File size: 8,183 Bytes
3e10edb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
"""
This file is to plot the MDP and POMDP results separately.
"""
import jax.numpy as jnp # Import JAX
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from jax import lax # Import lax for cummax
from scipy.interpolate import interp1d
import wandb
def f(name):
WINDOW_SIZE = 100
SIGMA = 100
INTERP_POINTS = 1000
NORMALIZING_FACTOR = 200
ENV_MAX_STEPS = {
"CountRecallEasy": 2e7,
"CountRecallMedium": 2e7,
"CountRecallHard": 2e7,
"BattleShipEasy": 2e7,
"BattleShipMedium": 2e7,
"BattleShipHard": 2e7,
# other environments with default max steps 1e7
}
AXIS_FONT = {"fontsize": 9, "labelpad": 8}
TICK_FONT = {"labelsize": 8}
api = wandb.Api()
runs = api.runs("bolt-um/Arcade-RLC")
filtered_runs = [run for run in runs if run.state == "finished"]
print(f"Total runs: {len(runs)}, Completed runs: {len(filtered_runs)}")
METRIC_MAPPING = {
"PQN": {"return_col": "returned_episode_returns", "time_col": "env_step"},
"PQN_RNN": {"return_col": "returned_episode_returns", "time_col": "env_step"},
"default": {"return_col": "episodic return", "time_col": "TOTAL_TIMESTEPS"},
}
def process_run(run):
"""Process individual W&B run with dynamic max steps per environment"""
try:
config = {k: v for k, v in run.config.items() if not k.startswith("_")}
env_name = config.get("ENV_NAME", "UnknownEnv")
partial_status = str(config.get("PARTIAL", False))
if env_name in ENV_MAX_STEPS:
env_max_step = ENV_MAX_STEPS[env_name]
else:
env_max_step = 1e7
alg_name = config.get("ALG_NAME", "").upper()
memory_type = "MLP"
if alg_name == "PQN_RNN":
memory_type = config.get("MEMORY_TYPE", "Unknown").capitalize()
metric_map = METRIC_MAPPING.get(alg_name, METRIC_MAPPING["default"])
# history = run.scan_history(keys=[metric_map["return_col"], metric_map["time_col"]])
history = list(
run.scan_history(
keys=[metric_map["return_col"], metric_map["time_col"]]
)
)
history = pd.DataFrame(
history, columns=[metric_map["return_col"], metric_map["time_col"]]
)
history["true_steps"] = history[metric_map["time_col"]].clip(
upper=env_max_step
)
history = history.sort_values(metric_map["time_col"]).drop_duplicates(
subset=["true_steps"]
)
if len(history) < 2:
print(f"Skipping {run.name} due to insufficient data points")
return None
# Get first and last values for extrapolation
first_return = history[metric_map["return_col"]].iloc[0]
last_return = history[metric_map["return_col"]].iloc[-1]
# Create unified interpolation grid for this environment
unified_steps = np.linspace(0, env_max_step, INTERP_POINTS)
unified_steps = np.round(unified_steps, decimals=5)
scale_factor = NORMALIZING_FACTOR / env_max_step
# Interpolate returns to uniform grid
interp_func = interp1d(
history["true_steps"],
history[metric_map["return_col"]],
kind="linear",
bounds_error=False,
fill_value=(first_return, last_return),
)
interpolated_returns = interp_func(unified_steps)
smoothed_returns = (
pd.Series(interpolated_returns)
.ewm(span=100, adjust=False, min_periods=1)
.mean()
.values
)
# smoothed_returns = pd.Series(interpolated_returns).rolling(window=WINDOW_SIZE, min_periods=1).mean().values
# Compute cumulative maximum using JAX
cummax_returns = lax.cummax(jnp.array(smoothed_returns))
return pd.DataFrame(
{
"Algorithm": f"{alg_name} ({memory_type})",
"Return": interpolated_returns,
"Smoothed Return": smoothed_returns,
"Cummax Return": np.array(cummax_returns), # Convert back to NumPy
"True Steps": unified_steps,
"EnvName": env_name,
"Partial": partial_status,
"Seed": str(config.get("SEED", 0)),
"run_id": run.id,
"StepsNormalized": unified_steps * scale_factor,
"EnvMaxStep": env_max_step,
"ScaleFactor": scale_factor,
}
)
except Exception as e:
print(f"Error processing {run.name}: {str(e)}")
return None
# # Process all runs and combine data
# all_data = [df for run in filtered_runs if (df := process_run(run)) is not None]
# if not all_data:
# print("No valid data to process")
# exit()
# runs_df = pd.concat(all_data, ignore_index=True)
# # save the data
# runs_df.to_csv("data.csv")
# load the data
runs_df = pd.read_csv("F:/desktop/env_group.csv")
# runs_df['FinalReturn'] = runs_df['Cummax Return'].astype(float)
# # First aggregate across seeds within each environment for each model and Partial status:
# # For each (Algorithm, Partial, EnvName) group, take the maximum final return across seeds.
# seedgroup = runs_df.groupby(['Algorithm', 'Partial', 'EnvName', 'run_id', 'Seed'])['FinalReturn'].max().reset_index()
# seedgroup.to_csv("seedgroup.csv")
# env_group = seedgroup.groupby(['Algorithm', 'Partial', 'EnvName'])['FinalReturn'].agg(['mean', 'std']).reset_index()
# # max for each seed then aggregate
# # env_group.to_csv("env_group.csv")
# # Now aggregate across the environments and difficults: compute mean and std for each (Algorithm, Partial)
# model_group = env_group.groupby(['Algorithm', 'Partial']).agg(
# mean=('mean', 'mean'),
# std=('std', 'mean')
# ).reset_index()
# # model_group.to_csv("model_group.csv")
# Pivot the table so that rows = Model and columns for Partial outcomes.
# This will produce MultiIndex columns; then we rename them.
pivot = {}
for algo, group in runs_df.groupby("Algorithm"):
table = group.pivot(index="EnvName", columns="Partial", values=["mean", "std"])
pivot[algo] = table
# Rename columns so that "False" becomes "MDP" and "True" becomes "POMDP".
table.columns = table.columns.map(
lambda x: (
"MDP"
if (x[0] == "mean" and str(x[1]) == "False")
else (
"POMDP"
if (x[0] == "mean" and str(x[1]) == "True")
else (
"MDP_std"
if (x[0] == "std" and str(x[1]) == "False")
else (
"POMDP_std"
if (x[0] == "std" and str(x[1]) == "True")
else f"{x[0]}_{x[1]}"
)
)
)
)
)
# Compute the overall performance (MDP+POMDP) for the mean as the average of the two
table["MDP+POMDP"] = table[["MDP", "POMDP"]].mean(axis=1)
# Optionally, compute a combined variance (average the variances, here approximated via std)
table["MDP+POMDP_std"] = table[["MDP_std", "POMDP_std"]].mean(axis=1)
for algo, table in pivot.items():
print(f"\n{algo}")
print(table)
# Print or save the table
# print(table)
table.to_csv(f"{algo}.csv", index=True)
for i in range(1):
f(f"plot_{i}")
|