Datasets:

ArXiv:
File size: 8,183 Bytes
3e10edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""

This file is to plot the MDP and POMDP results separately.

"""

import jax.numpy as jnp  # Import JAX
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from jax import lax  # Import lax for cummax
from scipy.interpolate import interp1d

import wandb


def f(name):
    WINDOW_SIZE = 100
    SIGMA = 100
    INTERP_POINTS = 1000
    NORMALIZING_FACTOR = 200

    ENV_MAX_STEPS = {
        "CountRecallEasy": 2e7,
        "CountRecallMedium": 2e7,
        "CountRecallHard": 2e7,
        "BattleShipEasy": 2e7,
        "BattleShipMedium": 2e7,
        "BattleShipHard": 2e7,
        # other environments with default max steps 1e7
    }
    AXIS_FONT = {"fontsize": 9, "labelpad": 8}
    TICK_FONT = {"labelsize": 8}

    api = wandb.Api()
    runs = api.runs("bolt-um/Arcade-RLC")
    filtered_runs = [run for run in runs if run.state == "finished"]
    print(f"Total runs: {len(runs)}, Completed runs: {len(filtered_runs)}")

    METRIC_MAPPING = {
        "PQN": {"return_col": "returned_episode_returns", "time_col": "env_step"},
        "PQN_RNN": {"return_col": "returned_episode_returns", "time_col": "env_step"},
        "default": {"return_col": "episodic return", "time_col": "TOTAL_TIMESTEPS"},
    }

    def process_run(run):
        """Process individual W&B run with dynamic max steps per environment"""
        try:
            config = {k: v for k, v in run.config.items() if not k.startswith("_")}
            env_name = config.get("ENV_NAME", "UnknownEnv")
            partial_status = str(config.get("PARTIAL", False))

            if env_name in ENV_MAX_STEPS:
                env_max_step = ENV_MAX_STEPS[env_name]
            else:
                env_max_step = 1e7

            alg_name = config.get("ALG_NAME", "").upper()
            memory_type = "MLP"
            if alg_name == "PQN_RNN":
                memory_type = config.get("MEMORY_TYPE", "Unknown").capitalize()

            metric_map = METRIC_MAPPING.get(alg_name, METRIC_MAPPING["default"])
            # history = run.scan_history(keys=[metric_map["return_col"], metric_map["time_col"]])
            history = list(
                run.scan_history(
                    keys=[metric_map["return_col"], metric_map["time_col"]]
                )
            )
            history = pd.DataFrame(
                history, columns=[metric_map["return_col"], metric_map["time_col"]]
            )

            history["true_steps"] = history[metric_map["time_col"]].clip(
                upper=env_max_step
            )
            history = history.sort_values(metric_map["time_col"]).drop_duplicates(
                subset=["true_steps"]
            )

            if len(history) < 2:
                print(f"Skipping {run.name} due to insufficient data points")
                return None

            # Get first and last values for extrapolation
            first_return = history[metric_map["return_col"]].iloc[0]
            last_return = history[metric_map["return_col"]].iloc[-1]

            # Create unified interpolation grid for this environment
            unified_steps = np.linspace(0, env_max_step, INTERP_POINTS)
            unified_steps = np.round(unified_steps, decimals=5)
            scale_factor = NORMALIZING_FACTOR / env_max_step

            # Interpolate returns to uniform grid
            interp_func = interp1d(
                history["true_steps"],
                history[metric_map["return_col"]],
                kind="linear",
                bounds_error=False,
                fill_value=(first_return, last_return),
            )
            interpolated_returns = interp_func(unified_steps)

            smoothed_returns = (
                pd.Series(interpolated_returns)
                .ewm(span=100, adjust=False, min_periods=1)
                .mean()
                .values
            )
            # smoothed_returns = pd.Series(interpolated_returns).rolling(window=WINDOW_SIZE, min_periods=1).mean().values

            # Compute cumulative maximum using JAX
            cummax_returns = lax.cummax(jnp.array(smoothed_returns))

            return pd.DataFrame(
                {
                    "Algorithm": f"{alg_name} ({memory_type})",
                    "Return": interpolated_returns,
                    "Smoothed Return": smoothed_returns,
                    "Cummax Return": np.array(cummax_returns),  # Convert back to NumPy
                    "True Steps": unified_steps,
                    "EnvName": env_name,
                    "Partial": partial_status,
                    "Seed": str(config.get("SEED", 0)),
                    "run_id": run.id,
                    "StepsNormalized": unified_steps * scale_factor,
                    "EnvMaxStep": env_max_step,
                    "ScaleFactor": scale_factor,
                }
            )

        except Exception as e:
            print(f"Error processing {run.name}: {str(e)}")
        return None

    # # Process all runs and combine data
    # all_data = [df for run in filtered_runs if (df := process_run(run)) is not None]
    # if not all_data:
    #     print("No valid data to process")
    #     exit()
    # runs_df = pd.concat(all_data, ignore_index=True)
    # # save the data
    # runs_df.to_csv("data.csv")

    # load the data
    runs_df = pd.read_csv("F:/desktop/env_group.csv")

    # runs_df['FinalReturn'] = runs_df['Cummax Return'].astype(float)

    # # First aggregate across seeds within each environment for each model and Partial status:
    # # For each (Algorithm, Partial, EnvName) group, take the maximum final return across seeds.
    # seedgroup = runs_df.groupby(['Algorithm', 'Partial', 'EnvName', 'run_id', 'Seed'])['FinalReturn'].max().reset_index()

    # seedgroup.to_csv("seedgroup.csv")
    # env_group = seedgroup.groupby(['Algorithm', 'Partial', 'EnvName'])['FinalReturn'].agg(['mean', 'std']).reset_index()
    # # max for each seed then aggregate

    # # env_group.to_csv("env_group.csv")

    # # Now aggregate across the environments and difficults: compute mean and std for each (Algorithm, Partial)
    # model_group = env_group.groupby(['Algorithm', 'Partial']).agg(
    #     mean=('mean', 'mean'),
    #     std=('std', 'mean')
    # ).reset_index()
    # # model_group.to_csv("model_group.csv")

    # Pivot the table so that rows = Model and columns for Partial outcomes.
    # This will produce MultiIndex columns; then we rename them.
    pivot = {}
    for algo, group in runs_df.groupby("Algorithm"):
        table = group.pivot(index="EnvName", columns="Partial", values=["mean", "std"])
        pivot[algo] = table
        # Rename columns so that "False" becomes "MDP" and "True" becomes "POMDP".
        table.columns = table.columns.map(
            lambda x: (
                "MDP"
                if (x[0] == "mean" and str(x[1]) == "False")
                else (
                    "POMDP"
                    if (x[0] == "mean" and str(x[1]) == "True")
                    else (
                        "MDP_std"
                        if (x[0] == "std" and str(x[1]) == "False")
                        else (
                            "POMDP_std"
                            if (x[0] == "std" and str(x[1]) == "True")
                            else f"{x[0]}_{x[1]}"
                        )
                    )
                )
            )
        )

        # Compute the overall performance (MDP+POMDP) for the mean as the average of the two
        table["MDP+POMDP"] = table[["MDP", "POMDP"]].mean(axis=1)

        # Optionally, compute a combined variance (average the variances, here approximated via std)
        table["MDP+POMDP_std"] = table[["MDP_std", "POMDP_std"]].mean(axis=1)
    for algo, table in pivot.items():
        print(f"\n{algo}")
        print(table)
        # Print or save the table
        # print(table)
        table.to_csv(f"{algo}.csv", index=True)


for i in range(1):
    f(f"plot_{i}")