreds = predictRaw(features) raw2probabilityInPlace(rawPreds) } /** * Given a vector of class conditional probabilities, select the predicted label. * This supports thresholds which favor particular labels. * @return predicted label */ protected def probability2prediction(probability: Vector): Double = { if (!isDefined(thresholds)) { probability.argmax } else { val thresholds: Array[Double] = getThresholds val scaledProbability: Array[Double] = probability.toArray.zip(thresholds).map { case (p, t) => if (t == 0.0) Double.PositiveInfinity else p / t } Vectors.dense(scaledProbability).argmax } } } private[ml] object ProbabilisticClassificationModel { /** * Normalize a vector of raw predictions to be a multinomial probability vector, in place. * * The input raw predictions should be >= 0. * The output vector sums to 1, unless the input vector is all-0 (in which case the output is * all-0 too). * * NOTE: This is NOT applicable to all models, only ones which effectively use class * instance counts for raw predictions. */ def normalizeToProbabilitiesInPlace(v: DenseVector): Unit = { val sum = v.values.sum if (sum != 0) { var i = 0 val size = v.size while (i < size) { v.values(i) /= sum i += 1 } } } }
practice-vishnoi/dev-spark-1
mllib/src/main/scala/org/apache/spark/ml/classification/ProbabilisticClassifier.scala
Scala
apache-2.0
8,325
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.ignite.visor.commands.cache import java.util.{Collections, UUID, Collection => JavaCollection, List => JavaList} import org.apache.ignite._ import org.apache.ignite.cluster.ClusterNode import org.apache.ignite.internal.util.lang.{GridFunc => F} import org.apache.ignite.internal.util.scala.impl import org.apache.ignite.internal.util.typedef.X import org.apache.ignite.internal.visor.cache._ import org.apache.ignite.internal.visor.util.VisorTaskUtils._ import org.apache.ignite.visor.VisorTag import org.apache.ignite.visor.commands.cache.VisorCacheCommand._ import org.apache.ignite.visor.commands.common.{VisorConsoleCommand, VisorTextTable} import org.apache.ignite.visor.visor._ import org.jetbrains.annotations._ import scala.collection.JavaConversions._ import scala.language.{implicitConversions, reflectiveCalls} /** * ==Overview== * Visor 'cache' command implementation. * * ==Help== * {{{ * +-------------------------------------------------------------------------------------------+ * | cache | Prints statistics about caches from specified node on the entire grid. | * | | Output sorting can be specified in arguments. | * | | | * | | Output abbreviations: | * | | # Number of nodes. | * | | H/h Number of cache hits. | * | | M/m Number of cache misses. | * | | R/r Number of cache reads. | * | | W/w Number of cache writes. | * +-------------------------------------------------------------------------------------------+ * | cache -clear | Clears all entries from cache on all nodes. | * +-------------------------------------------------------------------------------------------+ * | cache -scan | List all entries in cache with specified name. | * +-------------------------------------------------------------------------------------------+ * | cache -stop | Stop cache with specified name. | * +-------------------------------------------------------------------------------------------+ * | cache -reset | Reset metrics for cache with specified name. | * +-------------------------------------------------------------------------------------------+ * | cache -rebalance | Re-balance partitions for cache with specified name. | * +-------------------------------------------------------------------------------------------+ * * }}} * * ====Specification==== * {{{ * cache {-system} * cache -i {-system} * cache {-c=<cache-name>} {-id=<node-id>|id8=<node-id8>} {-s=hi|mi|rd|wr|cn} {-a} {-r} {-system} * cache -clear {-c=<cache-name>} * cache -scan -c=<cache-name> {-id=<node-id>|id8=<node-id8>} {-p=<page size>} {-system} * cache -stop -c=<cache-name> * cache -reset -c=<cache-name> * cache -rebalance -c=<cache-name> * }}} * * ====Arguments==== * {{{ * -id8=<node-id> * ID8 of the node to get cache statistics from. * Note that either '-id8' or '-id' should be specified. * You can also use '@n0' ... '@nn' variables as a shortcut for <node-id8>. * To specify oldest node on the same host as visor use variable '@nl'. * To specify oldest node on other hosts that are not running visor use variable '@nr'. * If neither is specified statistics will be gathered from all nodes. * -id=<node-id> * Full ID of the node to get cache statistics from. * Either '-id8' or '-id' can be specified. * If neither is specified statistics will be gathered from all nodes. * -c=<cache-name> * Name of the cache. * -s=hi|mi|rd|wr|cn * Defines sorting type. Sorted by: * hi Hits. * mi Misses. * rd Reads. * wr Writes. * cn Cache name. * If not specified - default sorting is 'cn'. * -i * Interactive mode. * User can interactively select node for cache statistics. * -r * Defines if sorting should be reversed. * Can be specified only with '-s' argument. * -a * Prints details statistics about each cache. * By default only aggregated summary is printed. * -system * Enable showing of information about system caches. * -clear * Clears cache. * -scan * Prints list of all entries from cache. * -stop * Stop cache with specified name. * -reset * Reset metrics for cache with specified name. * -rebalance * Re-balance partitions for cache with specified name. * -p=<page size> * Number of object to fetch from cache at once. * Valid range from 1 to 100. * By default page size is 25. * }}} * * ====Examples==== * {{{ * cache * Prints summary statistics about all no system caches. * cache -system * Prints summary statistics about all caches. * cache -id8=12345678 -s=hi -r * Prints summary statistics about caches from node with specified id8 * sorted by number of hits in reverse order. * cache -i * Prints cache statistics for interactively selected node. * cache -s=hi -r -a * Prints detailed statistics about all caches sorted by number of hits in reverse order. * cache -clear * Clears interactively selected cache. * cache -clear -c=cache * Clears cache with name 'cache'. * cache -scan * Prints list entries from interactively selected cache. * cache -scan -c=cache * Prints list entries from cache with name 'cache' from all nodes with this cache. * cache -scan -c=@c0 -p=50 * Prints list entries from cache with name taken from 'c0' memory variable * with page of 50 items from all nodes with this cache. * cache -scan -c=cache -id8=12345678 * Prints list entries from cache with name 'cache' and node '12345678' ID8. * cache -stop -c=cache * Stops cache with name 'cache'. * cache -reset -c=cache * Reset metrics for cache with name 'cache'. * cache -rebalance -c=cache * Re-balance partitions for cache with name 'cache'. * * }}} */ class VisorCacheCommand extends VisorConsoleCommand { @impl protected val name: String = "cache" /** * ===Command=== * Prints statistics about caches from nodes that pass mnemonic predicate. * Sorting can be specified in arguments. * * ===Examples=== * <ex>cache -id8=12345678 -s=no -r</ex> * Prints statistics about caches from node with specified id8 sorted by number of nodes in reverse order. * <br> * <ex>cache -s=no -r</ex> * Prints statistics about all caches sorted by number of nodes in reverse order. * <br> * <ex>cache -clear</ex> * Clears interactively selected cache. * <br> * <ex>cache -clear -c=cache</ex> * Clears cache with name 'cache'. * <br> * <ex>cache -scan</ex> * Prints list entries from interactively selected cache. * <br> * <ex>cache -scan -c=cache</ex> * Prints list entries from cache with name 'cache' from all nodes with this cache. * <br> * <ex>cache -scan -c=@c0 -p=50</ex> * Prints list entries from cache with name taken from 'c0' memory variable with page of 50 items * from all nodes with this cache. * <br> * <ex>cache -scan -c=cache -id8=12345678</ex> * Prints list entries from cache with name 'cache' and node '12345678' ID8. * <br> * <ex>cache -stop -c=@c0</ex> * Stop cache with name taken from 'c0' memory variable. * <br> * <ex>cache -reset -c=@c0</ex> * Reset metrics for cache with name taken from 'c0' memory variable. * * @param args Command arguments. */ def cache(args: String) { if (checkConnected() && checkActiveState()) { var argLst = parseArgs(args) if (hasArgFlag("i", argLst)) { askForNode("Select node from:") match { case Some(nid) => ask("Detailed statistics (y/n) [n]: ", "n") match { case "n" | "N" => nl(); cache("-id=" + nid); return; case "y" | "Y" => nl(); cache("-a -id=" + nid); return; case x => nl(); warn("Invalid answer: " + x); return; } case None => return } return } val node = parseNode(argLst) match { case Left(msg) => scold(msg) return case Right(n) => n } val showSystem = hasArgFlag("system", argLst) var cacheName = argValue("c", argLst) match { case Some(dfltName) if dfltName == DFLT_CACHE_KEY || dfltName == DFLT_CACHE_NAME => argLst = argLst.filter(_._1 != "c") ++ Seq("c" -> null) Some(null) case cn => cn } /** Check that argument list has flag from list. */ def hasArgFlagIn(flags: String *) = { flags.exists(hasArgFlag(_, argLst)) } // Get cache stats data from all nodes. val aggrData = cacheData(node, cacheName, showSystem) if (hasArgFlagIn("clear", "scan", "stop", "reset", "rebalance")) { if (cacheName.isEmpty) askForCache("Select cache from:", node, showSystem && !hasArgFlagIn("clear", "stop", "reset", "rebalance"), aggrData) match { case Some(name) => argLst = argLst ++ Seq("c" -> name) cacheName = Some(name) case None => return } cacheName.foreach(name => { aggrData.find(cache => F.eq(cache.getName, name)) match { case Some(cache) => if (!cache.isSystem) { if (hasArgFlag("scan", argLst)) VisorCacheScanCommand().scan(argLst, node) else if (hasArgFlag("clear", argLst)) VisorCacheClearCommand().clear(argLst, node) else if (hasArgFlag("stop", argLst)) VisorCacheStopCommand().stop(argLst, node) else if (hasArgFlag("reset", argLst)) VisorCacheResetCommand().reset(argLst, node) else if (hasArgFlag("rebalance", argLst)) VisorCacheRebalanceCommand().rebalance(argLst, node) } else { if (hasArgFlag("scan", argLst)) warn("Scan of system cache is not allowed: " + name) else if (hasArgFlag("clear", argLst)) warn("Clearing of system cache is not allowed: " + name) else if (hasArgFlag("stop", argLst)) warn("Stopping of system cache is not allowed: " + name) else if (hasArgFlag("reset", argLst)) warn("Reset metrics of system cache is not allowed: " + name) else if (hasArgFlag("rebalance", argLst)) warn("Re-balance partitions of system cache is not allowed: " + name) } case None => warn("Cache with specified name not found: " + name) } }) return } val all = hasArgFlag("a", argLst) val sortType = argValue("s", argLst) val reversed = hasArgName("r", argLst) if (sortType.isDefined && !isValidSortType(sortType.get)) { scold("Invalid '-s' argument in: " + args) return } if (aggrData.isEmpty) { scold("No caches found.") return } node match { case Some(n) => println("ID8=" + nid8(n) + ", time of the snapshot: " + formatDateTime(System.currentTimeMillis)) case None => println("Time of the snapshot: " + formatDateTime(System.currentTimeMillis)) } val sumT = VisorTextTable() sumT #= ("Name(@)", "Mode", "Nodes", "Entries (Heap / Off-heap)", "Hits", "Misses", "Reads", "Writes") sortAggregatedData(aggrData, sortType.getOrElse("cn"), reversed).foreach( ad => { // Add cache host as visor variable. registerCacheName(ad.getName) sumT += ( mkCacheName(ad.getName), ad.getMode, ad.getNodes.size(), ( "min: " + (ad.getMinimumHeapSize + ad.getMinimumOffHeapPrimarySize) + " (" + ad.getMinimumHeapSize + " / " + ad.getMinimumOffHeapPrimarySize + ")", "avg: " + formatDouble(ad.getAverageHeapSize + ad.getAverageOffHeapPrimarySize) + " (" + formatDouble(ad.getAverageHeapSize) + " / " + formatDouble(ad.getAverageOffHeapPrimarySize) + ")", "max: " + (ad.getMaximumHeapSize + ad.getMaximumOffHeapPrimarySize) + " (" + ad.getMaximumHeapSize + " / " + ad.getMaximumOffHeapPrimarySize + ")" ), ( "min: " + ad.getMinimumHits, "avg: " + formatDouble(ad.getAverageHits), "max: " + ad.getMaximumHits ), ( "min: " + ad.getMinimumMisses, "avg: " + formatDouble(ad.getAverageMisses), "max: " + ad.getMaximumMisses ), ( "min: " + ad.getMinimumReads, "avg: " + formatDouble(ad.getAverageReads), "max: " + ad.getMaximumReads ), ( "min: " + ad.getMinimumWrites, "avg: " + formatDouble(ad.getAverageWrites), "max: " + ad.getMaximumWrites ) ) } ) sumT.render() if (all) { val sorted = aggrData.sortWith((k1, k2) => { if (k1.getName == null) true else if (k2.getName == null) false else k1.getName.compareTo(k2.getName) < 0 }) val gCfg = node.map(config).collect { case cfg if cfg != null => cfg } sorted.foreach(ad => { val cacheNameVar = mkCacheName(ad.getName) println("\\nCache '" + cacheNameVar + "':") val m = ad.getMetrics val csT = VisorTextTable() csT += ("Name(@)", cacheNameVar) csT += ("Nodes", m.size()) csT += ("Total size Min/Avg/Max", (ad.getMinimumHeapSize + ad.getMinimumOffHeapPrimarySize) + " / " + formatDouble(ad.getAverageHeapSize + ad.getAverageOffHeapPrimarySize) + " / " + (ad.getMaximumHeapSize + ad.getMaximumOffHeapPrimarySize)) csT += (" Heap size Min/Avg/Max", ad.getMinimumHeapSize + " / " + formatDouble(ad.getAverageHeapSize) + " / " + ad.getMaximumHeapSize) csT += (" Off-heap size Min/Avg/Max", ad.getMinimumOffHeapPrimarySize + " / " + formatDouble(ad.getAverageOffHeapPrimarySize) + " / " + ad.getMaximumOffHeapPrimarySize) val ciT = VisorTextTable() ciT #= ("Node ID8(@), IP", "CPUs", "Heap Used", "CPU Load", "Up Time", "Size", "Hi/Mi/Rd/Wr") sortData(m.toMap, sortType.getOrElse("hi"), reversed).foreach { case (nid, cm) => val nm = ignite.cluster.node(nid).metrics() ciT += ( nodeId8Addr(nid), nm.getTotalCpus, formatDouble(100d * nm.getHeapMemoryUsed / nm.getHeapMemoryMaximum) + " %", formatDouble(nm.getCurrentCpuLoad * 100d) + " %", X.timeSpan2HMSM(nm.getUpTime), ( "Total: " + (cm.getHeapEntriesCount + cm.getOffHeapPrimaryEntriesCount), " Heap: " + cm.getHeapEntriesCount, " Off-Heap: " + cm.getOffHeapPrimaryEntriesCount, " Off-Heap Memory: " + formatMemory(cm.getOffHeapAllocatedSize) ), ( "Hi: " + cm.getHits, "Mi: " + cm.getMisses, "Rd: " + cm.getReads, "Wr: " + cm.getWrites ) ) } csT.render() nl() println("Nodes for: " + cacheNameVar) ciT.render() // Print footnote. println("'Hi' - Number of cache hits.") println("'Mi' - Number of cache misses.") println("'Rd' - number of cache reads.") println("'Wr' - Number of cache writes.") // Print metrics. nl() println("Aggregated queries metrics:") println(" Minimum execution time: " + X.timeSpan2HMSM(ad.getMinimumQueryTime)) println(" Maximum execution time: " + X.timeSpan2HMSM(ad.getMaximumQueryTime)) println(" Average execution time: " + X.timeSpan2HMSM(ad.getAverageQueryTime.toLong)) println(" Total number of executions: " + ad.getQueryExecutions) println(" Total number of failures: " + ad.getQueryFailures) gCfg.foreach(ccfgs => ccfgs.find(ccfg => F.eq(ccfg.getName, ad.getName)) .foreach(ccfg => { nl() printCacheConfiguration("Cache configuration:", ccfg) })) }) } else println("\\nUse \\"-a\\" flag to see detailed statistics.") } } /** * Makes extended cache host attaching optional visor variable host * associated with it. * * @param s Cache host. */ private def mkCacheName(@Nullable s: String): String = { if (s == null) { val v = mfindHead(DFLT_CACHE_KEY) DFLT_CACHE_NAME + (if (v.isDefined) "(@" + v.get._1 + ')' else "") } else { val v = mfindHead(s) s + (if (v.isDefined) "(@" + v.get._1 + ')' else "") } } /** * Registers cache host as a visor variable if one wasn't already registered. * * @param s Cache host. */ private def registerCacheName(@Nullable s: String) = setVarIfAbsent(if (s != null) s else DFLT_CACHE_KEY, "c") /** * ===Command=== * Prints unsorted statistics about all caches. * * ===Examples=== * <ex>cache</ex> * Prints unsorted statistics about all caches. */ def cache() { this.cache("") } /** * Get metrics data for all caches from all node or from specified node. * * @param node Option of node for cache names extracting. All nodes if `None`. * @param systemCaches Allow selection of system caches. * @return Caches metrics data. */ private def cacheData(node: Option[ClusterNode], name: Option[String], systemCaches: Boolean = false): List[VisorCacheAggregatedMetrics] = { assert(node != null) try { val caches: JavaList[String] = name.fold(Collections.emptyList[String]())(Collections.singletonList) val arg = new VisorCacheMetricsCollectorTaskArg(systemCaches, caches) node match { case Some(n) => executeOne(n.id(), classOf[VisorCacheMetricsCollectorTask], arg).toList case None => executeMulti(classOf[VisorCacheMetricsCollectorTask], arg).toList } } catch { case e: IgniteException => Nil } } /** * Gets configuration of grid from specified node for collecting of node cache's configuration. * * @param node Specified node. * @return Cache configurations for specified node. */ private def config(node: ClusterNode): JavaCollection[VisorCacheConfiguration] = { try { cacheConfigurations(node.id()) } catch { case e: IgniteException => scold(e) null } } /** * Tests whether passed in parameter is a valid sorting type. * * @param arg Sorting type to test. */ private def isValidSortType(arg: String): Boolean = { assert(arg != null) Set("hi", "mi", "rd", "wr", "cn").contains(arg.trim) } /** * Sort metrics data. * * @param data Unsorted list. * @param arg Sorting command argument. * @param reverse Whether to reverse sorting or not. * @return Sorted data. */ private def sortData(data: Map[UUID, VisorCacheMetrics], arg: String, reverse: Boolean) = { assert(data != null) assert(arg != null) val sorted = arg.trim match { case "hi" => data.toSeq.sortBy(_._2.getHits) case "mi" => data.toSeq.sortBy(_._2.getMisses) case "rd" => data.toSeq.sortBy(_._2.getReads) case "wr" => data.toSeq.sortBy(_._2.getWrites) case "cn" => data.toSeq.sortBy(_._1) case _ => assert(false, "Unknown sorting type: " + arg) Nil } if (reverse) sorted.reverse else sorted } /** * Sort aggregated metrics data. * * @param data Unsorted list. * @param arg Command argument. * @param reverse Whether to reverse sorting or not. * @return Sorted data. */ private def sortAggregatedData(data: Iterable[VisorCacheAggregatedMetrics], arg: String, reverse: Boolean): List[VisorCacheAggregatedMetrics] = { val sorted = arg.trim match { case "hi" => data.toList.sortBy(_.getAverageHits) case "mi" => data.toList.sortBy(_.getAverageMisses) case "rd" => data.toList.sortBy(_.getAverageReads) case "wr" => data.toList.sortBy(_.getAverageWrites) case "cn" => data.toList.sortWith((x, y) => x.getName == null || (y.getName != null && x.getName.toLowerCase < y.getName.toLowerCase)) case _ => assert(false, "Unknown sorting type: " + arg) Nil } if (reverse) sorted.reverse else sorted } /** * Asks user to select a cache from the list. * * @param title Title displayed before the list of caches. * @param node Option of node for cache names extracting. All nodes if `None`. * @param showSystem Allow selection of system caches. * @return `Option` for ID of selected cache. */ def askForCache(title: String, node: Option[ClusterNode], showSystem: Boolean = false, aggrData: Seq[VisorCacheAggregatedMetrics]): Option[String] = { assert(title != null) if (aggrData.isEmpty) { scold("No caches found.") return None } val sortedAggrData = sortAggregatedData(aggrData, "cn", false) println("Time of the snapshot: " + formatDateTime(System.currentTimeMillis)) val sumT = VisorTextTable() sumT #= ("#", "Name(@)", "Mode", "Size (Heap / Off-heap)") sortedAggrData.indices.foreach(i => { val ad = sortedAggrData(i) // Add cache host as visor variable. registerCacheName(ad.getName) sumT += ( i, mkCacheName(ad.getName), ad.getMode, ( "min: " + (ad.getMinimumHeapSize + ad.getMinimumOffHeapPrimarySize) + " (" + ad.getMinimumHeapSize + " / " + ad.getMinimumOffHeapPrimarySize + ")", "avg: " + formatDouble(ad.getAverageHeapSize + ad.getAverageOffHeapPrimarySize) + " (" + formatDouble(ad.getAverageHeapSize) + " / " + formatDouble(ad.getAverageOffHeapPrimarySize) + ")", "max: " + (ad.getMaximumHeapSize + ad.getMaximumOffHeapPrimarySize) + " (" + ad.getMaximumHeapSize + " / " + ad.getMaximumOffHeapPrimarySize + ")" )) }) sumT.render() val a = ask("\\nChoose cache number ('c' to cancel) [c]: ", "0") if (a.toLowerCase == "c") None else { try Some(sortedAggrData(a.toInt).getName) catch { case e: Throwable => warn("Invalid selection: " + a) None } } } } /** * Companion object that does initialization of the command. */ object VisorCacheCommand { /** Singleton command */ private val cmd = new VisorCacheCommand addHelp( name = "cache", shortInfo = "Prints cache statistics, clears cache, prints list of all entries from cache.", longInfo = Seq( "Prints statistics about caches from specified node on the entire grid.", "Output sorting can be specified in arguments.", " ", "Output abbreviations:", " # Number of nodes.", " H/h Number of cache hits.", " M/m Number of cache misses.", " R/r Number of cache reads.", " W/w Number of cache writes.", " ", "Clears cache.", " ", "Prints list of all entries from cache." ), spec = Seq( "cache", "cache -i", "cache {-c=<cache-name>} {-id=<node-id>|id8=<node-id8>} {-s=hi|mi|rd|wr} {-a} {-r}", "cache -clear {-c=<cache-name>} {-id=<node-id>|id8=<node-id8>}", "cache -scan -c=<cache-name> {-id=<node-id>|id8=<node-id8>} {-p=<page size>}", "cache -stop -c=<cache-name>", "cache -reset -c=<cache-name>", "cache -rebalance -c=<cache-name>" ), args = Seq( "-id8=<node-id>" -> Seq( "ID8 of the node to get cache statistics from.", "Note that either '-id8' or '-id' should be specified.", "You can also use '@n0' ... '@nn' variables as a shortcut for <node-id8>.", "To specify oldest node on the same host as visor use variable '@nl'.", "To specify oldest node on other hosts that are not running visor use variable '@nr'.", "If neither is specified statistics will be gathered from all nodes." ), "-id=<node-id>" -> Seq( "Full ID of the node to get cache statistics from.", "Either '-id8' or '-id' can be specified.", "If neither is specified statistics will be gathered from all nodes." ), "-c=<cache-name>" -> Seq( "Name of the cache.", "Note you can also use '@c0' ... '@cn' variables as shortcut to <cache-name>." ), "-clear" -> "Clears cache.", "-system" -> "Enable showing of information about system caches.", "-scan" -> "Prints list of all entries from cache.", "-stop" -> "Stop cache with specified name.", "-reset" -> "Reset metrics of cache with specified name.", "-rebalance" -> "Re-balance partitions for cache with specified name.", "-s=hi|mi|rd|wr|cn" -> Seq( "Defines sorting type. Sorted by:", " hi Hits.", " mi Misses.", " rd Reads.", " wr Writes.", " cn Cache name.", "If not specified - default sorting is 'cn'." ), "-i" -> Seq( "Interactive mode.", "User can interactively select node for cache statistics." ), "-r" -> Seq( "Defines if sorting should be reversed.", "Can be specified only with '-s' argument." ), "-a" -> Seq( "Prints details statistics about each cache.", "By default only aggregated summary is printed." ), "-p=<page size>" -> Seq( "Number of object to fetch from cache at once.", "Valid range from 1 to 100.", "By default page size is 25." ) ), examples = Seq( "cache" -> "Prints summary statistics about all non-system caches.", "cache -system" -> "Prints summary statistics about all caches including system cache.", "cache -i" -> "Prints cache statistics for interactively selected node.", "cache -id8=12345678 -s=hi -r" -> Seq( "Prints summary statistics about caches from node with specified id8", "sorted by number of hits in reverse order." ), "cache -id8=@n0 -s=hi -r" -> Seq( "Prints summary statistics about caches from node with id8 taken from 'n0' memory variable.", "sorted by number of hits in reverse order." ), "cache -c=@c0 -a" -> Seq( "Prints detailed statistics about cache with name taken from 'c0' memory variable." ), "cache -s=hi -r -a" -> "Prints detailed statistics about all caches sorted by number of hits in reverse order.", "cache -clear" -> "Clears interactively selected cache.", "cache -clear -c=cache" -> "Clears cache with name 'cache'.", "cache -clear -c=@c0" -> "Clears cache with name taken from 'c0' memory variable.", "cache -scan" -> "Prints list entries from interactively selected cache.", "cache -scan -c=cache" -> "List entries from cache with name 'cache' from all nodes with this cache.", "cache -scan -c=@c0 -p=50" -> ("Prints list entries from cache with name taken from 'c0' memory variable" + " with page of 50 items from all nodes with this cache."), "cache -scan -c=cache -id8=12345678" -> "Prints list entries from cache with name 'cache' and node '12345678' ID8.", "cache -stop -c=@c0" -> "Stop cache with name taken from 'c0' memory variable.", "cache -reset -c=@c0" -> "Reset metrics for cache with name taken from 'c0' memory variable.", "cache -rebalance -c=cache" -> "Re-balance partitions for cache with name 'cache'." ), emptyArgs = cmd.cache, withArgs = cmd.cache ) /** Default cache name to show on screen. */ private final val DFLT_CACHE_NAME = escapeName(null) /** Default cache key. */ protected val DFLT_CACHE_KEY = DFLT_CACHE_NAME + "-" + UUID.randomUUID().toString /** * Singleton. */ def apply() = cmd /** * Implicit converter from visor to commands "pimp". * * @param vs Visor tagging trait. */ implicit def fromCinfo2Visor(vs: VisorTag): VisorCacheCommand = cmd /** * Show table of cache configuration information. * * @param title Specified title for table. * @param cfg Config to show information. */ private[commands] def printCacheConfiguration(title: String, cfg: VisorCacheConfiguration) { val affinityCfg = cfg.getAffinityConfiguration val nearCfg = cfg.getNearConfiguration val rebalanceCfg = cfg.getRebalanceConfiguration val evictCfg = cfg.getEvictionConfiguration val storeCfg = cfg.getStoreConfiguration val queryCfg = cfg.getQueryConfiguration val cacheT = VisorTextTable() cacheT #= ("Name", "Value") cacheT += ("Group", cfg.getGroupName) cacheT += ("Dynamic Deployment ID", cfg.getDynamicDeploymentId) cacheT += ("System", bool2Str(cfg.isSystem)) cacheT += ("Mode", cfg.getMode) cacheT += ("Atomicity Mode", safe(cfg.getAtomicityMode)) cacheT += ("Statistic Enabled", bool2Str(cfg.isStatisticsEnabled)) cacheT += ("Management Enabled", bool2Str(cfg.isManagementEnabled)) cacheT += ("On-heap cache enabled", bool2Str(cfg.isOnheapCacheEnabled)) cacheT += ("Partition Loss Policy", cfg.getPartitionLossPolicy) cacheT += ("Query Parallelism", cfg.getQueryParallelism) cacheT += ("Copy On Read", bool2Str(cfg.isCopyOnRead)) cacheT += ("Listener Configurations", cfg.getListenerConfigurations) cacheT += ("Load Previous Value", bool2Str(cfg.isLoadPreviousValue)) cacheT += ("Memory Policy Name", cfg.getMemoryPolicyName) cacheT += ("Node Filter", cfg.getNodeFilter) cacheT += ("Read From Backup", bool2Str(cfg.isReadFromBackup)) cacheT += ("Topology Validator", cfg.getTopologyValidator) cacheT += ("Time To Live Eager Flag", cfg.isEagerTtl) cacheT += ("Write Synchronization Mode", safe(cfg.getWriteSynchronizationMode)) cacheT += ("Invalidate", bool2Str(cfg.isInvalidate)) cacheT += ("Affinity Function", safe(affinityCfg.getFunction)) cacheT += ("Affinity Backups", affinityCfg.getPartitionedBackups) cacheT += ("Affinity Partitions", safe(affinityCfg.getPartitions)) cacheT += ("Affinity Exclude Neighbors", safe(affinityCfg.isExcludeNeighbors)) cacheT += ("Affinity Mapper", safe(affinityCfg.getMapper)) cacheT += ("Rebalance Mode", rebalanceCfg.getMode) cacheT += ("Rebalance Batch Size", rebalanceCfg.getBatchSize) cacheT += ("Rebalance Timeout", rebalanceCfg.getTimeout) cacheT += ("Rebalance Delay", rebalanceCfg.getPartitionedDelay) cacheT += ("Time Between Rebalance Messages", rebalanceCfg.getThrottle) cacheT += ("Rebalance Batches Count", rebalanceCfg.getBatchesPrefetchCnt) cacheT += ("Rebalance Cache Order", rebalanceCfg.getRebalanceOrder) cacheT += ("Eviction Policy Enabled", bool2Str(evictCfg.getPolicy != null)) cacheT += ("Eviction Policy", safe(evictCfg.getPolicy)) cacheT += ("Eviction Policy Max Size", safe(evictCfg.getPolicyMaxSize)) cacheT += ("Eviction Filter", safe(evictCfg.getFilter)) cacheT += ("Near Cache Enabled", bool2Str(nearCfg.isNearEnabled)) cacheT += ("Near Start Size", nearCfg.getNearStartSize) cacheT += ("Near Eviction Policy", safe(nearCfg.getNearEvictPolicy)) cacheT += ("Near Eviction Policy Max Size", safe(nearCfg.getNearEvictMaxSize)) cacheT += ("Default Lock Timeout", cfg.getDefaultLockTimeout) cacheT += ("Metadata type count", cfg.getJdbcTypes.size()) cacheT += ("Cache Interceptor", safe(cfg.getInterceptor)) cacheT += ("Store Enabled", bool2Str(storeCfg.isEnabled)) cacheT += ("Store Class", safe(storeCfg.getStore)) cacheT += ("Store Factory Class", storeCfg.getStoreFactory) cacheT += ("Store Keep Binary", storeCfg.isStoreKeepBinary) cacheT += ("Store Read Through", bool2Str(storeCfg.isReadThrough)) cacheT += ("Store Write Through", bool2Str(storeCfg.isWriteThrough)) cacheT += ("Store Write Coalescing", bool2Str(storeCfg.getWriteBehindCoalescing)) cacheT += ("Write-Behind Enabled", bool2Str(storeCfg.isWriteBehindEnabled)) cacheT += ("Write-Behind Flush Size", storeCfg.getFlushSize) cacheT += ("Write-Behind Frequency", storeCfg.getFlushFrequency) cacheT += ("Write-Behind Flush Threads Count", storeCfg.getFlushThreadCount) cacheT += ("Write-Behind Batch Size", storeCfg.getBatchSize) cacheT += ("Concurrent Asynchronous Operations Number", cfg.getMaxConcurrentAsyncOperations) cacheT += ("Loader Factory Class Name", safe(cfg.getLoaderFactory)) cacheT += ("Writer Factory Class Name", safe(cfg.getWriterFactory)) cacheT += ("Expiry Policy Factory Class Name", safe(cfg.getExpiryPolicyFactory)) cacheT +=("Query Execution Time Threshold", queryCfg.getLongQueryWarningTimeout) cacheT +=("Query Escaped Names", bool2Str(queryCfg.isSqlEscapeAll)) cacheT +=("Query Schema Name", queryCfg.getSqlSchema) cacheT +=("Query Indexed Types", queryCfg.getIndexedTypes) cacheT +=("Maximum payload size for offheap indexes", cfg.getSqlIndexMaxInlineSize) cacheT +=("Query Metrics History Size", cfg.getQueryDetailMetricsSize) val sqlFxs = queryCfg.getSqlFunctionClasses val hasSqlFxs = sqlFxs != null && sqlFxs.nonEmpty if (!hasSqlFxs) cacheT +=("Query SQL functions", NA) val indexedTypes = queryCfg.getIndexedTypes val hasIndexedTypes = indexedTypes != null && indexedTypes.nonEmpty if (!hasIndexedTypes) cacheT +=("Query Indexed Types", NA) println(title) cacheT.render() if (hasSqlFxs) { println("\\nQuery SQL functions:") val sqlFxsT = VisorTextTable() sqlFxsT #= "Function Class Name" sqlFxs.foreach(s => sqlFxsT += s) sqlFxsT.render() } if (hasIndexedTypes) { println("\\nQuery Indexed Types:") val indexedTypesT = VisorTextTable() indexedTypesT #= ("Key Class Name", "Value Class Name") indexedTypes.grouped(2).foreach(types => indexedTypesT += (types(0), types(1))) indexedTypesT.render() } } }
wmz7year/ignite
modules/visor-console/src/main/scala/org/apache/ignite/visor/commands/cache/VisorCacheCommand.scala
Scala
apache-2.0
40,645
import org.scalatest.{FunSuite, Matchers} /** * Created by inieto on 27/04/15. */ class _03_Options extends FunSuite with Matchers { test("Option[A] is a container for an optional value of type A." + " If the value of type A is present, the Option[A] is an instance of Some[A], containing the present value of type A." + " If the value is absent, the Option[A] is the object None.") { val someValue: Option[String] = Some("I am wrapped in something") someValue.get should be("I am wrapped in something") val nullValue: Option[String] = None nullValue should be(None) } def maybeItWillReturnSomething(flag: Boolean): Option[String] = { if (flag) Some("Found value") else None } test("Having 'maybeItWillReturnSomething' represent null with None because null is a bad idea") { val value1 = maybeItWillReturnSomething(true) val value2 = maybeItWillReturnSomething(false) value1.get should be("Found value") intercept[java.util.NoSuchElementException] { value2.get } } test("Provide a default value for None") { val value1 = maybeItWillReturnSomething(true) val value2 = maybeItWillReturnSomething(false) value1 getOrElse "No value" should be("Found value") value2 getOrElse "No value" should be("No value") value2 getOrElse { "default function" } should be("default function") } test("Checking whether option has value") { val value1 = maybeItWillReturnSomething(true) val value2 = maybeItWillReturnSomething(false) value1.isEmpty should be(false) value2.isEmpty should be(true) } test("Option can also be used with pattern matching") { val someValue: Option[Double] = Some(20.0) val value = someValue match { case Some(v) => v case None => 0.0 } value should be(20.0) val noValue: Option[Double] = None val value1 = noValue match { case Some(v) => v case None => 0.0 } value1 should be(0.0) } }
inieto/scala-47deg
ScalaExercises/src/test/scala-2.11/_03_Options.scala
Scala
mit
2,038
package ml.combust.bundle.test import java.io.File import java.net.URI import java.nio.file.{Files, Paths} import ml.combust.bundle.fs.BundleFileSystem import scala.util.Try class TestBundleFileSystem extends BundleFileSystem { override def schemes: Seq[String] = Seq("test") override def load(uri: URI): Try[File] = { Try(new File(uri.getPath)) } override def save(uri: URI, localFile: File): Unit = { Files.copy(localFile.toPath, Paths.get(uri.getPath)) } }
combust-ml/mleap
bundle-ml/src/test/scala/ml/combust/bundle/test/TestBundleFileSystem.scala
Scala
apache-2.0
484
/*********************************************************************** * Copyright (c) 2013-2019 Commonwealth Computer Research, Inc. * All rights reserved. This program and the accompanying materials * are made available under the terms of the Apache License, Version 2.0 * which accompanies this distribution and is available at * http://www.opensource.org/licenses/apache2.0.php. ***********************************************************************/ package org.locationtech.geomesa.accumulo.index import java.util.Date import org.geotools.data.{Query, Transaction} import org.geotools.filter.text.ecql.ECQL import org.junit.runner.RunWith import org.locationtech.geomesa.accumulo.TestWithDataStore import org.locationtech.geomesa.features.ScalaSimpleFeature import org.locationtech.geomesa.index.conf.QueryHints.{BIN_BATCH_SIZE, BIN_LABEL, BIN_SORT, BIN_TRACK, SAMPLE_BY, SAMPLING} import org.locationtech.geomesa.utils.bin.BinaryOutputEncoder import org.locationtech.geomesa.utils.bin.BinaryOutputEncoder.BIN_ATTRIBUTE_INDEX import org.locationtech.geomesa.utils.collection.SelfClosingIterator import org.opengis.feature.simple.SimpleFeature import org.opengis.filter.Filter import org.specs2.runner.JUnitRunner @RunWith(classOf[JUnitRunner]) class S2IndexTest extends TestWithDataStore { override val spec = "name:String,track:String,dtg:Date,*geom:Point:srid=4326;geomesa.indices.enabled=s2:geom" val features = (0 until 10).map { i => ScalaSimpleFeature.create(sft, s"$i", s"name$i", "track1", s"2010-05-07T0$i:00:00.000Z", s"POINT(40 6$i)") } ++ (10 until 20).map { i => ScalaSimpleFeature.create(sft, s"$i", s"name$i", "track2", s"2010-05-${i}T$i:00:00.000Z", s"POINT(40 6${i - 10})") } ++ (20 until 30).map { i => ScalaSimpleFeature.create(sft, s"$i", s"name$i", "track3", s"2010-05-${i}T${i-10}:00:00.000Z", s"POINT(40 8${i - 20})") } step { addFeatures(features) } def execute(query: Query): Seq[SimpleFeature] = SelfClosingIterator(ds.getFeatureReader(query, Transaction.AUTO_COMMIT)).toList def execute(ecql: String, transforms: Option[Array[String]] = None): Seq[SimpleFeature] = { val query = transforms match { case None => new Query(sft.getTypeName, ECQL.toFilter(ecql)) case Some(t) => new Query(sft.getTypeName, ECQL.toFilter(ecql), t) } execute(query) } "S2Index" should { "return all features for inclusive filter" >> { val filter = "bbox(geom, 35, 55, 45, 75)" + " AND dtg between '2010-05-07T00:00:00.000Z' and '2010-05-08T00:00:00.000Z'" val features = execute(filter) features must haveSize(10) features.map(_.getID.toInt) must containTheSameElementsAs(0 to 9) } "return some features for exclusive geom filter" >> { val filter = "bbox(geom, 35, 55, 45, 65.001)" + " AND dtg between '2010-05-07T00:00:00.000Z' and '2010-05-08T00:00:00.000Z'" val features = execute(filter) features must haveSize(6) features.map(_.getID.toInt) must containTheSameElementsAs(0 to 5) } "return some features for exclusive date filter" >> { val filter = "bbox(geom, 35, 55, 45, 75)" + " AND dtg between '2010-05-07T06:00:00.000Z' and '2010-05-08T00:00:00.000Z'" val features = execute(filter) features must haveSize(4) features.map(_.getID.toInt) must containTheSameElementsAs(6 to 9) } "work with whole world filter" >> { val filter = "bbox(geom, -180, -90, 180, 90)" + " AND dtg between '2010-05-07T05:00:00.000Z' and '2010-05-07T08:00:00.000Z'" val features = execute(filter) features must haveSize(4) features.map(_.getID.toInt) must containTheSameElementsAs(5 to 8) } "work with small bboxes" >> { val filter = "bbox(geom, 39.999, 60.999, 40.001, 61.001)" val features = execute(filter) features must haveSize(2) features.map(_.getID.toInt) must containTheSameElementsAs(Seq(1, 11)) } "apply secondary filters" >> { val filter = "bbox(geom, 35, 55, 45, 75)" + " AND dtg between '2010-05-07T06:00:00.000Z' and '2010-05-08T00:00:00.000Z'" + " AND name = 'name8'" val features = execute(filter) features must haveSize(1) features.map(_.getID.toInt) must containTheSameElementsAs(Seq(8)) } "apply transforms" >> { val filter = "bbox(geom, 35, 55, 45, 75)" + " AND dtg between '2010-05-07T06:00:00.000Z' and '2010-05-08T00:00:00.000Z'" val features = execute(filter, Some(Array("name"))) features must haveSize(4) features.map(_.getID.toInt) must containTheSameElementsAs(6 to 9) forall(features)((f: SimpleFeature) => f.getAttributeCount mustEqual 1) forall(features)((f: SimpleFeature) => f.getAttribute("name") must not(beNull)) } "apply functional transforms" >> { val filter = "bbox(geom, 35, 55, 45, 75)" + " AND dtg between '2010-05-07T06:00:00.000Z' and '2010-05-08T00:00:00.000Z'" val features = execute(filter, Some(Array("derived=strConcat('my', name)"))) features must haveSize(4) features.map(_.getID.toInt) must containTheSameElementsAs(6 to 9) forall(features)((f: SimpleFeature) => f.getAttributeCount mustEqual 1) forall(features)((f: SimpleFeature) => f.getAttribute("derived").asInstanceOf[String] must beMatching("myname\\d")) } "optimize for bin format" >> { val filter = "bbox(geom, -180, -90, 180, 90)" + " AND dtg between '2010-05-07T00:00:00.000Z' and '2010-05-07T12:00:00.000Z'" val query = new Query(sft.getTypeName, ECQL.toFilter(filter)) query.getHints.put(BIN_TRACK, "name") query.getHints.put(BIN_BATCH_SIZE, 100) val returnedFeatures = SelfClosingIterator(ds.getFeatureReader(query, Transaction.AUTO_COMMIT)) // the same simple feature gets reused - so make sure you access in serial order val aggregates = returnedFeatures.map(f => f.getAttribute(BIN_ATTRIBUTE_INDEX).asInstanceOf[Array[Byte]]).toList aggregates.size must beLessThan(10) // ensure some aggregation was done val bin = aggregates.flatMap(a => a.grouped(16).map(BinaryOutputEncoder.decode)) bin must haveSize(10) (0 until 10).map(i => s"name$i".hashCode) must contain(atLeast(bin.map(_.trackId).tail: _*)) bin.map(_.dtg) must containAllOf((0 until 10).map(i => features(i).getAttribute("dtg").asInstanceOf[Date].getTime)) bin.map(_.lat) must containAllOf((0 until 10).map(_ + 60.0f)) forall(bin.map(_.lon))(_ mustEqual 40.0) } "optimize for bin format with sorting" >> { val filter = "bbox(geom, -180, -90, 180, 90)" + " AND dtg between '2010-05-07T00:00:00.000Z' and '2010-05-07T12:00:00.000Z'" val query = new Query(sft.getTypeName, ECQL.toFilter(filter)) query.getHints.put(BIN_TRACK, "name") query.getHints.put(BIN_BATCH_SIZE, 100) query.getHints.put(BIN_SORT, true) val returnedFeatures = SelfClosingIterator(ds.getFeatureReader(query, Transaction.AUTO_COMMIT)) // the same simple feature gets reused - so make sure you access in serial order val aggregates = returnedFeatures.map(f => f.getAttribute(BIN_ATTRIBUTE_INDEX).asInstanceOf[Array[Byte]]).toSeq aggregates.size must beLessThan(10) // ensure some aggregation was done forall(aggregates) { a => val window = a.grouped(16).map(BinaryOutputEncoder.decode(_).dtg).sliding(2).filter(_.length > 1) forall(window.toSeq)(w => w.head must beLessThanOrEqualTo(w(1))) } val bin = aggregates.flatMap(a => a.grouped(16).map(BinaryOutputEncoder.decode)) bin must haveSize(10) (0 until 10).map(i => s"name$i".hashCode) must contain(atLeast(bin.map(_.trackId).tail: _*)) bin.map(_.dtg) must containAllOf((0 until 10).map(i => features(i).getAttribute("dtg").asInstanceOf[Date].getTime)) bin.map(_.lat) must containAllOf((0 until 10).map(_ + 60.0f)) forall(bin.map(_.lon))(_ mustEqual 40.0) } "optimize for bin format with label" >> { val filter = "bbox(geom, -180, -90, 180, 90)" + " AND dtg between '2010-05-07T00:00:00.000Z' and '2010-05-07T12:00:00.000Z'" val query = new Query(sft.getTypeName, ECQL.toFilter(filter)) query.getHints.put(BIN_TRACK, "name") query.getHints.put(BIN_LABEL, "name") query.getHints.put(BIN_BATCH_SIZE, 100) val returnedFeatures = SelfClosingIterator(ds.getFeatureReader(query, Transaction.AUTO_COMMIT)) // the same simple feature gets reused - so make sure you access in serial order val aggregates = returnedFeatures.map(f => f.getAttribute(BIN_ATTRIBUTE_INDEX).asInstanceOf[Array[Byte]]).toSeq aggregates.size must beLessThan(10) // ensure some aggregation was done val bin = aggregates.flatMap(a => a.grouped(24).map(BinaryOutputEncoder.decode)) bin must haveSize(10) (0 until 10).map(i => s"name$i".hashCode) must contain(atLeast(bin.map(_.trackId).tail: _*)) bin.map(_.dtg) must containAllOf((0 until 10).map(i => features(i).getAttribute("dtg").asInstanceOf[Date].getTime)) bin.map(_.lat) must containAllOf((0 until 10).map(_ + 60.0f)) forall(bin.map(_.lon))(_ mustEqual 40.0) bin.map(_.label) must containAllOf((0 until 10).map(i => BinaryOutputEncoder.convertToLabel(s"name$i"))) } "support sampling" in { val query = new Query(sft.getTypeName, Filter.INCLUDE) query.getHints.put(SAMPLING, new java.lang.Float(.5f)) val results = execute(query) results must haveLength(15) } "support sampling with cql" in { val query = new Query(sft.getTypeName, ECQL.toFilter("track = 'track1'")) query.getHints.put(SAMPLING, new java.lang.Float(.5f)) val results = execute(query) results must haveLength(5) forall(results)(_.getAttribute("track") mustEqual "track1") } "support sampling with transformations" in { val query = new Query(sft.getTypeName, Filter.INCLUDE, Array("name", "geom")) query.getHints.put(SAMPLING, new java.lang.Float(.5f)) val results = execute(query) results must haveLength(15) forall(results)(_.getAttributeCount mustEqual 2) } "support sampling with cql and transformations" in { val query = new Query(sft.getTypeName, ECQL.toFilter("track = 'track2'"), Array("name", "geom")) query.getHints.put(SAMPLING, new java.lang.Float(.2f)) val results = execute(query) results must haveLength(2) forall(results)(_.getAttributeCount mustEqual 2) } "support sampling by thread" in { val query = new Query(sft.getTypeName, Filter.INCLUDE) query.getHints.put(SAMPLING, new java.lang.Float(.5f)) query.getHints.put(SAMPLE_BY, "track") val results = execute(query) results.length must beLessThan(17) results.count(_.getAttribute("track") == "track1") must beLessThan(6) results.count(_.getAttribute("track") == "track2") must beLessThan(6) results.count(_.getAttribute("track") == "track3") must beLessThan(6) } } }
elahrvivaz/geomesa
geomesa-accumulo/geomesa-accumulo-datastore/src/test/scala/org/locationtech/geomesa/accumulo/index/S2IndexTest.scala
Scala
apache-2.0
11,176
package com.transgee.ebook.pdf import java.io.{File, FileOutputStream} import org.scalatest._ class FigureIteratorSpec extends FlatSpec with Matchers { "FigureIterator" should "extract images" in { extractFigures("pdf/OReilly.Mobile.and.Web.Messaging.pdf") } private def extractFigures(filePath: String) = { val file = new File(filePath) val filename = file.getName val outPrefix = filename.substring(0, filename.lastIndexOf('.')) withPdf(file) { doc => val stream = new FigureIterator(doc).toStream stream.foreach { f => f.writeImageTo(new FileOutputStream(new File(s"target/$outPrefix-P${f.pageNumber}-F${f.id}.${f.suffix}"))) } stream.length } } it should "extract all drawings in a PDF" ignore { extractFigures("pdf/RemoteNotificationsPG.pdf") } it should "extract all drawings in a PDF - Example 2" ignore { extractFigures("pdf/Beautiful_Architecture.pdf") } }
zenkiezhu/scala-ebook-clipper
src/test/scala/com/transgee/ebook/pdf/FigureIteratorSpec.scala
Scala
apache-2.0
953
package scala.slick.lifted import scala.annotation.implicitNotFound import scala.collection.generic.CanBuildFrom import scala.slick.ast.{Join => AJoin, _} import scala.slick.util.CollectionLinearizer /** * A query monad which contains the AST for a query's projection and the accumulated * restrictions and other modifiers. */ abstract class Query[+E, U] extends Rep[Seq[U]] with CollectionLinearizer[Seq, U] { self => def unpackable: ShapedValue[_ <: E, U] final lazy val packed = unpackable.packedNode final lazy val elementLinearizer = unpackable.linearizer final val canBuildFrom: CanBuildFrom[Nothing, U, Seq[U]] = implicitly def flatMap[F, T](f: E => Query[F, T]): Query[F, T] = { val generator = new AnonSymbol val aliased = { val uv = unpackable.value WithOp.encodeRef(uv, generator) } val fv = f(aliased) new WrappingQuery[F, T](new Bind(generator, Node(unpackable.value), Node(fv)), fv.unpackable) } def map[F, G, T](f: E => F)(implicit shape: Shape[F, T, G]): Query[G, T] = flatMap(v => Query.pure[F, T, G](f(v))) def >>[F, T](q: Query[F, T]): Query[F, T] = flatMap(_ => q) def filter[T](f: E => T)(implicit wt: CanBeQueryCondition[T]): Query[E, U] = { val generator = new AnonSymbol val aliased = unpackable.encodeRef(generator) val fv = f(aliased.value) new WrappingQuery[E, U](Filter(generator, Node(this), Node(wt(fv))), unpackable) } def withFilter[T : CanBeQueryCondition](f: E => T) = filter(f) def where[T <: Column[_] : CanBeQueryCondition](f: E => T) = filter(f) def join[E2, U2](q2: Query[E2, U2], jt: JoinType = JoinType.Inner) = { val leftGen, rightGen = new AnonSymbol val aliased1 = unpackable.encodeRef(leftGen) val aliased2 = q2.unpackable.encodeRef(rightGen) new BaseJoinQuery[E, E2, U, U2](leftGen, rightGen, Node(unpackable.value), Node(q2.unpackable.value), jt, aliased1.zip(aliased2)) } def innerJoin[E2, U2](q2: Query[E2, U2]) = join(q2, JoinType.Inner) def leftJoin[E2, U2](q2: Query[E2, U2]) = join(q2, JoinType.Left) def rightJoin[E2, U2](q2: Query[E2, U2]) = join(q2, JoinType.Right) def outerJoin[E2, U2](q2: Query[E2, U2]) = join(q2, JoinType.Outer) def zip[E2, U2](q2: Query[E2, U2]): Query[(E, E2), (U, U2)] = join(q2, JoinType.Zip) def zipWith[E2, U2, F, G, T](q2: Query[E2, U2], f: (E, E2) => F)(implicit shape: Shape[F, T, G]): Query[G, T] = join(q2, JoinType.Zip).map[F, G, T](x => f(x._1, x._2)) def zipWithIndex = zip(Query(RangeFrom(0L))) def sortBy[T <% Ordered](f: E => T): Query[E, U] = { val generator = new AnonSymbol val aliased = unpackable.encodeRef(generator) new WrappingQuery[E, U](SortBy(generator, Node(this), f(aliased.value).columns), unpackable) } def groupBy[K, T, G, P](f: E => K)(implicit kshape: Shape[K, T, G], vshape: Shape[E, _, P]): Query[(G, Query[P, U]), (T, Query[P, U])] = { val sym = new AnonSymbol val key = ShapedValue(f(unpackable.encodeRef(sym).value), kshape).packedValue val value = ShapedValue(pack, Shape.selfLinearizingShape.asInstanceOf[Shape[Query[P, U], Query[P, U], Query[P, U]]]) val group = GroupBy(sym, new AnonSymbol, Node(unpackable.value), Node(key.value)) new WrappingQuery(group, key.zip(value)) } def encodeRef(sym: Symbol, positions: List[Int] = Nil): Query[E, U] = new Query[E, U] { val unpackable = self.unpackable.encodeRef(sym, positions) lazy val nodeDelegate = positions.foldRight[Node](Ref(sym))((idx, node) => Select(node, ElementSymbol(idx))) } def union[O >: E, R](other: Query[O, U]) = new WrappingQuery[O, U](Union(Node(unpackable.value), Node(other.unpackable.value), false), unpackable) def unionAll[O >: E, R](other: Query[O, U]) = new WrappingQuery[O, U](Union(Node(unpackable.value), Node(other.unpackable.value), true), unpackable) def length: Column[Int] = Library.CountAll.column(Node(unpackable.value)) @deprecated("Use .length instead of .count", "0.10.0-M2") def count = length def countDistinct: Column[Int] = Library.CountDistinct.column(Node(unpackable.value)) def exists = Library.Exists.column[Boolean](Node(unpackable.value)) @deprecated("Query.sub is not needed anymore", "0.10.0-M2") def sub = this def pack[R](implicit packing: Shape[E, _, R]): Query[R, U] = new Query[R, U] { val unpackable: ShapedValue[_ <: R, U] = self.unpackable.packedValue(packing) def nodeDelegate = self.nodeDelegate } def take(num: Int): Query[E, U] = new WrappingQuery[E, U](Take(Node(this), num), unpackable) def drop(num: Int): Query[E, U] = new WrappingQuery[E, U](Drop(Node(this), num), unpackable) } object Query extends Query[Column[Unit], Unit] { def nodeDelegate = packed def unpackable = ShapedValue(ConstColumn(()).mapOp((n, _) => Pure(n)), Shape.unpackColumnBase[Unit, Column[Unit]]) @deprecated("Use .sortBy on a query instead of mixing in Query.orderBy", "0.10.0-M2") def orderBy[T <% Ordered](by: T) = new WrappingQuery[Column[Unit], Unit](OrderBy(new AnonSymbol, Node(this), by.columns), unpackable) def apply[E, U, R](value: E)(implicit unpack: Shape[E, U, R]): Query[R, U] = { val unpackable = ShapedValue(value, unpack).packedValue if(unpackable.packedNode.isInstanceOf[AbstractTable[_]]) new NonWrappingQuery[R, U](unpackable.packedNode, unpackable) else new WrappingQuery[R, U](Pure(unpackable.packedNode), unpackable) } def pure[E, U, R](value: E)(implicit unpack: Shape[E, U, R]): Query[R, U] = { val unpackable = ShapedValue(value, unpack).packedValue new WrappingQuery[R, U](Pure(unpackable.packedNode), unpackable) } } @implicitNotFound("Type ${T} cannot be a query condition (only Boolean, Column[Boolean] and Column[Option[Boolean]] are allowed") trait CanBeQueryCondition[-T] extends (T => Column[_]) object CanBeQueryCondition { implicit object BooleanColumnCanBeQueryCondition extends CanBeQueryCondition[Column[Boolean]] { def apply(value: Column[Boolean]) = value } implicit object BooleanOptionColumnCanBeQueryCondition extends CanBeQueryCondition[Column[Option[Boolean]]] { def apply(value: Column[Option[Boolean]]) = value } implicit object BooleanCanBeQueryCondition extends CanBeQueryCondition[Boolean] { def apply(value: Boolean) = new ConstColumn(value) } } class WrappingQuery[+E, U](val nodeDelegate: Node, val base: ShapedValue[_ <: E, U]) extends Query[E, U] { lazy val unpackable = base.encodeRef(nodeDelegate.nodeIntrinsicSymbol) } class NonWrappingQuery[+E, U](val nodeDelegate: Node, val unpackable: ShapedValue[_ <: E, U]) extends Query[E, U] final class BaseJoinQuery[+E1, +E2, U1, U2](leftGen: Symbol, rightGen: Symbol, left: Node, right: Node, jt: JoinType, base: ShapedValue[_ <: (E1, E2), (U1, U2)]) extends WrappingQuery[(E1, E2), (U1, U2)](AJoin(leftGen, rightGen, left, right, jt, ConstColumn.TRUE), base) { def on[T <: Column[_]](pred: (E1, E2) => T)(implicit wt: CanBeQueryCondition[T]) = new WrappingQuery[(E1, E2), (U1, U2)](AJoin(leftGen, rightGen, left, right, jt, Node(wt(pred(base.value._1, base.value._2)))), base) }
zefonseca/slick-1.0.0-scala.2.11.1
src/main/scala/scala/slick/lifted/Query.scala
Scala
bsd-2-clause
7,130
package scife.enumeration package member package testcase import scife.{ enumeration => e } import dependent._ import scife.util.logging._ import scife.util._ import org.scalatest._ import org.scalatest.prop._ import org.scalacheck.Gen class BinarySearchTreeTest extends FunSuite with Matchers with GeneratorDrivenPropertyChecks with HasLogger with ProfileLogger { import Checks._ import structures._ import BSTrees._ test("figure out what is going on") { val depend = constructEnumerator for (size <- 1 to 7) { { val enum = depend(size, 1 to size) for (ind <- 0 until enum.size) enum(ind) } // { // val enum = depend(size, 1 to size) // // for (ind <- 0 to 0) { // val missing = (1 to size).toList.find(!enum(ind).contains(_)) // // val newTree = enum(ind) insert missing.get // // var invariant = false // for (bH <- blackHeight to (blackHeight + 1); if !invariant) { // val enumBigger = dependEnumMember(size, 1 to size, Set(true, false), bH) // // invariant = (enumBigger.member(newTree)) // } // assert(invariant) // } // } } } test("regular enumeration") { common.BinarySearchTreeTestHelper.testCorrectness( constructEnumerator ) } test("member enumeration") { val trees = constructEnumerator { val en = trees.getEnum(1, 1 to 2): Member[Tree] for ((revEl, ind) <- List(Node(1), Node(2)).zipWithIndex) { en.member(revEl) should be(true) } } val normalTrees = constructEnumeratorNormal forAll(Gen.choose(1, 5), Gen.choose(1, 5), minSuccessful(20)) { (size: Int, m: Int) => { val normalList = normalTrees.getEnum(size, 1 to m) for (ind <- 0 until normalList.size) { trees(size, 1 to m).member(normalList(ind)) should be(true) } } } } private def constructEnumerator = { val rootProducer = new WrapFunctionFin( (range: Range) => { new WrapRange(range) }) val sizeProducer = new WrapFunctionFin( (size: Int) => { new WrapRange(0 until size) }) new WrapFunctionFin( (self: MemberDependFinite[(Int, Range), Tree], pair: (Int, Range)) => { val (size, range) = pair if (size <= 0) new WrapArray(Array(Leaf)): MemberFinite[Tree] else if (size == 1) new WrapArray(Array(range map { v => Node(Leaf, v, Leaf) }: _*)): MemberFinite[Tree] else { val roots = rootProducer.getEnum(range) val leftSizes = sizeProducer.getEnum(size) val rootLeftSizePairs = new member.ProductFinite(leftSizes, roots) val leftTrees = new InMapFin(self, { (par: (Int, Int)) => val (leftSize, median) = par (leftSize, range.start to (median - 1)) }) val rightTrees = new InMapFin(self, { (par: (Int, Int)) => val (leftSize, median) = par (size - leftSize - 1, (median + 1) to range.end) }) val leftRightPairs = new ProductFinite(leftTrees, rightTrees) val allNodes = new ChainFinite(rootLeftSizePairs, leftRightPairs): MemberFinite[((Int, Int), (Tree, Tree))] val makeTree = (p: ((Int, Int), (Tree, Tree))) => { val ((leftSize, currRoot), (leftTree, rightTree)) = p Node(leftTree, currRoot, rightTree) } val memberTree = (t: Tree) => { val n = t.asInstanceOf[Node] val leftSize = BSTrees.size(n.l) val currRoot = n.v val leftTree = n.l val rightTree = n.r ((leftSize, currRoot), (leftTree, rightTree)) } new Map[((Int, Int), (Tree, Tree)), Tree](allNodes, makeTree, memberTree) with MemberFinite[Tree]: MemberFinite[Tree] } }) } private def constructEnumeratorNormal = { import e.dependent._ val rootProducer = new WrapFunctionFin( (range: Range) => { new WrapRange(range) }) val sizeProducer = new WrapFunctionFin( (size: Int) => { Enum(0 until size) }) Depend.fin( (self: e.dependent.DependFinite[(Int, Range), Tree], pair: (Int, Range)) => { val (size, range) = pair if (size <= 0) Enum(Leaf): Finite[Tree] else if (size == 1) Enum(range.toArray map { v => Node(Leaf, v, Leaf) }): Finite[Tree] else { val roots = rootProducer.getEnum(range) val leftSizes = sizeProducer.getEnum(size) val rootLeftSizePairs = e.Product(leftSizes, roots) val leftTrees = InMap(self, { (par: (Int, Int)) => val (leftSize, median) = par (leftSize, range.start to (median - 1)) }) val rightTrees = InMap(self, { (par: (Int, Int)) => val (leftSize, median) = par (size - leftSize - 1, (median + 1) to range.end) }) val leftRightPairs = Product(leftTrees, rightTrees) val allNodes = new ChainFinite(rootLeftSizePairs, leftRightPairs) val makeTree = (p: ((Int, Int), (Tree, Tree))) => { val ((leftSize, currRoot), (leftTree, rightTree)) = p Node(leftTree, currRoot, rightTree) } allNodes map makeTree: Finite[Tree] } }) } }
kaptoxic/SciFe
src/test/scala/scife/enumeration/member/testcase/BinarySearchTreeTest.scala
Scala
gpl-2.0
5,573
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package whisk.core.loadBalancer import java.nio.charset.StandardCharsets import scala.annotation.tailrec import scala.concurrent.Await import scala.concurrent.ExecutionContext import scala.concurrent.Future import scala.concurrent.Promise import scala.concurrent.duration._ import scala.util.Failure import scala.util.Success import org.apache.kafka.clients.producer.RecordMetadata import akka.actor.ActorRefFactory import akka.actor.ActorSystem import akka.actor.Props import akka.cluster.Cluster import akka.util.Timeout import akka.pattern.ask import whisk.common.Logging import whisk.common.LoggingMarkers import whisk.common.TransactionId import whisk.core.WhiskConfig import whisk.core.WhiskConfig._ import whisk.core.connector.{ActivationMessage, CompletionMessage} import whisk.core.connector.MessageFeed import whisk.core.connector.MessageProducer import whisk.core.connector.MessagingProvider import whisk.core.database.NoDocumentException import whisk.core.entity.{ActivationId, WhiskActivation} import whisk.core.entity.EntityName import whisk.core.entity.ExecutableWhiskActionMetaData import whisk.core.entity.Identity import whisk.core.entity.InstanceId import whisk.core.entity.UUID import whisk.core.entity.WhiskAction import whisk.core.entity.size._ import whisk.core.entity.types.EntityStore import whisk.spi.SpiLoader trait LoadBalancer { val activeAckTimeoutGrace = 1.minute /** Gets the number of in-flight activations for a specific user. */ def activeActivationsFor(namespace: UUID): Future[Int] /** Gets the number of in-flight activations in the system. */ def totalActiveActivations: Future[Int] /** * Publishes activation message on internal bus for an invoker to pick up. * * @param action the action to invoke * @param msg the activation message to publish on an invoker topic * @param transid the transaction id for the request * @return result a nested Future the outer indicating completion of publishing and * the inner the completion of the action (i.e., the result) * if it is ready before timeout (Right) otherwise the activation id (Left). * The future is guaranteed to complete within the declared action time limit * plus a grace period (see activeAckTimeoutGrace). */ def publish(action: ExecutableWhiskActionMetaData, msg: ActivationMessage)( implicit transid: TransactionId): Future[Future[Either[ActivationId, WhiskActivation]]] } class LoadBalancerService(config: WhiskConfig, instance: InstanceId, entityStore: EntityStore)( implicit val actorSystem: ActorSystem, logging: Logging) extends LoadBalancer { /** The execution context for futures */ implicit val executionContext: ExecutionContext = actorSystem.dispatcher /** How many invokers are dedicated to blackbox images. We range bound to something sensical regardless of configuration. */ private val blackboxFraction: Double = Math.max(0.0, Math.min(1.0, config.controllerBlackboxFraction)) logging.info(this, s"blackboxFraction = $blackboxFraction")(TransactionId.loadbalancer) /** Feature switch for shared load balancer data **/ private val loadBalancerData = { if (config.controllerLocalBookkeeping) { new LocalLoadBalancerData() } else { /** Specify how seed nodes are generated */ val seedNodesProvider = new StaticSeedNodesProvider(config.controllerSeedNodes, actorSystem.name) Cluster(actorSystem).joinSeedNodes(seedNodesProvider.getSeedNodes()) new DistributedLoadBalancerData() } } override def activeActivationsFor(namespace: UUID) = loadBalancerData.activationCountOn(namespace) override def totalActiveActivations = loadBalancerData.totalActivationCount override def publish(action: ExecutableWhiskActionMetaData, msg: ActivationMessage)( implicit transid: TransactionId): Future[Future[Either[ActivationId, WhiskActivation]]] = { chooseInvoker(msg.user, action).flatMap { invokerName => val entry = setupActivation(action, msg.activationId, msg.user.uuid, invokerName, transid) sendActivationToInvoker(messageProducer, msg, invokerName).map { _ => entry.promise.future } } } /** An indexed sequence of all invokers in the current system */ def allInvokers: Future[IndexedSeq[(InstanceId, InvokerState)]] = invokerPool .ask(GetStatus)(Timeout(5.seconds)) .mapTo[IndexedSeq[(InstanceId, InvokerState)]] /** * Tries to fill in the result slot (i.e., complete the promise) when a completion message arrives. * The promise is removed form the map when the result arrives or upon timeout. * * @param msg is the kafka message payload as Json */ private def processCompletion(response: Either[ActivationId, WhiskActivation], tid: TransactionId, forced: Boolean, invoker: InstanceId): Unit = { val aid = response.fold(l => l, r => r.activationId) // treat left as success (as it is the result of a message exceeding the bus limit) val isSuccess = response.fold(l => true, r => !r.response.isWhiskError) loadBalancerData.removeActivation(aid) match { case Some(entry) => logging.info(this, s"${if (!forced) "received" else "forced"} active ack for '$aid'")(tid) // Active acks that are received here are strictly from user actions - health actions are not part of // the load balancer's activation map. Inform the invoker pool supervisor of the user action completion. // If the active ack was forced, because the waiting period expired, treat it as a failed activation. // A cluster of such failures will eventually turn the invoker unhealthy and suspend queuing activations // to that invoker topic. invokerPool ! InvocationFinishedMessage(invoker, isSuccess && !forced) if (!forced) { entry.promise.trySuccess(response) } else { entry.promise.tryFailure(new Throwable("no active ack received")) } case None if !forced => // the entry has already been removed but we receive an active ack for this activation Id. // This happens for health actions, because they don't have an entry in Loadbalancerdata or // for activations that already timed out. // For both cases, it looks like the invoker works again and we should send the status of // the activation to the invokerPool. invokerPool ! InvocationFinishedMessage(invoker, isSuccess) logging.debug(this, s"received active ack for '$aid' which has no entry")(tid) case None => // the entry has already been removed by an active ack. This part of the code is reached by the timeout. // As the active ack is already processed we don't have to do anything here. logging.debug(this, s"forced active ack for '$aid' which has no entry")(tid) } } /** * Creates an activation entry and insert into various maps. */ private def setupActivation(action: ExecutableWhiskActionMetaData, activationId: ActivationId, namespaceId: UUID, invokerName: InstanceId, transid: TransactionId): ActivationEntry = { val timeout = action.limits.timeout.duration + activeAckTimeoutGrace // Install a timeout handler for the catastrophic case where an active ack is not received at all // (because say an invoker is down completely, or the connection to the message bus is disrupted) or when // the active ack is significantly delayed (possibly dues to long queues but the subject should not be penalized); // in this case, if the activation handler is still registered, remove it and update the books. loadBalancerData.putActivation(activationId, { actorSystem.scheduler.scheduleOnce(timeout) { processCompletion(Left(activationId), transid, forced = true, invoker = invokerName) } ActivationEntry(activationId, namespaceId, invokerName, Promise[Either[ActivationId, WhiskActivation]]()) }) } /** * Creates or updates a health test action by updating the entity store. * This method is intended for use on startup. * @return Future that completes successfully iff the action is added to the database */ private def createTestActionForInvokerHealth(db: EntityStore, action: WhiskAction): Future[Unit] = { implicit val tid = TransactionId.loadbalancer WhiskAction .get(db, action.docid) .flatMap { oldAction => WhiskAction.put(db, action.revision(oldAction.rev))(tid, notifier = None) } .recover { case _: NoDocumentException => WhiskAction.put(db, action)(tid, notifier = None) } .map(_ => {}) .andThen { case Success(_) => logging.info(this, "test action for invoker health now exists") case Failure(e) => logging.error(this, s"error creating test action for invoker health: $e") } } /** Gets a producer which can publish messages to the kafka bus. */ private val messagingProvider = SpiLoader.get[MessagingProvider] private val messageProducer = messagingProvider.getProducer(config, executionContext) private def sendActivationToInvoker(producer: MessageProducer, msg: ActivationMessage, invoker: InstanceId): Future[RecordMetadata] = { implicit val transid = msg.transid val topic = s"invoker${invoker.toInt}" val start = transid.started( this, LoggingMarkers.CONTROLLER_KAFKA, s"posting topic '$topic' with activation id '${msg.activationId}'") producer.send(topic, msg).andThen { case Success(status) => transid.finished(this, start, s"posted to ${status.topic()}[${status.partition()}][${status.offset()}]") case Failure(e) => transid.failed(this, start, s"error on posting to topic $topic") } } private val invokerPool = { // Do not create the invokerPool if it is not possible to create the health test action to recover the invokers. InvokerPool .healthAction(instance) .map { // Await the creation of the test action; on failure, this will abort the constructor which should // in turn abort the startup of the controller. a => Await.result(createTestActionForInvokerHealth(entityStore, a), 1.minute) } .orElse { throw new IllegalStateException( "cannot create test action for invoker health because runtime manifest is not valid") } val maxPingsPerPoll = 128 val pingConsumer = messagingProvider.getConsumer(config, s"health${instance.toInt}", "health", maxPeek = maxPingsPerPoll) val invokerFactory = (f: ActorRefFactory, invokerInstance: InstanceId) => f.actorOf(InvokerActor.props(invokerInstance, instance)) actorSystem.actorOf( InvokerPool.props(invokerFactory, (m, i) => sendActivationToInvoker(messageProducer, m, i), pingConsumer)) } /** * Subscribes to active acks (completion messages from the invokers), and * registers a handler for received active acks from invokers. */ val maxActiveAcksPerPoll = 128 val activeAckPollDuration = 1.second private val activeAckConsumer = messagingProvider.getConsumer(config, "completions", s"completed${instance.toInt}", maxPeek = maxActiveAcksPerPoll) val activationFeed = actorSystem.actorOf(Props { new MessageFeed( "activeack", logging, activeAckConsumer, maxActiveAcksPerPoll, activeAckPollDuration, processActiveAck) }) def processActiveAck(bytes: Array[Byte]): Future[Unit] = Future { val raw = new String(bytes, StandardCharsets.UTF_8) CompletionMessage.parse(raw) match { case Success(m: CompletionMessage) => processCompletion(m.response, m.transid, forced = false, invoker = m.invoker) activationFeed ! MessageFeed.Processed case Failure(t) => activationFeed ! MessageFeed.Processed logging.error(this, s"failed processing message: $raw with $t") } } /** Compute the number of blackbox-dedicated invokers by applying a rounded down fraction of all invokers (but at least 1). */ private def numBlackbox(totalInvokers: Int) = Math.max(1, (totalInvokers.toDouble * blackboxFraction).toInt) /** Return invokers (almost) dedicated to running blackbox actions. */ private def blackboxInvokers( invokers: IndexedSeq[(InstanceId, InvokerState)]): IndexedSeq[(InstanceId, InvokerState)] = { val blackboxes = numBlackbox(invokers.size) invokers.takeRight(blackboxes) } /** * Return (at least one) invokers for running non black-box actions. * This set can overlap with the blackbox set if there is only one invoker. */ private def managedInvokers( invokers: IndexedSeq[(InstanceId, InvokerState)]): IndexedSeq[(InstanceId, InvokerState)] = { val managed = Math.max(1, invokers.length - numBlackbox(invokers.length)) invokers.take(managed) } /** Determine which invoker this activation should go to. Due to dynamic conditions, it may return no invoker. */ private def chooseInvoker(user: Identity, action: ExecutableWhiskActionMetaData): Future[InstanceId] = { val hash = generateHash(user.namespace, action) loadBalancerData.activationCountPerInvoker.flatMap { currentActivations => allInvokers.flatMap { invokers => val invokersToUse = if (action.exec.pull) blackboxInvokers(invokers) else managedInvokers(invokers) val invokersWithUsage = invokersToUse.view.map { // Using a view defers the comparably expensive lookup to actual access of the element case (instance, state) => (instance, state, currentActivations.getOrElse(instance.toString, 0)) } LoadBalancerService.schedule(invokersWithUsage, config.loadbalancerInvokerBusyThreshold, hash) match { case Some(invoker) => Future.successful(invoker) case None => logging.error(this, s"all invokers down")(TransactionId.invokerHealth) Future.failed(new LoadBalancerException("no invokers available")) } } } } /** Generates a hash based on the string representation of namespace and action */ private def generateHash(namespace: EntityName, action: ExecutableWhiskActionMetaData): Int = { (namespace.asString.hashCode() ^ action.fullyQualifiedName(false).asString.hashCode()).abs } } object LoadBalancerService { def requiredProperties = kafkaHost ++ Map( kafkaTopicsCompletedRetentionBytes -> 1024.MB.toBytes.toString, kafkaTopicsCompletedRetentionMS -> 1.hour.toMillis.toString, kafkaTopicsCompletedSegmentBytes -> 512.MB.toBytes.toString) ++ Map( loadbalancerInvokerBusyThreshold -> null, controllerBlackboxFraction -> null, controllerLocalBookkeeping -> null, controllerSeedNodes -> null) /** Memoizes the result of `f` for later use. */ def memoize[I, O](f: I => O): I => O = new scala.collection.mutable.HashMap[I, O]() { override def apply(key: I) = getOrElseUpdate(key, f(key)) } /** Euclidean algorithm to determine the greatest-common-divisor */ @tailrec def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b) /** Returns pairwise coprime numbers until x. Result is memoized. */ val pairwiseCoprimeNumbersUntil: Int => IndexedSeq[Int] = LoadBalancerService.memoize { case x => (1 to x).foldLeft(IndexedSeq.empty[Int])((primes, cur) => { if (gcd(cur, x) == 1 && primes.forall(i => gcd(i, cur) == 1)) { primes :+ cur } else primes }) } /** * Scans through all invokers and searches for an invoker, that has a queue length * below the defined threshold. The threshold is subject to a 3 times back off. Iff * no "underloaded" invoker was found it will default to the first invoker in the * step-defined progression that is healthy. * * @param invokers a list of available invokers to search in, including their state and usage * @param invokerBusyThreshold defines when an invoker is considered overloaded * @param hash stable identifier of the entity to be scheduled * @return an invoker to schedule to or None of no invoker is available */ def schedule(invokers: Seq[(InstanceId, InvokerState, Int)], invokerBusyThreshold: Int, hash: Int): Option[InstanceId] = { val numInvokers = invokers.size if (numInvokers > 0) { val homeInvoker = hash % numInvokers val stepSizes = LoadBalancerService.pairwiseCoprimeNumbersUntil(numInvokers) val step = stepSizes(hash % stepSizes.size) val invokerProgression = Stream .from(0) .take(numInvokers) .map(i => (homeInvoker + i * step) % numInvokers) .map(invokers) .filter(_._2 == Healthy) invokerProgression .find(_._3 < invokerBusyThreshold) .orElse(invokerProgression.find(_._3 < invokerBusyThreshold * 2)) .orElse(invokerProgression.find(_._3 < invokerBusyThreshold * 3)) .orElse(invokerProgression.headOption) .map(_._1) } else None } } private case class LoadBalancerException(msg: String) extends Throwable(msg)
duynguyen/incubator-openwhisk
core/controller/src/main/scala/whisk/core/loadBalancer/LoadBalancerService.scala
Scala
apache-2.0
18,224
// NOTE: copy/pasted from https://github.com/lampepfl/dotty/tree/1962ada58fcd2333a2e40179ab0ac6efb6167ed2 package scala.meta package internal.hosts.scalac package tasty import collection.mutable import TastyBuffer._ import scala.io.Codec import TastyName._ import TastyFormat._ class NameBuffer extends TastyBuffer(10000) { private val nameRefs = new mutable.LinkedHashMap[TastyName, NameRef] def nameIndex(name: TastyName): NameRef = nameRefs.get(name) match { case Some(ref) => ref case None => val ref = NameRef(nameRefs.size) nameRefs(name) = ref ref } def nameIndex(str: String): NameRef = nameIndex(Simple(str)) private def withLength(op: => Unit): Unit = { val lengthAddr = currentAddr writeByte(0) op val length = currentAddr.index - lengthAddr.index - 1 assert(length < 128) putNat(lengthAddr, length, 1) } def writeNameRef(ref: NameRef) = writeNat(ref.index) def pickleName(name: TastyName): Unit = name match { case Simple(name) => val bytes = if (name.length == 0) new Array[Byte](0) else Codec.toUTF8(name) writeByte(UTF8) writeNat(bytes.length) writeBytes(bytes, bytes.length) case Qualified(qualified, selector) => writeByte(QUALIFIED) withLength { writeNameRef(qualified); writeNameRef(selector) } case Signed(original, params, result) => writeByte(SIGNED) withLength { writeNameRef(original); writeNameRef(result); params.foreach(writeNameRef) } case Expanded(prefix, original) => writeByte(EXPANDED) withLength { writeNameRef(prefix); writeNameRef(original) } case ModuleClass(module) => writeByte(OBJECTCLASS) withLength { writeNameRef(module) } case SuperAccessor(accessed) => writeByte(SUPERACCESSOR) withLength { writeNameRef(accessed) } case DefaultGetter(method, paramNumber) => writeByte(DEFAULTGETTER) withLength { writeNameRef(method); writeNat(paramNumber) } case Shadowed(original) => writeByte(SHADOWED) withLength { writeNameRef(original) } } override def assemble(): Unit = { var i = 0 for ((name, ref) <- nameRefs) { assert(ref.index == i) i += 1 pickleName(name) } } }
mdemarne/scalahost
interface/src/main/scala/scala/meta/internal/hosts/scalac/tasty/NameBuffer.scala
Scala
bsd-3-clause
2,277
package com.lvxingpai.model.misc import javax.validation.constraints.Min import com.lvxingpai.model.mixin.ObjectIdEnabled import org.hibernate.validator.constraints.NotBlank import java.util.Date import scala.beans.BeanProperty /** * Created by pengyt on 2015/10/21. */ class Feedback extends ObjectIdEnabled { /** * 用户id */ @NotBlank @Min(value = 1) @BeanProperty var userId: Long = 0 /** * 反馈内容 */ @BeanProperty var body: String = null /** * 反馈时间 */ @BeanProperty var time: Date = null /** * 从哪个App反馈过来的, 例如:旅行派 */ @BeanProperty var origin: String = null }
Lvxingpai/core-model
src/main/scala/com/lvxingpai/model/misc/Feedback.scala
Scala
apache-2.0
668
package alternatives.breeze import breeze.util.BloomFilter import org.openjdk.jmh.annotations.{Benchmark, Param, Scope, State} import scala.util.Random @State(Scope.Benchmark) class ArrayByteItemBenchmark { private val itemsExpected = 1000000L private val falsePositiveRate = 0.01 private val random = new Random() private val bf = BloomFilter.optimallySized[Array[Byte]](itemsExpected.toDouble, falsePositiveRate) @Param(Array("1024")) var length: Int = _ private val item = new Array[Byte](length) random.nextBytes(item) bf.+=(item) @Benchmark def breezePut(): Unit = { bf.+=(item) } @Benchmark def breezeGet(): Unit = { bf.contains(item) } }
alexandrnikitin/bloom-filter-scala
benchmarks/src/main/scala/alternatives/breeze/ArrayByteItemBenchmark.scala
Scala
mit
693
package edu.gemini.phase2.template.factory.impl.flamingos2 import edu.gemini.pot.sp._ import edu.gemini.phase2.template.factory.impl._ import edu.gemini.spModel.gemini.flamingos2.Flamingos2 import edu.gemini.spModel.gemini.flamingos2.blueprint.SpFlamingos2BlueprintImaging import scala.collection.JavaConverters._ case class Flamingos2Imaging(blueprint:SpFlamingos2BlueprintImaging) extends Flamingos2Base[SpFlamingos2BlueprintImaging] { // **** IF INSTRUMENT MODE == IMAGING **** // // INCLUDE {1,2,3} // FOR {1, 2, 3}: // Put FILTERS from PI into F2 ITERATOR // SET EXPOSURE TIME in Iterator/Static component: // Y = 60s // F1056 = 60s // F1063 = 60s // J-lo = 60s // J = 60s // H = 10s // Ks = 30s // val targetGroup = Seq(1, 2, 3) val baselineFolder = Seq.empty val notes = Seq("F2 Imaging Notes") val science = Seq(1, 2) val cal = Seq(3) def exposureTimes(filter: Flamingos2.Filter): Double = { import Flamingos2.Filter._ filter match { case H => 10.0 case K_LONG | K_SHORT => 30.0 case _ => 60.0 } } def initialize(grp:ISPGroup, db:TemplateDb): Maybe[Unit] = for { _ <- forObservations(grp, science, forScience).right _ <- forObservations(grp, cal, forCalibrations(db)).right } yield () def forScience(obs: ISPObservation): Maybe[Unit] = for { _ <- obs.setFilters(blueprint.filters.asScala).right _ <- obs.setExposureTimes(blueprint.filters.asScala.map(exposureTimes)).right } yield () def forCalibrations(db: TemplateDb)(obs: ISPObservation): Maybe[Unit] = setFlatFilters(obs, blueprint.filters.asScala) // Update the static component and the first iterator to set the filters to use. private def setFlatFilters(obs: ISPObservation, lst: Iterable[Flamingos2.Filter]): Maybe[Unit] = for { _ <- lst.headOption.toRight("One or more filters must be specified.").right _ <- obs.setFilter(lst.head).right _ <- obs.ed.iterateFirst(Flamingos2.FILTER_PROP.getName, lst.toList).right } yield () }
spakzad/ocs
bundle/edu.gemini.phase2.skeleton.servlet/src/main/scala/edu/gemini/phase2/template/factory/impl/flamingos2/Flamingos2Imaging.scala
Scala
bsd-3-clause
2,181
package org.example1.usage import org.example1.declaration.{Y => Y_Renamed, _} trait Usage_NoOther_Imports_Wildcard_WithRename_OtherClass { val x: X = ??? val y: Y_Renamed = ??? val z: Z = ??? }
JetBrains/intellij-scala
scala/scala-impl/testdata/move/allInOne/before/org/example1/usage/Usage_NoOther_Imports_Wildcard_WithRename_OtherClass.scala
Scala
apache-2.0
202
package rolodato.genetics.impl import rolodato.genetics.{Crossover, Gene} import scala.language.postfixOps import scala.math.abs import scala.util.Random trait OnePointCrossover extends Crossover { /** * Given two parents, creates two children by applying a one-point * crossover algorithm. * * Unless overridden, the crossover point is chosen randomly. * * @return a list containing the resulting two children * @see http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29#One * -point_crossover */ def cross(parent1: Gene, parent2: Gene): List[Gene] = { require(parent1.length == parent2.length, "gene lengths must be equal") val xop: Int = abs(crossoverPoint % parent1.length) val child1 = ((parent1 string) take xop) ++ ((parent2 string) drop xop) val child2 = ((parent2 string) take xop) ++ ((parent1 string) drop xop) List(parent1.copy(child1), parent2.copy(child2)) } def crossoverPoint: Int = Random.nextInt() } object OnePointCrossover { /** * Creates a crossover algorithm that always uses the same crossover point. * @param xop The crossover point to use. Should be between 0 and the gene * string length, exclusive. Useful for testing. */ def apply(xop: Int) = new OnePointCrossover { override def crossoverPoint: Int = xop } def apply() = new OnePointCrossover {} }
rolodato/genetics
shared/src/main/scala/rolodato/genetics/impl/OnePointCrossover.scala
Scala
mit
1,387
// Starter Code for Exercise 1 // From "Constructors" atom import com.atomicscala.AtomicTest._ val doubleHalfCaf = new Coffee(shots=2, decaf=1) val tripleHalfCaf = new Coffee(shots=3, decaf=2) doubleHalfCaf.decaf is 1 doubleHalfCaf.caf is 1 doubleHalfCaf.shots is 2 tripleHalfCaf.decaf is 2 tripleHalfCaf.caf is 1 tripleHalfCaf.shots is 3
P7h/ScalaPlayground
Atomic Scala/atomic-scala-solutions/25_Constructors/Starter-1.scala
Scala
apache-2.0
341
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.streaming.dstream import scala.collection.mutable.ArrayBuffer import scala.reflect.ClassTag import org.apache.hadoop.conf.Configuration import org.apache.hadoop.mapred.{JobConf, OutputFormat} import org.apache.hadoop.mapreduce.{OutputFormat => NewOutputFormat} import org.apache.spark.{HashPartitioner, Partitioner, SerializableWritable} import org.apache.spark.rdd.RDD import org.apache.spark.streaming.{Duration, Time} import org.apache.spark.streaming.StreamingContext.rddToFileName /** * Extra functions available on DStream of (key, value) pairs through an implicit conversion. */ class PairDStreamFunctions[K, V](self: DStream[(K,V)]) (implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K]) extends Serializable { private[streaming] def ssc = self.ssc private[streaming] def defaultPartitioner(numPartitions: Int = self.ssc.sc.defaultParallelism) = { new HashPartitioner(numPartitions) } /** * Return a new DStream by applying `groupByKey` to each RDD. Hash partitioning is used to * generate the RDDs with Spark's default number of partitions. */ def groupByKey(): DStream[(K, Iterable[V])] = { groupByKey(defaultPartitioner()) } /** * Return a new DStream by applying `groupByKey` to each RDD. Hash partitioning is used to * generate the RDDs with `numPartitions` partitions. */ def groupByKey(numPartitions: Int): DStream[(K, Iterable[V])] = { groupByKey(defaultPartitioner(numPartitions)) } /** * Return a new DStream by applying `groupByKey` on each RDD. The supplied * org.apache.spark.Partitioner is used to control the partitioning of each RDD. */ def groupByKey(partitioner: Partitioner): DStream[(K, Iterable[V])] = { val createCombiner = (v: V) => ArrayBuffer[V](v) val mergeValue = (c: ArrayBuffer[V], v: V) => (c += v) val mergeCombiner = (c1: ArrayBuffer[V], c2: ArrayBuffer[V]) => (c1 ++ c2) combineByKey(createCombiner, mergeValue, mergeCombiner, partitioner) .asInstanceOf[DStream[(K, Iterable[V])]] } /** * Return a new DStream by applying `reduceByKey` to each RDD. The values for each key are * merged using the associative reduce function. Hash partitioning is used to generate the RDDs * with Spark's default number of partitions. */ def reduceByKey(reduceFunc: (V, V) => V): DStream[(K, V)] = { reduceByKey(reduceFunc, defaultPartitioner()) } /** * Return a new DStream by applying `reduceByKey` to each RDD. The values for each key are * merged using the supplied reduce function. Hash partitioning is used to generate the RDDs * with `numPartitions` partitions. */ def reduceByKey(reduceFunc: (V, V) => V, numPartitions: Int): DStream[(K, V)] = { reduceByKey(reduceFunc, defaultPartitioner(numPartitions)) } /** * Return a new DStream by applying `reduceByKey` to each RDD. The values for each key are * merged using the supplied reduce function. org.apache.spark.Partitioner is used to control * the partitioning of each RDD. */ def reduceByKey(reduceFunc: (V, V) => V, partitioner: Partitioner): DStream[(K, V)] = { val cleanedReduceFunc = ssc.sc.clean(reduceFunc) combineByKey((v: V) => v, cleanedReduceFunc, cleanedReduceFunc, partitioner) } /** * Combine elements of each key in DStream's RDDs using custom functions. This is similar to the * combineByKey for RDDs. Please refer to combineByKey in * org.apache.spark.rdd.PairRDDFunctions in the Spark core documentation for more information. */ def combineByKey[C: ClassTag]( createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiner: (C, C) => C, partitioner: Partitioner, mapSideCombine: Boolean = true): DStream[(K, C)] = { new ShuffledDStream[K, V, C](self, createCombiner, mergeValue, mergeCombiner, partitioner, mapSideCombine) } /** * Return a new DStream by applying `groupByKey` over a sliding window. This is similar to * `DStream.groupByKey()` but applies it over a sliding window. The new DStream generates RDDs * with the same interval as this DStream. Hash partitioning is used to generate the RDDs with * Spark's default number of partitions. * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval */ def groupByKeyAndWindow(windowDuration: Duration): DStream[(K, Iterable[V])] = { groupByKeyAndWindow(windowDuration, self.slideDuration, defaultPartitioner()) } /** * Return a new DStream by applying `groupByKey` over a sliding window. Similar to * `DStream.groupByKey()`, but applies it over a sliding window. Hash partitioning is used to * generate the RDDs with Spark's default number of partitions. * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval * @param slideDuration sliding interval of the window (i.e., the interval after which * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval */ def groupByKeyAndWindow(windowDuration: Duration, slideDuration: Duration) : DStream[(K, Iterable[V])] = { groupByKeyAndWindow(windowDuration, slideDuration, defaultPartitioner()) } /** * Return a new DStream by applying `groupByKey` over a sliding window on `this` DStream. * Similar to `DStream.groupByKey()`, but applies it over a sliding window. * Hash partitioning is used to generate the RDDs with `numPartitions` partitions. * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval * @param slideDuration sliding interval of the window (i.e., the interval after which * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval * @param numPartitions number of partitions of each RDD in the new DStream; if not specified * then Spark's default number of partitions will be used */ def groupByKeyAndWindow( windowDuration: Duration, slideDuration: Duration, numPartitions: Int ): DStream[(K, Iterable[V])] = { groupByKeyAndWindow(windowDuration, slideDuration, defaultPartitioner(numPartitions)) } /** * Create a new DStream by applying `groupByKey` over a sliding window on `this` DStream. * Similar to `DStream.groupByKey()`, but applies it over a sliding window. * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval * @param slideDuration sliding interval of the window (i.e., the interval after which * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval * @param partitioner partitioner for controlling the partitioning of each RDD in the new * DStream. */ def groupByKeyAndWindow( windowDuration: Duration, slideDuration: Duration, partitioner: Partitioner ): DStream[(K, Iterable[V])] = { val createCombiner = (v: Iterable[V]) => new ArrayBuffer[V] ++= v val mergeValue = (buf: ArrayBuffer[V], v: Iterable[V]) => buf ++= v val mergeCombiner = (buf1: ArrayBuffer[V], buf2: ArrayBuffer[V]) => buf1 ++= buf2 self.groupByKey(partitioner) .window(windowDuration, slideDuration) .combineByKey[ArrayBuffer[V]](createCombiner, mergeValue, mergeCombiner, partitioner) .asInstanceOf[DStream[(K, Iterable[V])]] } /** * Return a new DStream by applying `reduceByKey` over a sliding window on `this` DStream. * Similar to `DStream.reduceByKey()`, but applies it over a sliding window. The new DStream * generates RDDs with the same interval as this DStream. Hash partitioning is used to generate * the RDDs with Spark's default number of partitions. * @param reduceFunc associative reduce function * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, windowDuration: Duration ): DStream[(K, V)] = { reduceByKeyAndWindow(reduceFunc, windowDuration, self.slideDuration, defaultPartitioner()) } /** * Return a new DStream by applying `reduceByKey` over a sliding window. This is similar to * `DStream.reduceByKey()` but applies it over a sliding window. Hash partitioning is used to * generate the RDDs with Spark's default number of partitions. * @param reduceFunc associative reduce function * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval * @param slideDuration sliding interval of the window (i.e., the interval after which * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, windowDuration: Duration, slideDuration: Duration ): DStream[(K, V)] = { reduceByKeyAndWindow(reduceFunc, windowDuration, slideDuration, defaultPartitioner()) } /** * Return a new DStream by applying `reduceByKey` over a sliding window. This is similar to * `DStream.reduceByKey()` but applies it over a sliding window. Hash partitioning is used to * generate the RDDs with `numPartitions` partitions. * @param reduceFunc associative reduce function * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval * @param slideDuration sliding interval of the window (i.e., the interval after which * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval * @param numPartitions number of partitions of each RDD in the new DStream. */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, windowDuration: Duration, slideDuration: Duration, numPartitions: Int ): DStream[(K, V)] = { reduceByKeyAndWindow(reduceFunc, windowDuration, slideDuration, defaultPartitioner(numPartitions)) } /** * Return a new DStream by applying `reduceByKey` over a sliding window. Similar to * `DStream.reduceByKey()`, but applies it over a sliding window. * @param reduceFunc associative reduce function * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval * @param slideDuration sliding interval of the window (i.e., the interval after which * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval * @param partitioner partitioner for controlling the partitioning of each RDD * in the new DStream. */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, windowDuration: Duration, slideDuration: Duration, partitioner: Partitioner ): DStream[(K, V)] = { val cleanedReduceFunc = ssc.sc.clean(reduceFunc) self.reduceByKey(cleanedReduceFunc, partitioner) .window(windowDuration, slideDuration) .reduceByKey(cleanedReduceFunc, partitioner) } /** * Return a new DStream by applying incremental `reduceByKey` over a sliding window. * The reduced value of over a new window is calculated using the old window's reduced value : * 1. reduce the new values that entered the window (e.g., adding new counts) * * 2. "inverse reduce" the old values that left the window (e.g., subtracting old counts) * * This is more efficient than reduceByKeyAndWindow without "inverse reduce" function. * However, it is applicable to only "invertible reduce functions". * Hash partitioning is used to generate the RDDs with Spark's default number of partitions. * @param reduceFunc associative reduce function * @param invReduceFunc inverse reduce function * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval * @param slideDuration sliding interval of the window (i.e., the interval after which * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval * @param filterFunc Optional function to filter expired key-value pairs; * only pairs that satisfy the function are retained */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, invReduceFunc: (V, V) => V, windowDuration: Duration, slideDuration: Duration = self.slideDuration, numPartitions: Int = ssc.sc.defaultParallelism, filterFunc: ((K, V)) => Boolean = null ): DStream[(K, V)] = { reduceByKeyAndWindow( reduceFunc, invReduceFunc, windowDuration, slideDuration, defaultPartitioner(numPartitions), filterFunc ) } /** * Return a new DStream by applying incremental `reduceByKey` over a sliding window. * The reduced value of over a new window is calculated using the old window's reduced value : * 1. reduce the new values that entered the window (e.g., adding new counts) * 2. "inverse reduce" the old values that left the window (e.g., subtracting old counts) * This is more efficient than reduceByKeyAndWindow without "inverse reduce" function. * However, it is applicable to only "invertible reduce functions". * @param reduceFunc associative reduce function * @param invReduceFunc inverse reduce function * @param windowDuration width of the window; must be a multiple of this DStream's * batching interval * @param slideDuration sliding interval of the window (i.e., the interval after which * the new DStream will generate RDDs); must be a multiple of this * DStream's batching interval * @param partitioner partitioner for controlling the partitioning of each RDD in the new * DStream. * @param filterFunc Optional function to filter expired key-value pairs; * only pairs that satisfy the function are retained */ def reduceByKeyAndWindow( reduceFunc: (V, V) => V, invReduceFunc: (V, V) => V, windowDuration: Duration, slideDuration: Duration, partitioner: Partitioner, filterFunc: ((K, V)) => Boolean ): DStream[(K, V)] = { val cleanedReduceFunc = ssc.sc.clean(reduceFunc) val cleanedInvReduceFunc = ssc.sc.clean(invReduceFunc) val cleanedFilterFunc = if (filterFunc != null) Some(ssc.sc.clean(filterFunc)) else None new ReducedWindowedDStream[K, V]( self, cleanedReduceFunc, cleanedInvReduceFunc, cleanedFilterFunc, windowDuration, slideDuration, partitioner ) } /** * Return a new "state" DStream where the state for each key is updated by applying * the given function on the previous state of the key and the new values of each key. * Hash partitioning is used to generate the RDDs with Spark's default number of partitions. * @param updateFunc State update function. If `this` function returns None, then * corresponding state key-value pair will be eliminated. * @tparam S State type */ def updateStateByKey[S: ClassTag]( updateFunc: (Seq[V], Option[S]) => Option[S] ): DStream[(K, S)] = { updateStateByKey(updateFunc, defaultPartitioner()) } /** * Return a new "state" DStream where the state for each key is updated by applying * the given function on the previous state of the key and the new values of each key. * Hash partitioning is used to generate the RDDs with `numPartitions` partitions. * @param updateFunc State update function. If `this` function returns None, then * corresponding state key-value pair will be eliminated. * @param numPartitions Number of partitions of each RDD in the new DStream. * @tparam S State type */ def updateStateByKey[S: ClassTag]( updateFunc: (Seq[V], Option[S]) => Option[S], numPartitions: Int ): DStream[(K, S)] = { updateStateByKey(updateFunc, defaultPartitioner(numPartitions)) } /** * Return a new "state" DStream where the state for each key is updated by applying * the given function on the previous state of the key and the new values of the key. * org.apache.spark.Partitioner is used to control the partitioning of each RDD. * @param updateFunc State update function. If `this` function returns None, then * corresponding state key-value pair will be eliminated. * @param partitioner Partitioner for controlling the partitioning of each RDD in the new * DStream. * @tparam S State type */ def updateStateByKey[S: ClassTag]( updateFunc: (Seq[V], Option[S]) => Option[S], partitioner: Partitioner ): DStream[(K, S)] = { val newUpdateFunc = (iterator: Iterator[(K, Seq[V], Option[S])]) => { iterator.flatMap(t => updateFunc(t._2, t._3).map(s => (t._1, s))) } updateStateByKey(newUpdateFunc, partitioner, true) } /** * Return a new "state" DStream where the state for each key is updated by applying * the given function on the previous state of the key and the new values of each key. * org.apache.spark.Partitioner is used to control the partitioning of each RDD. * @param updateFunc State update function. Note, that this function may generate a different * tuple with a different key than the input key. Therefore keys may be removed * or added in this way. It is up to the developer to decide whether to * remember the partitioner despite the key being changed. * @param partitioner Partitioner for controlling the partitioning of each RDD in the new * DStream * @param rememberPartitioner Whether to remember the paritioner object in the generated RDDs. * @tparam S State type */ def updateStateByKey[S: ClassTag]( updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)], partitioner: Partitioner, rememberPartitioner: Boolean ): DStream[(K, S)] = { new StateDStream(self, ssc.sc.clean(updateFunc), partitioner, rememberPartitioner, None) } /** * Return a new "state" DStream where the state for each key is updated by applying * the given function on the previous state of the key and the new values of the key. * org.apache.spark.Partitioner is used to control the partitioning of each RDD. * @param updateFunc State update function. If `this` function returns None, then * corresponding state key-value pair will be eliminated. * @param partitioner Partitioner for controlling the partitioning of each RDD in the new * DStream. * @param initialRDD initial state value of each key. * @tparam S State type */ def updateStateByKey[S: ClassTag]( updateFunc: (Seq[V], Option[S]) => Option[S], partitioner: Partitioner, initialRDD: RDD[(K, S)] ): DStream[(K, S)] = { val newUpdateFunc = (iterator: Iterator[(K, Seq[V], Option[S])]) => { iterator.flatMap(t => updateFunc(t._2, t._3).map(s => (t._1, s))) } updateStateByKey(newUpdateFunc, partitioner, true, initialRDD) } /** * Return a new "state" DStream where the state for each key is updated by applying * the given function on the previous state of the key and the new values of each key. * org.apache.spark.Partitioner is used to control the partitioning of each RDD. * @param updateFunc State update function. Note, that this function may generate a different * tuple with a different key than the input key. Therefore keys may be removed * or added in this way. It is up to the developer to decide whether to * remember the partitioner despite the key being changed. * @param partitioner Partitioner for controlling the partitioning of each RDD in the new * DStream * @param rememberPartitioner Whether to remember the paritioner object in the generated RDDs. * @param initialRDD initial state value of each key. * @tparam S State type */ def updateStateByKey[S: ClassTag]( updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)], partitioner: Partitioner, rememberPartitioner: Boolean, initialRDD: RDD[(K, S)] ): DStream[(K, S)] = { new StateDStream(self, ssc.sc.clean(updateFunc), partitioner, rememberPartitioner, Some(initialRDD)) } /** * Return a new DStream by applying a map function to the value of each key-value pairs in * 'this' DStream without changing the key. */ def mapValues[U: ClassTag](mapValuesFunc: V => U): DStream[(K, U)] = { new MapValuedDStream[K, V, U](self, mapValuesFunc) } /** * Return a new DStream by applying a flatmap function to the value of each key-value pairs in * 'this' DStream without changing the key. */ def flatMapValues[U: ClassTag]( flatMapValuesFunc: V => TraversableOnce[U] ): DStream[(K, U)] = { new FlatMapValuedDStream[K, V, U](self, flatMapValuesFunc) } /** * Return a new DStream by applying 'cogroup' between RDDs of `this` DStream and `other` DStream. * Hash partitioning is used to generate the RDDs with Spark's default number * of partitions. */ def cogroup[W: ClassTag](other: DStream[(K, W)]): DStream[(K, (Iterable[V], Iterable[W]))] = { cogroup(other, defaultPartitioner()) } /** * Return a new DStream by applying 'cogroup' between RDDs of `this` DStream and `other` DStream. * Hash partitioning is used to generate the RDDs with `numPartitions` partitions. */ def cogroup[W: ClassTag](other: DStream[(K, W)], numPartitions: Int) : DStream[(K, (Iterable[V], Iterable[W]))] = { cogroup(other, defaultPartitioner(numPartitions)) } /** * Return a new DStream by applying 'cogroup' between RDDs of `this` DStream and `other` DStream. * The supplied org.apache.spark.Partitioner is used to partition the generated RDDs. */ def cogroup[W: ClassTag]( other: DStream[(K, W)], partitioner: Partitioner ): DStream[(K, (Iterable[V], Iterable[W]))] = { self.transformWith( other, (rdd1: RDD[(K, V)], rdd2: RDD[(K, W)]) => rdd1.cogroup(rdd2, partitioner) ) } /** * Return a new DStream by applying 'join' between RDDs of `this` DStream and `other` DStream. * Hash partitioning is used to generate the RDDs with Spark's default number of partitions. */ def join[W: ClassTag](other: DStream[(K, W)]): DStream[(K, (V, W))] = { join[W](other, defaultPartitioner()) } /** * Return a new DStream by applying 'join' between RDDs of `this` DStream and `other` DStream. * Hash partitioning is used to generate the RDDs with `numPartitions` partitions. */ def join[W: ClassTag](other: DStream[(K, W)], numPartitions: Int): DStream[(K, (V, W))] = { join[W](other, defaultPartitioner(numPartitions)) } /** * Return a new DStream by applying 'join' between RDDs of `this` DStream and `other` DStream. * The supplied org.apache.spark.Partitioner is used to control the partitioning of each RDD. */ def join[W: ClassTag]( other: DStream[(K, W)], partitioner: Partitioner ): DStream[(K, (V, W))] = { self.transformWith( other, (rdd1: RDD[(K, V)], rdd2: RDD[(K, W)]) => rdd1.join(rdd2, partitioner) ) } /** * Return a new DStream by applying 'left outer join' between RDDs of `this` DStream and * `other` DStream. Hash partitioning is used to generate the RDDs with Spark's default * number of partitions. */ def leftOuterJoin[W: ClassTag](other: DStream[(K, W)]): DStream[(K, (V, Option[W]))] = { leftOuterJoin[W](other, defaultPartitioner()) } /** * Return a new DStream by applying 'left outer join' between RDDs of `this` DStream and * `other` DStream. Hash partitioning is used to generate the RDDs with `numPartitions` * partitions. */ def leftOuterJoin[W: ClassTag]( other: DStream[(K, W)], numPartitions: Int ): DStream[(K, (V, Option[W]))] = { leftOuterJoin[W](other, defaultPartitioner(numPartitions)) } /** * Return a new DStream by applying 'left outer join' between RDDs of `this` DStream and * `other` DStream. The supplied org.apache.spark.Partitioner is used to control * the partitioning of each RDD. */ def leftOuterJoin[W: ClassTag]( other: DStream[(K, W)], partitioner: Partitioner ): DStream[(K, (V, Option[W]))] = { self.transformWith( other, (rdd1: RDD[(K, V)], rdd2: RDD[(K, W)]) => rdd1.leftOuterJoin(rdd2, partitioner) ) } /** * Return a new DStream by applying 'right outer join' between RDDs of `this` DStream and * `other` DStream. Hash partitioning is used to generate the RDDs with Spark's default * number of partitions. */ def rightOuterJoin[W: ClassTag](other: DStream[(K, W)]): DStream[(K, (Option[V], W))] = { rightOuterJoin[W](other, defaultPartitioner()) } /** * Return a new DStream by applying 'right outer join' between RDDs of `this` DStream and * `other` DStream. Hash partitioning is used to generate the RDDs with `numPartitions` * partitions. */ def rightOuterJoin[W: ClassTag]( other: DStream[(K, W)], numPartitions: Int ): DStream[(K, (Option[V], W))] = { rightOuterJoin[W](other, defaultPartitioner(numPartitions)) } /** * Return a new DStream by applying 'right outer join' between RDDs of `this` DStream and * `other` DStream. The supplied org.apache.spark.Partitioner is used to control * the partitioning of each RDD. */ def rightOuterJoin[W: ClassTag]( other: DStream[(K, W)], partitioner: Partitioner ): DStream[(K, (Option[V], W))] = { self.transformWith( other, (rdd1: RDD[(K, V)], rdd2: RDD[(K, W)]) => rdd1.rightOuterJoin(rdd2, partitioner) ) } /** * Return a new DStream by applying 'full outer join' between RDDs of `this` DStream and * `other` DStream. Hash partitioning is used to generate the RDDs with Spark's default * number of partitions. */ def fullOuterJoin[W: ClassTag](other: DStream[(K, W)]): DStream[(K, (Option[V], Option[W]))] = { fullOuterJoin[W](other, defaultPartitioner()) } /** * Return a new DStream by applying 'full outer join' between RDDs of `this` DStream and * `other` DStream. Hash partitioning is used to generate the RDDs with `numPartitions` * partitions. */ def fullOuterJoin[W: ClassTag]( other: DStream[(K, W)], numPartitions: Int ): DStream[(K, (Option[V], Option[W]))] = { fullOuterJoin[W](other, defaultPartitioner(numPartitions)) } /** * Return a new DStream by applying 'full outer join' between RDDs of `this` DStream and * `other` DStream. The supplied org.apache.spark.Partitioner is used to control * the partitioning of each RDD. */ def fullOuterJoin[W: ClassTag]( other: DStream[(K, W)], partitioner: Partitioner ): DStream[(K, (Option[V], Option[W]))] = { self.transformWith( other, (rdd1: RDD[(K, V)], rdd2: RDD[(K, W)]) => rdd1.fullOuterJoin(rdd2, partitioner) ) } /** * Save each RDD in `this` DStream as a Hadoop file. The file name at each batch interval * is generated based on `prefix` and `suffix`: "prefix-TIME_IN_MS.suffix" */ def saveAsHadoopFiles[F <: OutputFormat[K, V]]( prefix: String, suffix: String )(implicit fm: ClassTag[F]) { saveAsHadoopFiles(prefix, suffix, keyClass, valueClass, fm.runtimeClass.asInstanceOf[Class[F]]) } /** * Save each RDD in `this` DStream as a Hadoop file. The file name at each batch interval * is generated based on `prefix` and `suffix`: "prefix-TIME_IN_MS.suffix" */ def saveAsHadoopFiles( prefix: String, suffix: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[_ <: OutputFormat[_, _]], conf: JobConf = new JobConf(ssc.sparkContext.hadoopConfiguration) ) { // Wrap conf in SerializableWritable so that ForeachDStream can be serialized for checkpoints val serializableConf = new SerializableWritable(conf) val saveFunc = (rdd: RDD[(K, V)], time: Time) => { val file = rddToFileName(prefix, suffix, time) rdd.saveAsHadoopFile(file, keyClass, valueClass, outputFormatClass, serializableConf.value) } self.foreachRDD(saveFunc) } /** * Save each RDD in `this` DStream as a Hadoop file. The file name at each batch interval is * generated based on `prefix` and `suffix`: "prefix-TIME_IN_MS.suffix". */ def saveAsNewAPIHadoopFiles[F <: NewOutputFormat[K, V]]( prefix: String, suffix: String )(implicit fm: ClassTag[F]) { saveAsNewAPIHadoopFiles(prefix, suffix, keyClass, valueClass, fm.runtimeClass.asInstanceOf[Class[F]]) } /** * Save each RDD in `this` DStream as a Hadoop file. The file name at each batch interval is * generated based on `prefix` and `suffix`: "prefix-TIME_IN_MS.suffix". */ def saveAsNewAPIHadoopFiles( prefix: String, suffix: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[_ <: NewOutputFormat[_, _]], conf: Configuration = ssc.sparkContext.hadoopConfiguration ) { // Wrap conf in SerializableWritable so that ForeachDStream can be serialized for checkpoints val serializableConf = new SerializableWritable(conf) val saveFunc = (rdd: RDD[(K, V)], time: Time) => { val file = rddToFileName(prefix, suffix, time) rdd.saveAsNewAPIHadoopFile( file, keyClass, valueClass, outputFormatClass, serializableConf.value) } self.foreachRDD(saveFunc) } private def keyClass: Class[_] = kt.runtimeClass private def valueClass: Class[_] = vt.runtimeClass }
trueyao/spark-lever
streaming/src/main/scala/org/apache/spark/streaming/dstream/PairDStreamFunctions.scala
Scala
apache-2.0
31,252
package quotes import models._ object QuoteBuilderSingleton extends QuoteBuilder class QuoteBuilder { def buildQuote(quoteProfile: QuoteProfile, distanceResult: DistanceResult, fuelSurchargeProfile: FuelSurchargeProfile): Quote = { val fares = quoteProfile.fareProfiles.map(x => { val calculatedFare: BigDecimal = (x.baseFare + (x.perMile * distanceResult.miles)).setScale(2, BigDecimal.RoundingMode.HALF_UP) val fare:BigDecimal = calculatedFare.max(x.minimum).setScale(2, BigDecimal.RoundingMode.HALF_UP) val fuelSurcharge: BigDecimal = (calculatedFare * fuelSurchargeProfile.percentage).setScale(2, BigDecimal.RoundingMode.HALF_UP) val serviceCharge: BigDecimal = (fare * 0.2).setScale(2, BigDecimal.RoundingMode.HALF_UP) val total: BigDecimal = (fare + serviceCharge + fuelSurcharge).setScale(2, BigDecimal.RoundingMode.HALF_UP) val fareLineItems: Seq[FareLineItem] = Seq( FareLineItem("fare", "Base Fare", fare), FareLineItem("fuelCharge", "Fuel Surcharge", fuelSurcharge), FareLineItem("serviceCharge", "Service Charge", serviceCharge), FareLineItem("total", "Total", total) ) new Fare( fareProfile = x.name, totalFare = total, fareDetail = fareDetailFrom(fareLineItems), fareLineItems = fareLineItems ) } ) Quote( vehicleName = quoteProfile.name, vehicleDescription = quoteProfile.description, vehCode = quoteProfile.vehicleCode, maxPassengers = quoteProfile.maxPassengers, fares = fares ) } def fareDetailFrom(fareLineItems: Seq[FareLineItem]): String = { val lines = for { f <- fareLineItems line = s"${f.lineItemDescription}: $$${"%1.2f".format(f.lineItemCost)}" } yield line lines.foldLeft("") { (a, l) => if (a == "") { a + l; } else { a + "\\n" + l } } } }
greghxc/shakespeare
src/main/scala/quotes/QuoteBuilder.scala
Scala
mit
1,970
/* * Copyright (c) 2013 Aviat Networks. * This file is part of DocReg+Web. Please refer to the NOTICE.txt file for license details. */ package vvv.docreg.backend import net.liftweb.common.Loggable import vvv.docreg.model._ import vvv.docreg.agent.SubscriberInfo import org.squeryl.PrimitiveTypeMode._ trait SubscriptionReconcile extends Loggable { val userLookup: UserLookupProvider def reconcileSubscriptions(document: Document, subscriptions: List[SubscriberInfo]) { val subscribers: List[(Long,String)] = for { s <- subscriptions u <- userLookup.lookup(Some(s.userName), Some(s.email), None, "subscription on " + document + " for " + s) } yield (u.id -> s.options) inTransaction { var userSubscriptions = Subscription.forDocument(document).map(s => s.userId -> s).toMap // converting to a map makes the user distinct, and takes the last user option as the valid option. subscribers.toMap.foreach { i => val uid = i._1 val options = i._2.toLowerCase val notification = options contains "always" val bookmark = options contains "bookmark" userSubscriptions.get(uid) match { case Some(s) if (s.notification != notification || s.bookmark != bookmark) => { s.notification = notification s.bookmark = bookmark Subscription.dbTable.update(s) } case None => { val s = new Subscription s.documentId = document.id s.userId = uid s.notification = notification s.bookmark = bookmark Subscription.dbTable.insert(s) } case _ => {} // No change } userSubscriptions -= uid } if (userSubscriptions.size > 0) { Subscription.dbTable.deleteWhere(s => (s.documentId === document.id) and (s.userId in userSubscriptions.keySet)) } } } }
scott-abernethy/docreg-web
src/main/scala/vvv/docreg/backend/SubscriptionReconcile.scala
Scala
gpl-3.0
1,922