Datasets:

ArXiv:
POPGym-Arcade / plotting /noiseva.py
Wendakang's picture
update arcade
3e10edb
# Require pip install moviepy==1.0.3
import os
from typing import NamedTuple
import chex
import equinox as eqx
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
import optax
import seaborn as sns
from jax import lax
import popgym_arcade
import wandb
from popgym_arcade.baselines.model import QNetworkRNN, add_batch_dim
from popgym_arcade.baselines.pqn_rnn import debug_shape
from popgym_arcade.wrappers import LogWrapper
plt.rcParams["text.usetex"] = True
plt.rcParams["font.family"] = "sans-serif"
plt.rcParams["font.sans-serif"] = ["Arial"]
# This is the number of steps or frames to evaluate
STEPS = 101
def evaluate(model, config):
seed = jax.random.PRNGKey(11)
seed, _rng = jax.random.split(seed)
env, env_params = popgym_arcade.make(
config["ENV_NAME"], partial_obs=config["PARTIAL"], obs_size=config["OBS_SIZE"]
)
vmap_reset = lambda n_envs: lambda rng: jax.vmap(env.reset, in_axes=(0, None))(
jax.random.split(rng, n_envs), env_params
)
vmap_step = lambda n_envs: lambda rng, env_state, action: jax.vmap(
env.step, in_axes=(0, 0, 0, None)
)(jax.random.split(rng, n_envs), env_state, action, env_params)
def run_evaluation(rng):
# Reset environment
obs, state = vmap_reset(2)(rng)
init_done = jnp.zeros(2, dtype=bool)
init_action = jnp.zeros(2, dtype=int)
init_hs = model.initialize_carry(key=rng)
hs = add_batch_dim(init_hs, 2)
frame_shape = obs[0].shape
frames = jnp.zeros((STEPS, *frame_shape), dtype=jnp.float32)
# Store initial observation
frame = jnp.asarray(obs[0])
frame = (frame * 255).astype(jnp.float32)
frames = frames.at[0].set(frame)
normal_qvals = jnp.zeros((STEPS, 2, 5))
carry = (hs, obs, init_done, init_action, state, frames, rng)
def evaluate_step(carry, i):
hs, obs, done, action, state, frames, _rng = carry
_rng, rng_step = jax.random.split(_rng, 2)
obs_batch = obs[jnp.newaxis, :]
done_batch = done[jnp.newaxis, :]
action_batch = action[jnp.newaxis, :]
# jax.debug.print("hs shape: {}", debug_shape(hs)) # tuple (2, 512) (2,)
# jax.debug.print("obs_batch shape: {}", obs_batch.shape) # Shape (1, 2, 128, 128, 3)
# jax.debug.print("done_batch shape: {}", done_batch.shape) # Shape (1, 2)
# jax.debug.print("action_batch shape: {}", action_batch.shape) # Shape (1, 2)
hs, q_val = model(hs, obs_batch, done_batch, action_batch)
q_val = lax.stop_gradient(q_val)
q_val = q_val.squeeze(axis=0)
# jax.debug.print("q_val shape: {}", q_val.shape) # Shape (2, n_actions)
action = jnp.argmax(q_val, axis=-1)
obs, new_state, reward, done, info = vmap_step(2)(rng_step, state, action)
state = new_state
frame = jnp.asarray(obs[0])
frame = (frame * 255).astype(jnp.float32)
frames = frames.at[i + 1].set(frame)
carry = (hs, obs, done, action, state, frames, _rng)
return carry, q_val
def body_fun(i, val):
carry, normal_qvals = val
carry, q_val = evaluate_step(carry, i)
normal_qvals = normal_qvals.at[i].set(q_val)
return (carry, normal_qvals)
carry, normal_qvals = lax.fori_loop(0, STEPS, body_fun, (carry, normal_qvals))
_, _, _, _, _, frames, _rng = carry
return frames, _rng, normal_qvals
# imageio.mimsave('{}_{}_{}_Partial={}_SEED={}.gif'.format(config["TRAIN_TYPE"], config["MEMORY_TYPE"], config["ENV_NAME"], config["PARTIAL"], config["SEED"]), frames)
# wandb.log({"{}_{}_{}_model_Partial={}_SEED={}".format(config["TRAIN_TYPE"], config["MEMORY_TYPE"], config["ENV_NAME"], config["PARTIAL"], config["SEED"]): wandb.Video(frames, fps=4)})
wandb.init(
project=f'{config["PROJECT"]}',
name=f'{config["TRAIN_TYPE"]}_{config["MEMORY_TYPE"]}_{config["ENV_NAME"]}_Partial={config["PARTIAL"]}_SEED={config["SEED"]}',
)
# Rollout
noiseless_frames, _rng, normal_qvals = run_evaluation(
_rng
) # Shape (STEPS, 128, 128, 3), normal_qvals shape (STEPS, 2, n_actions)
def add_noise(o, _rng):
noise = jax.random.normal(_rng, o.shape) * 1.0
return noise + o
def qvals_for_frames(frames, rng, init_hs):
hs = add_batch_dim(init_hs, 2)
init_done = jnp.zeros(2, dtype=bool)
init_action = jnp.zeros(2, dtype=int)
q_vals = jnp.zeros((STEPS, 2, 5))
def process_step(carry, frame):
hs, done, action = carry
obs = jnp.asarray(frame)
# jax.debug.print("frame shape: {}", obs.shape) # Shape (128, 128, 3)
obs = jnp.stack([obs, obs], axis=0) # Simulate 2 environments
obs_batch = obs[jnp.newaxis, :] # Shape (1, 2, 128, 128, 3)
done_batch = done[jnp.newaxis, :] # Shape (1, 2)
action_batch = action[jnp.newaxis, :] # Shape (1, 2)
hs, q_val = model(hs, obs_batch, done_batch, action_batch)
q_val = lax.stop_gradient(q_val)
q_val = q_val.squeeze(axis=0) # Shape (2, n_actions)
# jax.debug.print("=q_val shape: {}", q_val.shape) # Shape (2, n_actions)
carry = (hs, done, action)
return carry, q_val
def body_fun(i, val):
carry, q_vals = val
carry, q_val = process_step(carry, frames[i])
q_vals = q_vals.at[i].set(q_val)
return (carry, q_vals)
carry = (hs, init_done, init_action)
_, q_vals = lax.fori_loop(0, STEPS, body_fun, (carry, q_vals))
return q_vals # Shape (STEPS, 2, n_actions)
last_qs = []
noisy_frames = []
num_noise = STEPS - 1
for noise_idx in range(
1, num_noise + 1
): # This is how many trajectories we want to generate
init_hs = model.initialize_carry(key=_rng)
rng, sub_rng = jax.random.split(_rng)
frames = noiseless_frames.copy()
noisy_frame = add_noise(frames[noise_idx], sub_rng)
noisy_frame = (noisy_frame * 255).astype(jnp.float32) # Shape (128, 128, 3)
frames = frames.at[noise_idx].set(noisy_frame) # Shape (STEPS, 128, 128, 3)
noisy_frames.append(np.array(noisy_frame, dtype=np.uint8))
frames_np = np.array(frames, dtype=np.uint8) # Shape (STEPS, 128, 128, 3)
frames_np = frames_np.transpose((0, 3, 1, 2))
log_key = "{}_{}_{}_model_Partial={}_SEED={}_NoiseIdx={}".format(
config["TRAIN_TYPE"],
config["MEMORY_TYPE"],
config["ENV_NAME"],
config["PARTIAL"],
config["SEED"],
noise_idx,
)
wandb.log({log_key: wandb.Video(frames_np, fps=4)})
q_vals = qvals_for_frames(frames, sub_rng, init_hs)
q_vals = jnp.array(q_vals)
# print(f"{noise_idx}{q_vals}") # Shape (STEPS, 2, n_actions)
q_vals_np = np.array(q_vals) # shape (STEPS, 2, 5)
q_vals_plot = q_vals_np[:, 0, :] # shape (STEPS, 5)
last_qs.append(q_vals_plot[-1])
frames = np.arange(q_vals_plot.shape[0])
n_actions = q_vals_plot.shape[1]
_rng = rng
plt.rcParams["text.usetex"] = True
plt.rcParams["text.latex.preamble"] = (
r"\usepackage{amsmath} \usepackage{amssymb} \usepackage{amsfonts}"
)
def plot(noisy_frames, noiseless_frames, normal_qvals, last_qs):
sns.set()
fig, axes = plt.subplots(num_noise + 1, 4, figsize=(10, 3 * (num_noise + 1)))
normal_last_qvals = normal_qvals[:, 0, :][-1]
last_qs = np.array(last_qs) # shape (10, 5)
all_qvals = [normal_last_qvals] + [last_qs[idx] for idx in range(num_noise)]
ymin = min(q.min() for q in all_qvals)
ymax = max(q.max() for q in all_qvals) + 0.1
action_symbols = ["↑", "↓", "←", "→", "4"]
axes[0, 0].imshow(np.array(noiseless_frames[0], dtype=np.uint8))
axes[0, 0].set_title(r"$O_0$", fontsize=20)
axes[0, 1].imshow(np.array(noiseless_frames[1], dtype=np.uint8))
axes[0, 1].set_title(r"$O_1$", fontsize=20)
axes[0, 2].imshow(np.array(noiseless_frames[-1], dtype=np.uint8))
axes[0, 2].set_title(rf"$O_{{{num_noise}}}$", fontsize=20)
max_idx = np.argmax(normal_last_qvals)
colors = ["#BBBBBB"] * len(normal_last_qvals)
colors[max_idx] = "lightblue"
axes[0, 3].bar(
np.arange(normal_last_qvals.shape[0]),
normal_last_qvals,
color=colors,
edgecolor="black",
)
axes[0, 3].set_title(rf"$Q(s_{{{num_noise}}}, a_{{{num_noise}}})$", fontsize=20)
axes[0, 3].set_xticks(np.arange(len(normal_last_qvals)))
axes[0, 3].set_xticklabels(action_symbols, fontsize=10)
# axes[0, 3].set_ylim(ymin, ymax)
# axes[0, 3].set_yticks(np.arange(0.0, ymax + 0.05, 0.1))
# axes[0, 3].tick_params(axis='y', labelsize=20)
axes[0, 3].set_yticks([])
axes[0, 3].yaxis.set_visible(False)
for idx in range(num_noise):
qvals = last_qs[idx]
max_idx = np.argmax(qvals)
colors = ["#BBBBBB"] * len(qvals)
colors[max_idx] = "#FFB6C1"
axes[idx + 1, 0].imshow(np.array(noiseless_frames[0], dtype=np.uint8))
axes[idx + 1, 0].set_title(r"$O_0$", fontsize=20)
axes[idx + 1, 1].imshow(np.array(noisy_frames[idx], dtype=np.uint8))
axes[idx + 1, 1].set_title(rf"$O_{{{idx+1}}} + \epsilon$", fontsize=20)
axes[idx + 1, 2].imshow(np.array(noiseless_frames[-1], dtype=np.uint8))
axes[idx + 1, 2].set_title(rf"$O_{{{num_noise}}}$", fontsize=20)
axes[idx + 1, 3].bar(
np.arange(last_qs[idx].shape[0]),
last_qs[idx],
color=colors,
edgecolor="black",
)
axes[idx + 1, 3].set_title(
rf"$Q(s_{{{num_noise}}}, a_{{{num_noise}}})$", fontsize=20
)
# axes[idx , 3].set_ylim(ymin, ymax)
# axes[idx + 1, 3].set_yticks(np.arange(0.0, ymax + 0.05, 0.1))
# axes[idx + 1, 3].tick_params(axis='y', labelsize=20)
axes[idx + 1, 3].set_yticks([])
axes[idx + 1, 3].yaxis.set_visible(False)
axes[idx + 1, 3].set_xticks(np.arange(len(last_qs[idx])))
axes[idx + 1, 3].set_xticklabels(action_symbols, fontsize=10)
for row in axes:
for ax in row[:3]:
ax.axis("off")
plt.tight_layout()
plt.subplots_adjust(wspace=0.1)
for row in axes:
ax2 = row[2]
ax3 = row[3]
pos2 = ax2.get_position()
pos3 = ax3.get_position()
new_spacing = 0.04 # Adjust this value to increase/decrease the space between ax2 and ax3
new_ax3_x0 = pos2.x1 + new_spacing
ax3.set_position([new_ax3_x0, pos3.y0, pos3.width, pos3.height])
plt.savefig("summary.png", dpi=300, bbox_inches="tight")
plt.close()
def batch_plot(noisy_frames, noiseless_frames, normal_qvals, last_qs):
sns.set()
plt.rcParams["text.usetex"] = True
plt.rcParams["text.latex.preamble"] = (
r"\usepackage{amsmath} \usepackage{amssymb} \usepackage{amsfonts}"
)
BATCH_SIZE = 20 # Number of rows per batch
total_rows = num_noise + 1
num_batches = (total_rows + BATCH_SIZE - 1) // BATCH_SIZE
normal_last_qvals = normal_qvals[:, 0, :][-1]
last_qs = np.array(last_qs) # shape (num_noise, 5)
all_qvals = [normal_last_qvals] + [last_qs[idx] for idx in range(num_noise)]
ymin = min(q.min() for q in all_qvals)
ymax = max(q.max() for q in all_qvals) + 0.1
action_symbols = ["↑", "↓", "←", "→", "4"]
for batch_idx in range(num_batches):
start = batch_idx * BATCH_SIZE
end = min((batch_idx + 1) * BATCH_SIZE, total_rows)
batch_rows = end - start
fig, axes = plt.subplots(batch_rows, 4, figsize=(10, 3 * batch_rows))
if batch_rows == 1:
axes = axes[None, :] # Ensure axes is 2D
for row_idx in range(batch_rows):
idx = start + row_idx
if idx == 0:
# first row
axes[row_idx, 0].imshow(
np.array(noiseless_frames[0], dtype=np.uint8)
)
axes[row_idx, 0].set_title(r"$O_0$", fontsize=20)
axes[row_idx, 1].imshow(
np.array(noiseless_frames[1], dtype=np.uint8)
)
axes[row_idx, 1].set_title(r"$O_1$", fontsize=20)
axes[row_idx, 2].imshow(
np.array(noiseless_frames[-1], dtype=np.uint8)
)
axes[row_idx, 2].set_title(rf"$O_{{{num_noise}}}$", fontsize=20)
max_idx = np.argmax(normal_last_qvals)
colors = ["#BBBBBB"] * len(normal_last_qvals)
colors[max_idx] = "lightblue"
axes[row_idx, 3].bar(
np.arange(normal_last_qvals.shape[0]),
normal_last_qvals,
color=colors,
edgecolor="black",
)
axes[row_idx, 3].set_title(
rf"$Q(s_{{{num_noise}}}, a_{{{num_noise}}})$", fontsize=20
)
axes[row_idx, 3].set_xticks(np.arange(len(normal_last_qvals)))
axes[row_idx, 3].set_xticklabels(action_symbols, fontsize=10)
axes[row_idx, 3].set_yticks([])
axes[row_idx, 3].yaxis.set_visible(False)
else:
qvals = last_qs[idx - 1]
max_idx = np.argmax(qvals)
colors = ["#BBBBBB"] * len(qvals)
colors[max_idx] = "#FFB6C1"
axes[row_idx, 0].imshow(
np.array(noiseless_frames[0], dtype=np.uint8)
)
axes[row_idx, 0].set_title(r"$O_0$", fontsize=20)
axes[row_idx, 1].imshow(
np.array(noisy_frames[idx - 1], dtype=np.uint8)
)
axes[row_idx, 1].set_title(
rf"$O_{{{idx}}} + \epsilon$", fontsize=20
)
axes[row_idx, 2].imshow(
np.array(noiseless_frames[-1], dtype=np.uint8)
)
axes[row_idx, 2].set_title(rf"$O_{{{num_noise}}}$", fontsize=20)
axes[row_idx, 3].bar(
np.arange(qvals.shape[0]),
qvals,
color=colors,
edgecolor="black",
)
axes[row_idx, 3].set_title(
rf"$Q(s_{{{num_noise}}}, a_{{{num_noise}}})$", fontsize=20
)
axes[row_idx, 3].set_yticks([])
axes[row_idx, 3].yaxis.set_visible(False)
axes[row_idx, 3].set_xticks(np.arange(len(qvals)))
axes[row_idx, 3].set_xticklabels(action_symbols, fontsize=10)
for ax in axes[row_idx, :3]:
ax.axis("off")
plt.tight_layout()
plt.subplots_adjust(wspace=0.1)
for row in axes:
ax2 = row[2]
ax3 = row[3]
pos2 = ax2.get_position()
pos3 = ax3.get_position()
new_spacing = 0.04
new_ax3_x0 = pos2.x1 + new_spacing
ax3.set_position([new_ax3_x0, pos3.y0, pos3.width, pos3.height])
plt.savefig(f"summary_batch_{batch_idx}.png", dpi=300, bbox_inches="tight")
plt.close()
# plot(noisy_frames, noiseless_frames, normal_qvals, last_qs)
batch_plot(noisy_frames, noiseless_frames, normal_qvals, last_qs)
os.environ["WANDB_MODE"] = "disabled"
MEMORY_TYPES = {"lru"}
# , "mingru", "fart"
ENV_NAMES = {
# "AutoEncodeEasy",
# "BattleShipEasy",
"CartPoleEasy",
# "NoisyCartPoleEasy",
# "CountRecallEasy",
# "MineSweeperEasy",
# "NavigatorEasy",
}
PATH = "./pkls_gradients/"
for filename in os.listdir(PATH):
if filename.startswith("PQN_RNN_"):
parts = filename.split("_")
train_type = "_".join(parts[:2]) # "PQN_RNN"
memory_type = parts[2].lower()
env_name = parts[3]
partial_part = parts[5]
seed_part = parts[6]
else:
continue
# Extract Partial and SEED values
partial = partial_part.split("=")[1]
seed = seed_part.split("=")[1].replace(".pkl", "")
# Check if this file matches our criteria
if (
train_type == "PQN_RNN"
and partial.lower() == "false"
and memory_type in MEMORY_TYPES
and env_name in ENV_NAMES
):
# Create config
config = {
"ENV_NAME": env_name,
"OBS_SIZE": 128,
"MEMORY_TYPE": memory_type,
"PARTIAL": False,
"TRAIN_TYPE": train_type,
"SEED": int(seed),
"PROJECT": "noiseva",
}
print(f"Evaluating {filename} with config: {config}")
rng = jax.random.PRNGKey(config["SEED"])
rng, _rng = jax.random.split(rng)
network = QNetworkRNN(_rng, config["OBS_SIZE"], config["MEMORY_TYPE"])
model = eqx.tree_deserialise_leaves(PATH + filename, network)
evaluate(model, config)