Datasets:
File size: 10,157 Bytes
3341f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import base64
import io
from deepfurniture import DeepFurnitureDataset
from pycocotools import mask as mask_utils
def save_image_base64(image):
"""Convert PIL image to base64 string."""
buffered = io.BytesIO()
image.save(buffered, format="JPEG", quality=90)
return base64.b64encode(buffered.getvalue()).decode()
def create_instance_visualization(scene_data):
"""Create combined instance visualization with both masks and bboxes."""
image = scene_data['image']
instances = scene_data['instances']
# Image dimensions for boundary checking
img_width, img_height = image.size
# Start with image at half opacity
vis_img = np.array(image, dtype=np.float32) * 0.5
# Get all segmentations
segmentations = []
for inst in instances:
if inst['segmentation']:
rle = {
'counts': inst['segmentation'],
'size': [img_height, img_width]
}
segmentations.append(rle)
# Create color map for instances with distinct colors
colors = np.array([
[0.9, 0.1, 0.1], # Red
[0.1, 0.9, 0.1], # Green
[0.1, 0.1, 0.9], # Blue
[0.9, 0.9, 0.1], # Yellow
[0.9, 0.1, 0.9], # Magenta
[0.1, 0.9, 0.9], # Cyan
[0.9, 0.5, 0.1], # Orange
[0.5, 0.9, 0.1], # Lime
[0.5, 0.1, 0.9], # Purple
])
colors = np.tile(colors, (len(instances) // len(colors) + 1, 1))[:len(instances)]
# Draw instance masks with higher opacity
if segmentations:
if isinstance(segmentations[0]['counts'], (list, tuple)):
segmentations = mask_utils.frPyObjects(
segmentations, img_height, img_width
)
masks = mask_utils.decode(segmentations)
for idx in range(masks.shape[2]):
color = colors[idx]
mask = masks[:, :, idx]
for c in range(3):
vis_img[:, :, c] += mask * np.array(image)[:, :, c] * 0.7 * color[c]
# Convert to PIL for drawing bounding boxes
vis_img = Image.fromarray(np.uint8(np.clip(vis_img, 0, 255)))
draw = ImageDraw.Draw(vis_img)
# Try to load a font for better text rendering
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 20)
except:
try:
font = ImageFont.truetype("/System/Library/Fonts/Helvetica.ttc", 20)
except:
font = ImageFont.load_default()
# Constants for text and box drawing
text_padding = 4
text_height = 24
text_width = 200
corner_length = 20
# Draw bounding boxes with labels
for idx, (instance, color) in enumerate(zip(instances, colors)):
bbox = instance['bounding_box']
color_tuple = tuple(int(c * 255) for c in color)
# Calculate label
furniture_id = instance['identity_id']
category = instance['category_name']
label = f"{category} ({furniture_id})"
# Draw bbox with double lines for better visibility
for offset in [2, 1]:
draw.rectangle([
max(0, bbox['xmin'] - offset),
max(0, bbox['ymin'] - offset),
min(img_width - 1, bbox['xmax'] + offset),
min(img_height - 1, bbox['ymax'] + offset)
], outline=color_tuple, width=2)
# Determine text position (handle boundary cases)
# First try above the bbox
text_y = bbox['ymin'] - text_height - text_padding
if text_y < 0: # If no space above, try below
text_y = bbox['ymax'] + text_padding
# Handle x position
text_x = bbox['xmin']
# If text would go beyond right edge, align to right edge
if text_x + text_width > img_width:
text_x = max(0, img_width - text_width)
# Draw background for text
text_pos = (text_x, text_y)
draw.rectangle([
text_pos[0] - 2,
text_pos[1] - 2,
min(img_width - 1, text_pos[0] + text_width),
min(img_height - 1, text_pos[1] + text_height)
], fill='black')
# Draw text
draw.text(text_pos, label, fill=color_tuple, font=font)
# Add corner markers with boundary checking
corners = [
(bbox['xmin'], bbox['ymin']), # Top-left
(bbox['xmax'], bbox['ymin']), # Top-right
(bbox['xmin'], bbox['ymax']), # Bottom-left
(bbox['xmax'], bbox['ymax']) # Bottom-right
]
for x, y in corners:
# Ensure corner markers stay within image bounds
# Horizontal lines
x1 = max(0, x - corner_length)
x2 = min(img_width - 1, x + corner_length)
draw.line([(x1, y), (x2, y)], fill=color_tuple, width=3)
# Vertical lines
y1 = max(0, y - corner_length)
y2 = min(img_height - 1, y + corner_length)
draw.line([(x, y1), (x, y2)], fill=color_tuple, width=3)
return vis_img
def process_depth_map(depth_image):
"""Process depth map for better visualization.
Args:
depth_image: PIL Image of depth map
Returns:
Processed depth map as PIL Image
"""
# Convert to numpy array
depth = np.array(depth_image)
# Normalize depth to 0-1 range
if depth.max() > depth.min():
depth = (depth - depth.min()) / (depth.max() - depth.min())
# Apply colormap (viridis-like)
colored_depth = np.zeros((*depth.shape, 3))
colored_depth[..., 0] = (1 - depth) * 0.4 # Red channel
colored_depth[..., 1] = np.abs(depth - 0.5) * 0.8 # Green channel
colored_depth[..., 2] = depth * 0.8 # Blue channel
# Convert to uint8 and then to PIL
colored_depth = (colored_depth * 255).astype(np.uint8)
return Image.fromarray(colored_depth)
def visualize_html(dataset, scene_idx, output_path='scene.html'):
"""Generate HTML visualization for a scene."""
scene_data = dataset[scene_idx]
# Create visualizations
instance_vis = create_instance_visualization(scene_data)
depth_vis = None
if scene_data['depth']:
depth_vis = process_depth_map(scene_data['depth'])
# Get base64 encoded images
scene_img = save_image_base64(scene_data['image'])
instance_vis = save_image_base64(instance_vis)
depth_img = save_image_base64(depth_vis) if depth_vis else None
# Create HTML with minimal CSS
html = f'''
<html>
<head>
<style>
body {{ font-family: Arial; margin: 20px; max-width: 2000px; margin: 0 auto; }}
.grid {{ display: grid; grid-template-columns: repeat(auto-fill, minmax(300px, 1fr)); gap: 20px; }}
.main-images {{
grid-template-columns: repeat(auto-fit, minmax(800px, 1fr));
margin: 20px 0;
}}
.card {{
border: 1px solid #ddd;
padding: 15px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}}
.card h3 {{
font-size: 20px;
margin-bottom: 15px;
}}
img {{ max-width: 100%; height: auto; }}
h1 {{
color: #333;
font-size: 32px;
text-align: center;
margin: 30px 0;
}}
h2 {{
color: #333;
font-size: 28px;
margin: 25px 0;
}}
.instance-info {{
color: #444;
font-size: 16px;
line-height: 1.4;
}}
.main-images img {{
width: 100%;
object-fit: contain;
max-height: 800px; /* Increased max height */
}}
</style>
</head>
<body>
<h1>Scene ID: {scene_data['scene_id']}</h1>
<h2>Scene Visualizations</h2>
<div class="grid main-images">
<div class="card">
<h3>Original Scene</h3>
<img src="data:image/png;base64,{scene_img}">
</div>
<div class="card">
<h3>Instance Visualization (Masks + Bboxes)</h3>
<img src="data:image/png;base64,{instance_vis}">
</div>
{f'<div class="card"><h3>Depth Map</h3><img src="data:image/png;base64,{depth_img}"></div>' if depth_img else ''}
</div>
<h2>Furniture Instances</h2>
<div class="grid">
'''
# Add furniture previews
for instance in scene_data['instances']:
furniture_id = str(instance['identity_id'])
if furniture_id in scene_data['furniture_previews']:
preview = save_image_base64(scene_data['furniture_previews'][furniture_id])
bbox = instance['bounding_box']
html += f'''
<div class="card">
<h3>{instance['category_name']} (ID: {furniture_id})</h3>
<div class="instance-info">
<p>Style: {', '.join(instance['style_names'])}</p>
<p>BBox: ({bbox['xmin']}, {bbox['ymin']}, {bbox['xmax']}, {bbox['ymax']})</p>
</div>
<img src="data:image/png;base64,{preview}">
</div>
'''
html += '''
</div>
</body>
</html>
'''
with open(output_path, 'w') as f:
f.write(html)
print(f"Visualization saved to {output_path}")
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True)
parser.add_argument('--scene_idx', type=int, required=True)
parser.add_argument('--output', default='scene.html')
args = parser.parse_args()
dataset = DeepFurnitureDataset(args.dataset)
visualize_html(dataset, args.scene_idx, args.output)
|