import matplotlib.pyplot as plt import pandas as pd import seaborn as sns # Import the function from run_multi_seed_analysis.py from plotting.run_multi_seed_analysis import run_multiple_seeds_and_save_csv def analyze_model_saliency( config, seeds=[0, 1, 2, 3, 4], max_steps=200, visualize=True ): """ Analyze the saliency maps of a model with the given configuration. Args: config (dict): Dictionary containing model configuration with keys: - ENV_NAME: Environment name - PARTIAL: Whether to use partial observations - MEMORY_TYPE: Type of memory to use - OBS_SIZE: Size of observations - MODEL_SEED: Seed used for the model (to locate model file) seeds (list): List of seeds to run the analysis with max_steps (int): Maximum number of steps per episode visualize (bool): Whether to create visualization plots Returns: dict: A dictionary containing: - csv_path: Path to the CSV file with results - avg_plot_path: Path to the average saliency plot - individual_plot_path: Path to the individual seeds saliency plot """ output_csv = f'saliency_results_{config["MEMORY_TYPE"]}_{config["ENV_NAME"]}_Partial={config["PARTIAL"]}.csv' # Run the analysis for all seeds output_csv = run_multiple_seeds_and_save_csv( config, seeds, max_steps=max_steps, output_csv=output_csv ) result_paths = {"csv_path": output_csv} if visualize: # Load the results for visualization results_df = pd.read_csv(output_csv) # Create a visualization of the distributions for each seed plt.figure(figsize=(12, 8)) sns.set_style("whitegrid") # Filter columns that represent positions pos_columns = [col for col in results_df.columns if col.startswith("pos_")] # Plot each seed's distribution for idx, row in results_df.iterrows(): seed = row["seed"] positions = [float(col.split("_")[1]) for col in pos_columns] values = [row[col] for col in pos_columns] plt.plot(positions, values, marker="o", markersize=3, label=f"Seed {seed}") plt.xlabel("Normalized Episode Position") plt.ylabel("Saliency Magnitude") plt.title( f"Terminal Saliency Distribution by Seed\n{config['MEMORY_TYPE']} on {config['ENV_NAME']}" ) plt.legend() plt.tight_layout() individual_plot_path = f"saliency_plot_{config['MEMORY_TYPE']}_{config['ENV_NAME']}_Partial={config['PARTIAL']}.png" plt.savefig(individual_plot_path, dpi=300) plt.close() # Calculate average distribution across seeds avg_values = [results_df[col].mean() for col in pos_columns] std_values = [results_df[col].std() for col in pos_columns] positions = [float(col.split("_")[1]) for col in pos_columns] plt.figure(figsize=(12, 8)) plt.plot(positions, avg_values, "b-", linewidth=2, label="Mean Distribution") plt.fill_between( positions, [avg - std for avg, std in zip(avg_values, std_values)], [avg + std for avg, std in zip(avg_values, std_values)], color="b", alpha=0.2, label="Standard Deviation", ) plt.xlabel("Normalized Episode Position") plt.ylabel("Average Saliency Magnitude") plt.title( f"Average Terminal Saliency Distribution Across Seeds\n{config['MEMORY_TYPE']} on {config['ENV_NAME']}" ) plt.legend() plt.tight_layout() avg_plot_path = f"avg_saliency_plot_{config['MEMORY_TYPE']}_{config['ENV_NAME']}_Partial={config['PARTIAL']}.png" plt.savefig(avg_plot_path, dpi=300) plt.close() result_paths["individual_plot_path"] = individual_plot_path result_paths["avg_plot_path"] = avg_plot_path print(f"Analysis complete. Results saved to: {output_csv}") return result_paths # Example usage if __name__ == "__main__": configs = [ # fart models { "ENV_NAME": "AutoEncodeEasy", "PARTIAL": False, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 3, }, { "ENV_NAME": "AutoEncodeEasy", "PARTIAL": True, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 4, }, { "ENV_NAME": "BattleShipEasy", "PARTIAL": False, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 0, }, { "ENV_NAME": "BattleShipEasy", "PARTIAL": True, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 0, }, { "ENV_NAME": "CartPoleEasy", "PARTIAL": False, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 0, }, { "ENV_NAME": "CartPoleEasy", "PARTIAL": True, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 1, }, { "ENV_NAME": "CountRecallEasy", "PARTIAL": False, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 0, }, { "ENV_NAME": "CountRecallEasy", "PARTIAL": True, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 0, }, { "ENV_NAME": "MineSweeperEasy", "PARTIAL": False, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 4, }, { "ENV_NAME": "MineSweeperEasy", "PARTIAL": True, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 3, }, { "ENV_NAME": "NavigatorEasy", "PARTIAL": False, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 2, }, { "ENV_NAME": "NavigatorEasy", "PARTIAL": True, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 1, }, { "ENV_NAME": "NoisyCartPoleEasy", "PARTIAL": False, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 4, }, { "ENV_NAME": "NoisyCartPoleEasy", "PARTIAL": True, "MEMORY_TYPE": "fart", "OBS_SIZE": 128, "MODEL_SEED": 0, }, # lru models { "ENV_NAME": "AutoEncodeEasy", "PARTIAL": False, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 0, }, { "ENV_NAME": "AutoEncodeEasy", "PARTIAL": True, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 0, }, { "ENV_NAME": "BattleShipEasy", "PARTIAL": False, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 1, }, { "ENV_NAME": "BattleShipEasy", "PARTIAL": True, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 2, }, { "ENV_NAME": "CartPoleEasy", "PARTIAL": False, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 3, }, { "ENV_NAME": "CartPoleEasy", "PARTIAL": True, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 3, }, { "ENV_NAME": "CountRecallEasy", "PARTIAL": False, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 0, }, { "ENV_NAME": "CountRecallEasy", "PARTIAL": True, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 1, }, { "ENV_NAME": "MineSweeperEasy", "PARTIAL": False, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 4, }, { "ENV_NAME": "MineSweeperEasy", "PARTIAL": True, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 1, }, { "ENV_NAME": "NavigatorEasy", "PARTIAL": False, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 2, }, { "ENV_NAME": "NavigatorEasy", "PARTIAL": True, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 4, }, { "ENV_NAME": "NoisyCartPoleEasy", "PARTIAL": False, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 2, }, { "ENV_NAME": "NoisyCartPoleEasy", "PARTIAL": True, "MEMORY_TYPE": "lru", "OBS_SIZE": 128, "MODEL_SEED": 2, }, # mingru models { "ENV_NAME": "AutoEncodeEasy", "PARTIAL": False, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 1, }, { "ENV_NAME": "AutoEncodeEasy", "PARTIAL": True, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 1, }, { "ENV_NAME": "BattleShipEasy", "PARTIAL": False, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 2, }, { "ENV_NAME": "BattleShipEasy", "PARTIAL": True, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 2, }, { "ENV_NAME": "CartPoleEasy", "PARTIAL": False, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 4, }, { "ENV_NAME": "CartPoleEasy", "PARTIAL": True, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 4, }, { "ENV_NAME": "CountRecallEasy", "PARTIAL": False, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 2, }, { "ENV_NAME": "CountRecallEasy", "PARTIAL": True, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 2, }, { "ENV_NAME": "MineSweeperEasy", "PARTIAL": False, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 0, }, { "ENV_NAME": "MineSweeperEasy", "PARTIAL": True, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 2, }, { "ENV_NAME": "NavigatorEasy", "PARTIAL": False, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 0, }, { "ENV_NAME": "NavigatorEasy", "PARTIAL": True, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 0, }, { "ENV_NAME": "NoisyCartPoleEasy", "PARTIAL": False, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 3, }, { "ENV_NAME": "NoisyCartPoleEasy", "PARTIAL": True, "MEMORY_TYPE": "mingru", "OBS_SIZE": 128, "MODEL_SEED": 4, }, ] # Example usage seeds = [0, 1, 2, 3, 4] for config in configs: print( f"Analyzing {config['MEMORY_TYPE']} on {config['ENV_NAME']} (Partial={config['PARTIAL']}, Seed={config['MODEL_SEED']})" ) results = analyze_model_saliency( config=config, seeds=seeds, max_steps=200, visualize=True ) print(f"Successfully analyzed: {results}")