""" Plotting churn ratio difference between partial and full observability """ import jax.numpy as jnp import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from jax import lax from scipy.interpolate import interp1d import wandb def f(name): WINDOW_SIZE = 100 SIGMA = 100 INTERP_POINTS = 1000 NORMALIZING_FACTOR = 200 ENV_MAX_STEPS = { "CountRecallEasy": 2e7, "CountRecallMedium": 2e7, "CountRecallHard": 2e7, "BattleShipEasy": 2e7, "BattleShipMedium": 2e7, "BattleShipHard": 2e7, # other environments with default max steps 1e7 } AXIS_FONT = {"fontsize": 9, "labelpad": 8} TICK_FONT = {"labelsize": 8} api = wandb.Api() runs = api.runs("bolt-um/Arcade-RLC-Churn") filtered_runs = [run for run in runs if run.state == "finished"] print(f"Total runs: {len(runs)}, Completed runs: {len(filtered_runs)}") METRIC_MAPPING = { "PQN": {"churn_ratio": "churn_ratio", "time_col": "env_step"}, "PQN_RNN": {"churn_ratio": "churn_ratio", "time_col": "env_step"}, "default": {"churn_ratio": "churn_ratio", "time_col": "TOTAL_TIMESTEPS"}, } def process_run(run): """Process individual W&B run with dynamic max steps per environment""" try: config = {k: v for k, v in run.config.items() if not k.startswith("_")} env_name = config.get("ENV_NAME", "UnknownEnv") partial_status = str(config.get("PARTIAL", False)) if env_name in ENV_MAX_STEPS: env_max_step = ENV_MAX_STEPS[env_name] else: env_max_step = 1e7 alg_name = config.get("ALG_NAME", "").upper() memory_type = "MLP" if alg_name == "PQN_RNN": memory_type = config.get("MEMORY_TYPE", "Unknown").capitalize() metric_map = METRIC_MAPPING.get(alg_name, METRIC_MAPPING["default"]) history = list( run.scan_history( keys=[metric_map["churn_ratio"], metric_map["time_col"]] ) ) history = pd.DataFrame( history, columns=[metric_map["churn_ratio"], metric_map["time_col"]] ) history["true_steps"] = history[metric_map["time_col"]].clip( upper=env_max_step ) history = history.sort_values(metric_map["time_col"]).drop_duplicates( subset=["true_steps"] ) if len(history) < 2: print(f"Skipping {run.name} due to insufficient data points") return None # Get first and last values for extrapolation first_return = history[metric_map["churn_ratio"]].iloc[0] last_return = history[metric_map["churn_ratio"]].iloc[-1] # Create unified interpolation grid for this environment unified_steps = np.linspace(0, env_max_step, INTERP_POINTS) unified_steps = np.round(unified_steps, decimals=5) scale_factor = NORMALIZING_FACTOR / env_max_step # Interpolate returns to uniform grid interp_func = interp1d( history["true_steps"], history[metric_map["churn_ratio"]], kind="linear", bounds_error=False, fill_value=(first_return, last_return), ) interpolated_churn_ratio = interp_func(unified_steps) return pd.DataFrame( { "Algorithm": f"{alg_name} ({memory_type})", "churn_ratio": interpolated_churn_ratio, # "Smoothed Return": smoothed_returns, # "Cummax Return": np.array(cummax_returns), # Convert back to NumPy "True Steps": unified_steps, "EnvName": env_name, "Partial": partial_status, "Seed": str(config.get("SEED", 0)), "run_id": run.id, "StepsNormalized": unified_steps / env_max_step, "EnvMaxStep": env_max_step, "ScaleFactor": scale_factor, } ) except Exception as e: print(f"Error processing {run.name}: {str(e)}") return None # Process all runs and combine data # all_data = [df for run in filtered_runs if (df := process_run(run)) is not None] # if not all_data: # print("No valid data to process") # exit() # runs_df = pd.concat(all_data, ignore_index=True) # runs_df.to_pickle("churnratiodata.pkl") runs_df = pd.read_pickle("churnratiodata.pkl") # print(f"Total runs processed: {runs_df}") diff_df = pd.DataFrame() for env_name in runs_df["EnvName"].unique(): env_data = runs_df[runs_df["EnvName"] == env_name] partial_true = env_data[env_data["Partial"] == "True"] partial_false = env_data[env_data["Partial"] == "False"] merged = pd.merge( partial_true[["StepsNormalized", "churn_ratio"]], partial_false[["StepsNormalized", "churn_ratio"]], on="StepsNormalized", suffixes=("_true", "_false"), how="inner", ) merged["churn_diff"] = np.abs( merged["churn_ratio_true"] - merged["churn_ratio_false"] ) merged["EnvName"] = env_name.replace("Easy", "") # diff_df = pd.concat([diff_df, merged[['EnvName', 'StepsNormalized', 'churn_diff']]], ignore_index=True) merged["churn_diff_cummax"] = merged.groupby("EnvName")["churn_diff"].cummax() # merged['churn_diff_avg'] = merged.groupby('EnvName')['churn_diff'].transform('mean') merged["churn_diff_avg"] = merged.groupby("EnvName")["churn_diff"].transform( lambda x: x.rolling(window=20, min_periods=1).mean() ) diff_df = pd.concat( [ diff_df, merged[ [ "EnvName", "StepsNormalized", "churn_diff", "churn_diff_cummax", "churn_diff_avg", ] ], ], ignore_index=True, ) plt.figure(figsize=(12, 7)) sns.set() sns.lineplot( data=diff_df, x="StepsNormalized", y="churn_diff_avg", hue="EnvName", palette="Spectral", linewidth=2.5, ) plt.title("Relative Policy Churn", fontsize=35) plt.xlabel("Training Progress", fontsize=35) plt.ylabel("POMDP/MDP Difference", fontsize=35) plt.tick_params(axis="both", which="major", labelsize=35) plt.legend(title="", loc="upper left", fontsize=20, ncol=2) plt.grid(True, alpha=0.5) plt.tight_layout() plt.savefig("{}.pdf".format(name), dpi=300, bbox_inches="tight", facecolor="white") for i in range(1): f(f"churn{i}") print(f"churn{i} done")