Upload 4 files
Browse files- README.md +84 -0
- requirements.txt +11 -0
- setup.sh +24 -0
- wdv3_timm.py +201 -0
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# wdv3-timm
|
2 |
+
|
3 |
+
small example thing showing how to use `timm` to run the WD Tagger V3 models.
|
4 |
+
|
5 |
+
## How To Use
|
6 |
+
|
7 |
+
1. clone the repository and enter the directory:
|
8 |
+
```sh
|
9 |
+
git clone https://github.com/neggles/wdv3-timm.git
|
10 |
+
cd wd3-timm
|
11 |
+
```
|
12 |
+
|
13 |
+
2. Create a virtual environment and install the Python requirements.
|
14 |
+
|
15 |
+
If you're using Linux, you can use the provided script:
|
16 |
+
```sh
|
17 |
+
bash setup.sh
|
18 |
+
```
|
19 |
+
|
20 |
+
Or if you're on Windows (or just want to do it manually), you can do the following:
|
21 |
+
```sh
|
22 |
+
# Create virtual environment
|
23 |
+
python3.10 -m venv .venv
|
24 |
+
# Activate it
|
25 |
+
source .venv/bin/activate
|
26 |
+
# Upgrade pip/setuptools/wheel
|
27 |
+
python -m pip install -U pip setuptools wheel
|
28 |
+
# At this point, optionally you can install PyTorch manually (e.g. if you are not using an nVidia GPU)
|
29 |
+
python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
30 |
+
# Install requirements
|
31 |
+
python -m pip install -r requirements.txt
|
32 |
+
```
|
33 |
+
|
34 |
+
3. Run the example script, picking one of the 3 models to use:
|
35 |
+
```sh
|
36 |
+
python wdv3_timm.py <swinv2|convnext|vit> path/to/image.png
|
37 |
+
```
|
38 |
+
|
39 |
+
Example output from `python wdv3_timm.py vit a_picture_of_ganyu.png`:
|
40 |
+
```sh
|
41 |
+
Loading model 'vit' from 'SmilingWolf/wd-vit-tagger-v3'...
|
42 |
+
Loading tag list...
|
43 |
+
Creating data transform...
|
44 |
+
Loading image and preprocessing...
|
45 |
+
Running inference...
|
46 |
+
Processing results...
|
47 |
+
--------
|
48 |
+
Caption: 1girl, horns, solo, bell, ahoge, colored_skin, blue_skin, neck_bell, looking_at_viewer, purple_eyes, upper_body, blonde_hair, long_hair, goat_horns, blue_hair, off_shoulder, sidelocks, bare_shoulders, alternate_costume, shirt, black_shirt, cowbell, ganyu_(genshin_impact)
|
49 |
+
--------
|
50 |
+
Tags: 1girl, horns, solo, bell, ahoge, colored skin, blue skin, neck bell, looking at viewer, purple eyes, upper body, blonde hair, long hair, goat horns, blue hair, off shoulder, sidelocks, bare shoulders, alternate costume, shirt, black shirt, cowbell, ganyu \(genshin impact\)
|
51 |
+
--------
|
52 |
+
Ratings:
|
53 |
+
general: 0.827
|
54 |
+
sensitive: 0.199
|
55 |
+
questionable: 0.001
|
56 |
+
explicit: 0.001
|
57 |
+
--------
|
58 |
+
Character tags (threshold=0.75):
|
59 |
+
ganyu_(genshin_impact): 0.991
|
60 |
+
--------
|
61 |
+
General tags (threshold=0.35):
|
62 |
+
1girl: 0.996
|
63 |
+
horns: 0.950
|
64 |
+
solo: 0.947
|
65 |
+
bell: 0.918
|
66 |
+
ahoge: 0.897
|
67 |
+
colored_skin: 0.881
|
68 |
+
blue_skin: 0.872
|
69 |
+
neck_bell: 0.854
|
70 |
+
looking_at_viewer: 0.817
|
71 |
+
purple_eyes: 0.734
|
72 |
+
upper_body: 0.615
|
73 |
+
blonde_hair: 0.609
|
74 |
+
long_hair: 0.607
|
75 |
+
goat_horns: 0.524
|
76 |
+
blue_hair: 0.496
|
77 |
+
off_shoulder: 0.472
|
78 |
+
sidelocks: 0.470
|
79 |
+
bare_shoulders: 0.464
|
80 |
+
alternate_costume: 0.437
|
81 |
+
shirt: 0.427
|
82 |
+
black_shirt: 0.417
|
83 |
+
cowbell: 0.415
|
84 |
+
```
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers
|
2 |
+
huggingface-hub
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
pillow >= 9.5.0
|
6 |
+
simple-parsing >= 0.1.5
|
7 |
+
timm @ git+https://github.com/huggingface/pytorch-image-models@main#egg=timm
|
8 |
+
tokenizers
|
9 |
+
torch >= 2.0.0
|
10 |
+
torchvision
|
11 |
+
transformers
|
setup.sh
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
set -euo pipefail
|
3 |
+
|
4 |
+
# get the folder this script is in and make sure we're in it
|
5 |
+
script_dir=$(cd -- "$(dirname -- "${BASH_SOURCE[0]}")" &>/dev/null && pwd -P)
|
6 |
+
cd "${script_dir}"
|
7 |
+
|
8 |
+
# make venv if not exist
|
9 |
+
if [[ ! -d .venv ]]; then
|
10 |
+
echo "Creating virtual environment..."
|
11 |
+
python3.10 -m venv .venv
|
12 |
+
fi
|
13 |
+
|
14 |
+
# activate the venv
|
15 |
+
source .venv/bin/activate
|
16 |
+
|
17 |
+
# upgrade pip
|
18 |
+
python -m pip install -U pip setuptools wheel
|
19 |
+
|
20 |
+
# install requirements
|
21 |
+
python -m pip install -r requirements.txt
|
22 |
+
|
23 |
+
echo "Setup complete. Run 'source .venv/bin/activate' to enter the virtual environment."
|
24 |
+
exit 0
|
wdv3_timm.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import timm
|
8 |
+
import torch
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
from huggingface_hub.utils import HfHubHTTPError
|
11 |
+
from PIL import Image
|
12 |
+
from simple_parsing import field, parse_known_args
|
13 |
+
from timm.data import create_transform, resolve_data_config
|
14 |
+
from torch import Tensor, nn
|
15 |
+
from torch.nn import functional as F
|
16 |
+
|
17 |
+
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
MODEL_REPO_MAP = {
|
19 |
+
"vit": "SmilingWolf/wd-vit-tagger-v3",
|
20 |
+
"swinv2": "SmilingWolf/wd-swinv2-tagger-v3",
|
21 |
+
"convnext": "SmilingWolf/wd-convnext-tagger-v3",
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
def pil_ensure_rgb(image: Image.Image) -> Image.Image:
|
26 |
+
# convert to RGB/RGBA if not already (deals with palette images etc.)
|
27 |
+
if image.mode not in ["RGB", "RGBA"]:
|
28 |
+
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
|
29 |
+
# convert RGBA to RGB with white background
|
30 |
+
if image.mode == "RGBA":
|
31 |
+
canvas = Image.new("RGBA", image.size, (255, 255, 255))
|
32 |
+
canvas.alpha_composite(image)
|
33 |
+
image = canvas.convert("RGB")
|
34 |
+
return image
|
35 |
+
|
36 |
+
|
37 |
+
def pil_pad_square(image: Image.Image) -> Image.Image:
|
38 |
+
w, h = image.size
|
39 |
+
# get the largest dimension so we can pad to a square
|
40 |
+
px = max(image.size)
|
41 |
+
# pad to square with white background
|
42 |
+
canvas = Image.new("RGB", (px, px), (255, 255, 255))
|
43 |
+
canvas.paste(image, ((px - w) // 2, (px - h) // 2))
|
44 |
+
return canvas
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class LabelData:
|
49 |
+
names: list[str]
|
50 |
+
rating: list[np.int64]
|
51 |
+
general: list[np.int64]
|
52 |
+
character: list[np.int64]
|
53 |
+
|
54 |
+
|
55 |
+
def load_labels_hf(
|
56 |
+
repo_id: str,
|
57 |
+
revision: Optional[str] = None,
|
58 |
+
token: Optional[str] = None,
|
59 |
+
) -> LabelData:
|
60 |
+
try:
|
61 |
+
csv_path = hf_hub_download(
|
62 |
+
repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
|
63 |
+
)
|
64 |
+
csv_path = Path(csv_path).resolve()
|
65 |
+
except HfHubHTTPError as e:
|
66 |
+
raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e
|
67 |
+
|
68 |
+
df: pd.DataFrame = pd.read_csv(csv_path, usecols=["name", "category"])
|
69 |
+
tag_data = LabelData(
|
70 |
+
names=df["name"].tolist(),
|
71 |
+
rating=list(np.where(df["category"] == 9)[0]),
|
72 |
+
general=list(np.where(df["category"] == 0)[0]),
|
73 |
+
character=list(np.where(df["category"] == 4)[0]),
|
74 |
+
)
|
75 |
+
|
76 |
+
return tag_data
|
77 |
+
|
78 |
+
|
79 |
+
def get_tags(
|
80 |
+
probs: Tensor,
|
81 |
+
labels: LabelData,
|
82 |
+
gen_threshold: float,
|
83 |
+
char_threshold: float,
|
84 |
+
):
|
85 |
+
# Convert indices+probs to labels
|
86 |
+
probs = list(zip(labels.names, probs.numpy()))
|
87 |
+
|
88 |
+
# First 4 labels are actually ratings
|
89 |
+
rating_labels = dict([probs[i] for i in labels.rating])
|
90 |
+
|
91 |
+
# General labels, pick any where prediction confidence > threshold
|
92 |
+
gen_labels = [probs[i] for i in labels.general]
|
93 |
+
gen_labels = dict([x for x in gen_labels if x[1] > gen_threshold])
|
94 |
+
gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))
|
95 |
+
|
96 |
+
# Character labels, pick any where prediction confidence > threshold
|
97 |
+
char_labels = [probs[i] for i in labels.character]
|
98 |
+
char_labels = dict([x for x in char_labels if x[1] > char_threshold])
|
99 |
+
char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))
|
100 |
+
|
101 |
+
# Combine general and character labels, sort by confidence
|
102 |
+
combined_names = [x for x in gen_labels]
|
103 |
+
combined_names.extend([x for x in char_labels])
|
104 |
+
|
105 |
+
# Convert to a string suitable for use as a training caption
|
106 |
+
caption = ", ".join(combined_names)
|
107 |
+
taglist = caption.replace("_", " ").replace("(", "\(").replace(")", "\)")
|
108 |
+
|
109 |
+
return caption, taglist, rating_labels, char_labels, gen_labels
|
110 |
+
|
111 |
+
|
112 |
+
@dataclass
|
113 |
+
class ScriptOptions:
|
114 |
+
image_file: Path = field(positional=True)
|
115 |
+
model: str = field(default="vit")
|
116 |
+
gen_threshold: float = field(default=0.35)
|
117 |
+
char_threshold: float = field(default=0.75)
|
118 |
+
|
119 |
+
|
120 |
+
def main(opts: ScriptOptions):
|
121 |
+
repo_id = MODEL_REPO_MAP.get(opts.model)
|
122 |
+
image_path = Path(opts.image_file).resolve()
|
123 |
+
if not image_path.is_file():
|
124 |
+
raise FileNotFoundError(f"Image file not found: {image_path}")
|
125 |
+
|
126 |
+
print(f"Loading model '{opts.model}' from '{repo_id}'...")
|
127 |
+
model: nn.Module = timm.create_model("hf-hub:" + repo_id).eval()
|
128 |
+
state_dict = timm.models.load_state_dict_from_hf(repo_id)
|
129 |
+
model.load_state_dict(state_dict)
|
130 |
+
|
131 |
+
print("Loading tag list...")
|
132 |
+
labels: LabelData = load_labels_hf(repo_id=repo_id)
|
133 |
+
|
134 |
+
print("Creating data transform...")
|
135 |
+
transform = create_transform(**resolve_data_config(model.pretrained_cfg, model=model))
|
136 |
+
|
137 |
+
print("Loading image and preprocessing...")
|
138 |
+
# get image
|
139 |
+
img_input: Image.Image = Image.open(image_path)
|
140 |
+
# ensure image is RGB
|
141 |
+
img_input = pil_ensure_rgb(img_input)
|
142 |
+
# pad to square with white background
|
143 |
+
img_input = pil_pad_square(img_input)
|
144 |
+
# run the model's input transform to convert to tensor and rescale
|
145 |
+
inputs: Tensor = transform(img_input).unsqueeze(0)
|
146 |
+
# NCHW image RGB to BGR
|
147 |
+
inputs = inputs[:, [2, 1, 0]]
|
148 |
+
|
149 |
+
print("Running inference...")
|
150 |
+
with torch.inference_mode():
|
151 |
+
# move model to GPU, if available
|
152 |
+
if torch_device.type != "cpu":
|
153 |
+
model = model.to(torch_device)
|
154 |
+
inputs = inputs.to(torch_device)
|
155 |
+
# run the model
|
156 |
+
outputs = model.forward(inputs)
|
157 |
+
# apply the final activation function (timm doesn't support doing this internally)
|
158 |
+
outputs = F.sigmoid(outputs)
|
159 |
+
# move inputs, outputs, and model back to to cpu if we were on GPU
|
160 |
+
if torch_device.type != "cpu":
|
161 |
+
inputs = inputs.to("cpu")
|
162 |
+
outputs = outputs.to("cpu")
|
163 |
+
model = model.to("cpu")
|
164 |
+
|
165 |
+
print("Processing results...")
|
166 |
+
caption, taglist, ratings, character, general = get_tags(
|
167 |
+
probs=outputs.squeeze(0),
|
168 |
+
labels=labels,
|
169 |
+
gen_threshold=opts.gen_threshold,
|
170 |
+
char_threshold=opts.char_threshold,
|
171 |
+
)
|
172 |
+
|
173 |
+
print("--------")
|
174 |
+
print(f"Caption: {caption}")
|
175 |
+
print("--------")
|
176 |
+
print(f"Tags: {taglist}")
|
177 |
+
|
178 |
+
print("--------")
|
179 |
+
print("Ratings:")
|
180 |
+
for k, v in ratings.items():
|
181 |
+
print(f" {k}: {v:.3f}")
|
182 |
+
|
183 |
+
print("--------")
|
184 |
+
print(f"Character tags (threshold={opts.char_threshold}):")
|
185 |
+
for k, v in character.items():
|
186 |
+
print(f" {k}: {v:.3f}")
|
187 |
+
|
188 |
+
print("--------")
|
189 |
+
print(f"General tags (threshold={opts.gen_threshold}):")
|
190 |
+
for k, v in general.items():
|
191 |
+
print(f" {k}: {v:.3f}")
|
192 |
+
|
193 |
+
print("Done!")
|
194 |
+
|
195 |
+
|
196 |
+
if __name__ == "__main__":
|
197 |
+
opts, _ = parse_known_args(ScriptOptions)
|
198 |
+
if opts.model not in MODEL_REPO_MAP:
|
199 |
+
print(f"Available models: {list(MODEL_REPO_MAP.keys())}")
|
200 |
+
raise ValueError(f"Unknown model name '{opts.model}'")
|
201 |
+
main(opts)
|