Upload token_vectors_math.ipynb
Browse files
Google Colab Notebooks/token_vectors_math.ipynb
ADDED
|
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": []
|
| 7 |
+
},
|
| 8 |
+
"kernelspec": {
|
| 9 |
+
"name": "python3",
|
| 10 |
+
"display_name": "Python 3"
|
| 11 |
+
},
|
| 12 |
+
"language_info": {
|
| 13 |
+
"name": "python"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"cells": [
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"source": [
|
| 20 |
+
"# NOTE : although they have 1x768 dimension , these are not text_encodings , but token vectors\n",
|
| 21 |
+
"import json\n",
|
| 22 |
+
"import pandas as pd\n",
|
| 23 |
+
"import os\n",
|
| 24 |
+
"import shelve\n",
|
| 25 |
+
"import torch\n",
|
| 26 |
+
"from safetensors.torch import save_file , load_file\n",
|
| 27 |
+
"import json\n",
|
| 28 |
+
"\n",
|
| 29 |
+
"home_directory = '/content/'\n",
|
| 30 |
+
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
|
| 31 |
+
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
|
| 32 |
+
"%cd {home_directory}\n",
|
| 33 |
+
"#-------#\n",
|
| 34 |
+
"\n",
|
| 35 |
+
"# Load the data if not already loaded\n",
|
| 36 |
+
"try:\n",
|
| 37 |
+
" loaded\n",
|
| 38 |
+
"except:\n",
|
| 39 |
+
" %cd {home_directory}\n",
|
| 40 |
+
" !git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n",
|
| 41 |
+
" loaded = True\n",
|
| 42 |
+
"#--------#\n",
|
| 43 |
+
"\n",
|
| 44 |
+
"def getPrompts(_path, separator):\n",
|
| 45 |
+
" path = _path + '/text'\n",
|
| 46 |
+
" path_vec = _path + '/token_vectors'\n",
|
| 47 |
+
" _file_name = 'vocab'\n",
|
| 48 |
+
" #-----#\n",
|
| 49 |
+
" index = 0\n",
|
| 50 |
+
" file_index = 0\n",
|
| 51 |
+
" prompts = {}\n",
|
| 52 |
+
" text_encodings = {}\n",
|
| 53 |
+
" _text_encodings = {}\n",
|
| 54 |
+
" #-----#\n",
|
| 55 |
+
" for filename in os.listdir(f'{path}'):\n",
|
| 56 |
+
" print(f'reading {filename}....')\n",
|
| 57 |
+
" _index = 0\n",
|
| 58 |
+
" %cd {path}\n",
|
| 59 |
+
" with open(f'{filename}', 'r') as f:\n",
|
| 60 |
+
" data = json.load(f)\n",
|
| 61 |
+
" #------#\n",
|
| 62 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
| 63 |
+
" _prompts = {\n",
|
| 64 |
+
" key : value for key, value in _df.items()\n",
|
| 65 |
+
" }\n",
|
| 66 |
+
" #-------#\n",
|
| 67 |
+
" %cd {path_vec}\n",
|
| 68 |
+
" _text_encodings = load_file(f'{_file_name}.safetensors')\n",
|
| 69 |
+
"\n",
|
| 70 |
+
" for key in _prompts:\n",
|
| 71 |
+
" _index = int(key)\n",
|
| 72 |
+
" value = _prompts[key]\n",
|
| 73 |
+
" #------#\n",
|
| 74 |
+
" #Read the text_encodings + prompts\n",
|
| 75 |
+
" text_encodings[f'{index}'] = _text_encodings[f'{_index}']\n",
|
| 76 |
+
" prompts[f'{index}'] = _prompts[f'{_index}'] + separator\n",
|
| 77 |
+
" index = index + 1\n",
|
| 78 |
+
" continue\n",
|
| 79 |
+
" #-------#\n",
|
| 80 |
+
" #--------#\n",
|
| 81 |
+
" #_text_encodings.close() #close the text_encodings file\n",
|
| 82 |
+
" file_index = file_index + 1\n",
|
| 83 |
+
" #----------#\n",
|
| 84 |
+
" NUM_ITEMS = index -1\n",
|
| 85 |
+
" return prompts , text_encodings , NUM_ITEMS\n",
|
| 86 |
+
"#--------#\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"def append_from_url(dictA, tensA , nA , url , separator):\n",
|
| 89 |
+
" dictB , tensB, nB = getPrompts(url, separator)\n",
|
| 90 |
+
" dictAB = dictA\n",
|
| 91 |
+
" tensAB = tensA\n",
|
| 92 |
+
" nAB = nA\n",
|
| 93 |
+
" for key in dictB:\n",
|
| 94 |
+
" nAB = nAB + 1\n",
|
| 95 |
+
" dictAB[f'{nA + int(key)}'] = dictB[key]\n",
|
| 96 |
+
" tensAB[f'{nA + int(key)}'] = tensB[key]\n",
|
| 97 |
+
" #-----#\n",
|
| 98 |
+
" return dictAB, tensAB , nAB-1\n",
|
| 99 |
+
"#-------#"
|
| 100 |
+
],
|
| 101 |
+
"metadata": {
|
| 102 |
+
"colab": {
|
| 103 |
+
"base_uri": "https://localhost:8080/"
|
| 104 |
+
},
|
| 105 |
+
"id": "V-1DrszLqEVj",
|
| 106 |
+
"outputId": "9b894182-a7e0-436e-9bf1-5a7d3d920ac7"
|
| 107 |
+
},
|
| 108 |
+
"execution_count": 5,
|
| 109 |
+
"outputs": [
|
| 110 |
+
{
|
| 111 |
+
"output_type": "stream",
|
| 112 |
+
"name": "stdout",
|
| 113 |
+
"text": [
|
| 114 |
+
"/content\n"
|
| 115 |
+
]
|
| 116 |
+
}
|
| 117 |
+
]
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"cell_type": "code",
|
| 121 |
+
"source": [
|
| 122 |
+
"# @title Fetch the json + .safetensor pair\n",
|
| 123 |
+
"\n",
|
| 124 |
+
"#------#\n",
|
| 125 |
+
"vocab = {}\n",
|
| 126 |
+
"tokens = {}\n",
|
| 127 |
+
"nA = 0\n",
|
| 128 |
+
"#--------#\n",
|
| 129 |
+
"\n",
|
| 130 |
+
"if True:\n",
|
| 131 |
+
" url = '/content/text-to-image-prompts/vocab'\n",
|
| 132 |
+
" vocab , tokens, nA = append_from_url(vocab , tokens, nA , url , '')\n",
|
| 133 |
+
"#-------#\n",
|
| 134 |
+
"NUM_TOKENS = nA # NUM_TOKENS = 49407\n",
|
| 135 |
+
"#--------#\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"print(NUM_TOKENS)"
|
| 138 |
+
],
|
| 139 |
+
"metadata": {
|
| 140 |
+
"colab": {
|
| 141 |
+
"base_uri": "https://localhost:8080/"
|
| 142 |
+
},
|
| 143 |
+
"id": "EDCd1IGEqj3-",
|
| 144 |
+
"outputId": "bbaab5ab-4bd3-4766-ad44-f139a0ec7a02"
|
| 145 |
+
},
|
| 146 |
+
"execution_count": 12,
|
| 147 |
+
"outputs": [
|
| 148 |
+
{
|
| 149 |
+
"output_type": "stream",
|
| 150 |
+
"name": "stdout",
|
| 151 |
+
"text": [
|
| 152 |
+
"reading vocab.json....\n",
|
| 153 |
+
"/content/text-to-image-prompts/vocab/text\n",
|
| 154 |
+
"/content/text-to-image-prompts/vocab/token_vectors\n",
|
| 155 |
+
"49407\n"
|
| 156 |
+
]
|
| 157 |
+
}
|
| 158 |
+
]
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"cell_type": "code",
|
| 162 |
+
"source": [
|
| 163 |
+
"vocab[f'{8922}']"
|
| 164 |
+
],
|
| 165 |
+
"metadata": {
|
| 166 |
+
"colab": {
|
| 167 |
+
"base_uri": "https://localhost:8080/",
|
| 168 |
+
"height": 35
|
| 169 |
+
},
|
| 170 |
+
"id": "o9AfUKkvwUdG",
|
| 171 |
+
"outputId": "029e1148-056b-4040-da23-7ed6caaca878"
|
| 172 |
+
},
|
| 173 |
+
"execution_count": 19,
|
| 174 |
+
"outputs": [
|
| 175 |
+
{
|
| 176 |
+
"output_type": "execute_result",
|
| 177 |
+
"data": {
|
| 178 |
+
"text/plain": [
|
| 179 |
+
"'benedict</w>'"
|
| 180 |
+
],
|
| 181 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
| 182 |
+
"type": "string"
|
| 183 |
+
}
|
| 184 |
+
},
|
| 185 |
+
"metadata": {},
|
| 186 |
+
"execution_count": 19
|
| 187 |
+
}
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "code",
|
| 192 |
+
"source": [
|
| 193 |
+
"# @title Compare similiarity between tokens\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"import torch\n",
|
| 196 |
+
"from transformers import AutoTokenizer\n",
|
| 197 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
| 198 |
+
"\n",
|
| 199 |
+
"# @markdown Write name of token to match against\n",
|
| 200 |
+
"token_name = \"banana\" # @param {type:'string',\"placeholder\":\"leave empty for random value token\"}\n",
|
| 201 |
+
"\n",
|
| 202 |
+
"prompt = token_name\n",
|
| 203 |
+
"# @markdown (optional) Mix the token with something else\n",
|
| 204 |
+
"mix_with = \"\" # @param {\"type\":\"string\",\"placeholder\":\"leave empty for random value token\"}\n",
|
| 205 |
+
"mix_method = \"None\" # @param [\"None\" , \"Average\", \"Subtract\"] {allow-input: true}\n",
|
| 206 |
+
"w = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
| 207 |
+
"# @markdown Limit char size of included token\n",
|
| 208 |
+
"\n",
|
| 209 |
+
"min_char_size = 0 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
| 210 |
+
"char_range = 50 # param {type:\"slider\", min:0, max: 50, step:1}\n",
|
| 211 |
+
"\n",
|
| 212 |
+
"tokenizer_output = tokenizer(text = prompt)\n",
|
| 213 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
| 214 |
+
"id_A = input_ids[1]\n",
|
| 215 |
+
"A = torch.tensor(tokens[f'{id_A}'])\n",
|
| 216 |
+
"A = A/A.norm(p=2, dim=-1, keepdim=True)\n",
|
| 217 |
+
"#-----#\n",
|
| 218 |
+
"tokenizer_output = tokenizer(text = mix_with)\n",
|
| 219 |
+
"input_ids = tokenizer_output['input_ids']\n",
|
| 220 |
+
"id_C = input_ids[1]\n",
|
| 221 |
+
"C = torch.tensor(tokens[f'{id_C}'])\n",
|
| 222 |
+
"C = C/C.norm(p=2, dim=-1, keepdim=True)\n",
|
| 223 |
+
"#-----#\n",
|
| 224 |
+
"sim_AC = torch.dot(A,C)\n",
|
| 225 |
+
"#-----#\n",
|
| 226 |
+
"print(input_ids)\n",
|
| 227 |
+
"#-----#\n",
|
| 228 |
+
"\n",
|
| 229 |
+
"#if no imput exists we just randomize the entire thing\n",
|
| 230 |
+
"if (prompt == \"\"):\n",
|
| 231 |
+
" id_A = -1\n",
|
| 232 |
+
" print(\"Tokenized prompt tensor A is a random valued tensor with no ID\")\n",
|
| 233 |
+
" R = torch.rand(A.shape)\n",
|
| 234 |
+
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
| 235 |
+
" A = R\n",
|
| 236 |
+
" name_A = 'random_A'\n",
|
| 237 |
+
"\n",
|
| 238 |
+
"#if no imput exists we just randomize the entire thing\n",
|
| 239 |
+
"if (mix_with == \"\"):\n",
|
| 240 |
+
" id_C = -1\n",
|
| 241 |
+
" print(\"Tokenized prompt 'mix_with' tensor C is a random valued tensor with no ID\")\n",
|
| 242 |
+
" R = torch.rand(A.shape)\n",
|
| 243 |
+
" R = R/R.norm(p=2, dim=-1, keepdim=True)\n",
|
| 244 |
+
" C = R\n",
|
| 245 |
+
" name_C = 'random_C'\n",
|
| 246 |
+
"\n",
|
| 247 |
+
"name_A = \"A of random type\"\n",
|
| 248 |
+
"if (id_A>-1):\n",
|
| 249 |
+
" name_A = vocab[f'{id_A}']\n",
|
| 250 |
+
"\n",
|
| 251 |
+
"name_C = \"token C of random type\"\n",
|
| 252 |
+
"if (id_C>-1):\n",
|
| 253 |
+
" name_C = vocab[f'{id_C}']\n",
|
| 254 |
+
"\n",
|
| 255 |
+
"print(f\"The similarity between A '{name_A}' and C '{name_C}' is {round(sim_AC.item()*100,2)} %\")\n",
|
| 256 |
+
"\n",
|
| 257 |
+
"if (mix_method == \"None\"):\n",
|
| 258 |
+
" print(\"No operation\")\n",
|
| 259 |
+
"\n",
|
| 260 |
+
"if (mix_method == \"Average\"):\n",
|
| 261 |
+
" A = w*A + (1-w)*C\n",
|
| 262 |
+
" _A = A.norm(p=2, dim=-1, keepdim=True)\n",
|
| 263 |
+
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = w*A + (1-w)*C , where C is '{name_C}' token , for w = {w} \")\n",
|
| 264 |
+
"\n",
|
| 265 |
+
"if (mix_method == \"Subtract\"):\n",
|
| 266 |
+
" tmp = w*A - (1-w)*C\n",
|
| 267 |
+
" tmp = tmp/tmp.norm(p=2, dim=-1, keepdim=True)\n",
|
| 268 |
+
" A = tmp\n",
|
| 269 |
+
" #//---//\n",
|
| 270 |
+
" print(f\"Tokenized prompt tensor A '{name_A}' token has been recalculated as A = _A*norm(w*A - (1-w)*C) , where C is '{name_C}' token , for w = {w} \")\n",
|
| 271 |
+
"\n",
|
| 272 |
+
"#OPTIONAL : Add/subtract + normalize above result with another token. Leave field empty to get a random value tensor\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"dots = torch.zeros(NUM_TOKENS)\n",
|
| 275 |
+
"for index in range(NUM_TOKENS):\n",
|
| 276 |
+
" id_B = index\n",
|
| 277 |
+
" B = torch.tensor(tokens[f'{id_B}'])\n",
|
| 278 |
+
" B = B/B.norm(p=2, dim=-1, keepdim=True)\n",
|
| 279 |
+
" sim_AB = torch.dot(A,B)\n",
|
| 280 |
+
" dots[index] = sim_AB\n",
|
| 281 |
+
"\n",
|
| 282 |
+
"\n",
|
| 283 |
+
"sorted, indices = torch.sort(dots,dim=0 , descending=True)\n",
|
| 284 |
+
"#----#\n",
|
| 285 |
+
"if (mix_method == \"Average\"):\n",
|
| 286 |
+
" print(f'Calculated all cosine-similarities between the average of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
| 287 |
+
"if (mix_method == \"Subtract\"):\n",
|
| 288 |
+
" print(f'Calculated all cosine-similarities between the subtract of token {name_A} and {name_C} with Id_A = {id_A} and mixed Id_C = {id_C} as a 1x{sorted.shape[0]} tensor')\n",
|
| 289 |
+
"if (mix_method == \"None\"):\n",
|
| 290 |
+
" print(f'Calculated all cosine-similarities between the token {name_A} with Id_A = {id_A} with the the rest of the {NUM_TOKENS} tokens as a 1x{sorted.shape[0]} tensor')\n",
|
| 291 |
+
"\n",
|
| 292 |
+
"#Produce a list id IDs that are most similiar to the prompt ID at positiion 1 based on above result\n",
|
| 293 |
+
"\n",
|
| 294 |
+
"# @markdown Set print options\n",
|
| 295 |
+
"list_size = 100 # @param {type:'number'}\n",
|
| 296 |
+
"print_ID = False # @param {type:\"boolean\"}\n",
|
| 297 |
+
"print_Similarity = True # @param {type:\"boolean\"}\n",
|
| 298 |
+
"print_Name = True # @param {type:\"boolean\"}\n",
|
| 299 |
+
"print_Divider = True # @param {type:\"boolean\"}\n",
|
| 300 |
+
"\n",
|
| 301 |
+
"\n",
|
| 302 |
+
"if (print_Divider):\n",
|
| 303 |
+
" print('//---//')\n",
|
| 304 |
+
"\n",
|
| 305 |
+
"print('')\n",
|
| 306 |
+
"print('Here is the result : ')\n",
|
| 307 |
+
"print('')\n",
|
| 308 |
+
"\n",
|
| 309 |
+
"for index in range(list_size):\n",
|
| 310 |
+
" id = indices[index].item()\n",
|
| 311 |
+
" if (print_Name):\n",
|
| 312 |
+
" print(vocab[f'{id}']) # vocab item\n",
|
| 313 |
+
" if (print_ID):\n",
|
| 314 |
+
" print(f'ID = {id}') # IDs\n",
|
| 315 |
+
" if (print_Similarity):\n",
|
| 316 |
+
" print(f'similiarity = {round(sorted[index].item()*100,2)} %')\n",
|
| 317 |
+
" if (print_Divider):\n",
|
| 318 |
+
" print('--------')\n",
|
| 319 |
+
"\n",
|
| 320 |
+
"#Print the sorted list from above result\n",
|
| 321 |
+
"\n",
|
| 322 |
+
"#The prompt will be enclosed with the <|start-of-text|> and <|end-of-text|> tokens, which is why output will be [49406, ... , 49407].\n",
|
| 323 |
+
"\n",
|
| 324 |
+
"#You can leave the 'prompt' field empty to get a random value tensor. Since the tensor is random value, it will not correspond to any tensor in the vocab.json list , and this it will have no ID.\n",
|
| 325 |
+
"\n",
|
| 326 |
+
"# Save results as .db file\n",
|
| 327 |
+
"import shelve\n",
|
| 328 |
+
"VOCAB_FILENAME = 'tokens_most_similiar_to_' + name_A.replace('</w>','').strip()\n",
|
| 329 |
+
"d = shelve.open(VOCAB_FILENAME)\n",
|
| 330 |
+
"#NUM TOKENS == 49407\n",
|
| 331 |
+
"for index in range(NUM_TOKENS):\n",
|
| 332 |
+
" #print(d[f'{index}']) #<-----Use this to read values from the .db file\n",
|
| 333 |
+
" d[f'{index}']= vocab[f'{indices[index].item()}'] #<---- write values to .db file\n",
|
| 334 |
+
"#----#\n",
|
| 335 |
+
"d.close() #close the file\n",
|
| 336 |
+
"# See this link for additional stuff to do with shelve: https://docs.python.org/3/library/shelve.html"
|
| 337 |
+
],
|
| 338 |
+
"metadata": {
|
| 339 |
+
"id": "ZwGqg9R5s1QS"
|
| 340 |
+
},
|
| 341 |
+
"execution_count": null,
|
| 342 |
+
"outputs": []
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"cell_type": "markdown",
|
| 346 |
+
"source": [
|
| 347 |
+
"Below is code used to create the .safetensor + json files for the notebook"
|
| 348 |
+
],
|
| 349 |
+
"metadata": {
|
| 350 |
+
"id": "dGb1KgP_p4_w"
|
| 351 |
+
}
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"cell_type": "code",
|
| 355 |
+
"execution_count": 1,
|
| 356 |
+
"metadata": {
|
| 357 |
+
"colab": {
|
| 358 |
+
"base_uri": "https://localhost:8080/",
|
| 359 |
+
"height": 599
|
| 360 |
+
},
|
| 361 |
+
"id": "AyhYBlP2pYyI",
|
| 362 |
+
"outputId": "0168beb3-428c-4886-f159-adc479b9da4b"
|
| 363 |
+
},
|
| 364 |
+
"outputs": [
|
| 365 |
+
{
|
| 366 |
+
"output_type": "stream",
|
| 367 |
+
"name": "stdout",
|
| 368 |
+
"text": [
|
| 369 |
+
"/content\n",
|
| 370 |
+
"/content\n",
|
| 371 |
+
"Cloning into 'text-to-image-prompts'...\n",
|
| 372 |
+
"remote: Enumerating objects: 1552, done.\u001b[K\n",
|
| 373 |
+
"remote: Counting objects: 100% (1549/1549), done.\u001b[K\n",
|
| 374 |
+
"remote: Compressing objects: 100% (1506/1506), done.\u001b[K\n",
|
| 375 |
+
"remote: Total 1552 (delta 190), reused 0 (delta 0), pack-reused 3 (from 1)\u001b[K\n",
|
| 376 |
+
"Receiving objects: 100% (1552/1552), 9.09 MiB | 6.30 MiB/s, done.\n",
|
| 377 |
+
"Resolving deltas: 100% (190/190), done.\n",
|
| 378 |
+
"Updating files: 100% (906/906), done.\n",
|
| 379 |
+
"Filtering content: 100% (438/438), 1.49 GiB | 56.42 MiB/s, done.\n",
|
| 380 |
+
"/content\n",
|
| 381 |
+
"/content/text-to-image-prompts/vocab/raw\n",
|
| 382 |
+
"/content/text-to-image-prompts/vocab/raw\n"
|
| 383 |
+
]
|
| 384 |
+
},
|
| 385 |
+
{
|
| 386 |
+
"output_type": "error",
|
| 387 |
+
"ename": "JSONDecodeError",
|
| 388 |
+
"evalue": "Expecting ':' delimiter: line 28 column 7 (char 569)",
|
| 389 |
+
"traceback": [
|
| 390 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 391 |
+
"\u001b[0;31mJSONDecodeError\u001b[0m Traceback (most recent call last)",
|
| 392 |
+
"\u001b[0;32m<ipython-input-1-542fe0f58fcc>\u001b[0m in \u001b[0;36m<cell line: 56>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'cd'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'{target_raw}'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'{root_filename}.json'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'r'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 57\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjson\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 58\u001b[0m \u001b[0m_df\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m'count'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'count'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0;31m#reverse key and value in the dict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 393 |
+
"\u001b[0;32m/usr/lib/python3.10/json/__init__.py\u001b[0m in \u001b[0;36mload\u001b[0;34m(fp, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)\u001b[0m\n\u001b[1;32m 291\u001b[0m \u001b[0mkwarg\u001b[0m\u001b[0;34m;\u001b[0m \u001b[0motherwise\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0mJSONDecoder\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mused\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 292\u001b[0m \"\"\"\n\u001b[0;32m--> 293\u001b[0;31m return loads(fp.read(),\n\u001b[0m\u001b[1;32m 294\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobject_hook\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mobject_hook\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 295\u001b[0m \u001b[0mparse_float\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mparse_float\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparse_int\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mparse_int\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 394 |
+
"\u001b[0;32m/usr/lib/python3.10/json/__init__.py\u001b[0m in \u001b[0;36mloads\u001b[0;34m(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)\u001b[0m\n\u001b[1;32m 344\u001b[0m \u001b[0mparse_int\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mparse_float\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 345\u001b[0m parse_constant is None and object_pairs_hook is None and not kw):\n\u001b[0;32m--> 346\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_default_decoder\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdecode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 347\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcls\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 348\u001b[0m \u001b[0mcls\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mJSONDecoder\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 395 |
+
"\u001b[0;32m/usr/lib/python3.10/json/decoder.py\u001b[0m in \u001b[0;36mdecode\u001b[0;34m(self, s, _w)\u001b[0m\n\u001b[1;32m 335\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 336\u001b[0m \"\"\"\n\u001b[0;32m--> 337\u001b[0;31m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mraw_decode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0midx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0m_w\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 338\u001b[0m \u001b[0mend\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_w\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 339\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mend\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 396 |
+
"\u001b[0;32m/usr/lib/python3.10/json/decoder.py\u001b[0m in \u001b[0;36mraw_decode\u001b[0;34m(self, s, idx)\u001b[0m\n\u001b[1;32m 351\u001b[0m \"\"\"\n\u001b[1;32m 352\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 353\u001b[0;31m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscan_once\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0midx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 354\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mStopIteration\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 355\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mJSONDecodeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Expecting value\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
| 397 |
+
"\u001b[0;31mJSONDecodeError\u001b[0m: Expecting ':' delimiter: line 28 column 7 (char 569)"
|
| 398 |
+
]
|
| 399 |
+
}
|
| 400 |
+
],
|
| 401 |
+
"source": [
|
| 402 |
+
"# @title Process the raw vocab into json + .safetensor pair\n",
|
| 403 |
+
"\n",
|
| 404 |
+
"# NOTE : although they have 1x768 dimension , these are not text_encodings , but token vectors\n",
|
| 405 |
+
"import json\n",
|
| 406 |
+
"import pandas as pd\n",
|
| 407 |
+
"import os\n",
|
| 408 |
+
"import shelve\n",
|
| 409 |
+
"import torch\n",
|
| 410 |
+
"from safetensors.torch import save_file , load_file\n",
|
| 411 |
+
"import json\n",
|
| 412 |
+
"\n",
|
| 413 |
+
"home_directory = '/content/'\n",
|
| 414 |
+
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
|
| 415 |
+
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
|
| 416 |
+
"%cd {home_directory}\n",
|
| 417 |
+
"#-------#\n",
|
| 418 |
+
"\n",
|
| 419 |
+
"# Load the data if not already loaded\n",
|
| 420 |
+
"try:\n",
|
| 421 |
+
" loaded\n",
|
| 422 |
+
"except:\n",
|
| 423 |
+
" %cd {home_directory}\n",
|
| 424 |
+
" !git clone https://huggingface.co/datasets/codeShare/text-to-image-prompts\n",
|
| 425 |
+
" loaded = True\n",
|
| 426 |
+
"#--------#\n",
|
| 427 |
+
"\n",
|
| 428 |
+
"# User input\n",
|
| 429 |
+
"target = home_directory + 'text-to-image-prompts/vocab/'\n",
|
| 430 |
+
"root_output_folder = home_directory + 'output/'\n",
|
| 431 |
+
"output_folder = root_output_folder + 'vocab/'\n",
|
| 432 |
+
"root_filename = 'vocab'\n",
|
| 433 |
+
"NUM_FILES = 1\n",
|
| 434 |
+
"#--------#\n",
|
| 435 |
+
"\n",
|
| 436 |
+
"# Setup environment\n",
|
| 437 |
+
"def my_mkdirs(folder):\n",
|
| 438 |
+
" if os.path.exists(folder)==False:\n",
|
| 439 |
+
" os.makedirs(folder)\n",
|
| 440 |
+
"#--------#\n",
|
| 441 |
+
"output_folder_text = output_folder + 'text/'\n",
|
| 442 |
+
"output_folder_text = output_folder + 'text/'\n",
|
| 443 |
+
"output_folder_token_vectors = output_folder + 'token_vectors/'\n",
|
| 444 |
+
"target_raw = target + 'raw/'\n",
|
| 445 |
+
"%cd {home_directory}\n",
|
| 446 |
+
"my_mkdirs(output_folder)\n",
|
| 447 |
+
"my_mkdirs(output_folder_text)\n",
|
| 448 |
+
"my_mkdirs(output_folder_token_vectors)\n",
|
| 449 |
+
"#-------#\n",
|
| 450 |
+
"\n",
|
| 451 |
+
"%cd {target_raw}\n",
|
| 452 |
+
"model = torch.load(f'{root_filename}.pt' , weights_only=True)\n",
|
| 453 |
+
"tokens = model.clone().detach()\n",
|
| 454 |
+
"\n",
|
| 455 |
+
"\n",
|
| 456 |
+
"%cd {target_raw}\n",
|
| 457 |
+
"with open(f'{root_filename}.json', 'r') as f:\n",
|
| 458 |
+
" data = json.load(f)\n",
|
| 459 |
+
"_df = pd.DataFrame({'count': data})['count']\n",
|
| 460 |
+
"#reverse key and value in the dict\n",
|
| 461 |
+
"vocab = {\n",
|
| 462 |
+
" value : key for key, value in _df.items()\n",
|
| 463 |
+
"}\n",
|
| 464 |
+
"#------#\n",
|
| 465 |
+
"\n",
|
| 466 |
+
"\n",
|
| 467 |
+
"tensors = {}\n",
|
| 468 |
+
"for key in vocab:\n",
|
| 469 |
+
" name = vocab[key]\n",
|
| 470 |
+
" token = tokens[int(key)]\n",
|
| 471 |
+
" tensors[key] = token\n",
|
| 472 |
+
"#-----#\n",
|
| 473 |
+
"\n",
|
| 474 |
+
"%cd {output_folder_token_vectors}\n",
|
| 475 |
+
"save_file(tensors, \"vocab.safetensors\")\n",
|
| 476 |
+
"\n",
|
| 477 |
+
"%cd {output_folder_text}\n",
|
| 478 |
+
"with open('vocab.json', 'w') as f:\n",
|
| 479 |
+
" json.dump(vocab, f)\n"
|
| 480 |
+
]
|
| 481 |
+
},
|
| 482 |
+
{
|
| 483 |
+
"cell_type": "code",
|
| 484 |
+
"source": [
|
| 485 |
+
"# Determine if this notebook is running on Colab or Kaggle\n",
|
| 486 |
+
"#Use https://www.kaggle.com/ if Google Colab GPU is busy\n",
|
| 487 |
+
"home_directory = '/content/'\n",
|
| 488 |
+
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
|
| 489 |
+
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
|
| 490 |
+
"%cd {home_directory}\n",
|
| 491 |
+
"#-------#\n",
|
| 492 |
+
"\n",
|
| 493 |
+
"# @title Download the vocab as .zip\n",
|
| 494 |
+
"import os\n",
|
| 495 |
+
"%cd {home_directory}\n",
|
| 496 |
+
"#os.remove(f'{home_directory}results.zip')\n",
|
| 497 |
+
"root_output_folder = home_directory + 'output/'\n",
|
| 498 |
+
"zip_dest = f'{home_directory}results.zip'\n",
|
| 499 |
+
"!zip -r {zip_dest} '/content/text-to-image-prompts/tokens'"
|
| 500 |
+
],
|
| 501 |
+
"metadata": {
|
| 502 |
+
"id": "9uIDf9IUpzh2"
|
| 503 |
+
},
|
| 504 |
+
"execution_count": null,
|
| 505 |
+
"outputs": []
|
| 506 |
+
}
|
| 507 |
+
]
|
| 508 |
+
}
|