Create github_preprocessing.py
Browse files- github_preprocessing.py +143 -0
github_preprocessing.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gzip
|
| 2 |
+
import multiprocessing
|
| 3 |
+
import os
|
| 4 |
+
import shutil
|
| 5 |
+
import time
|
| 6 |
+
from argparse import Namespace
|
| 7 |
+
from collections import Counter
|
| 8 |
+
import numpy as np
|
| 9 |
+
from datasets import load_dataset, utils
|
| 10 |
+
import re
|
| 11 |
+
from huggingface_hub import Repository
|
| 12 |
+
from multiprocessing import Pool
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
|
| 15 |
+
# Settings
|
| 16 |
+
config = {
|
| 17 |
+
"dataset_name": "./data/github",
|
| 18 |
+
"num_workers": 96,
|
| 19 |
+
"line_max": 1000,
|
| 20 |
+
"out_path": "./data/github-code",
|
| 21 |
+
"repo_name": "github-code",
|
| 22 |
+
"org": "lvwerra",
|
| 23 |
+
"shard_size": 1000 << 20}
|
| 24 |
+
|
| 25 |
+
args = Namespace(**config)
|
| 26 |
+
|
| 27 |
+
PATTERN = re.compile(r'\s+')
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def get_hash(example):
|
| 31 |
+
"""Get hash of content field."""
|
| 32 |
+
return {"hash": hash(re.sub(PATTERN, '', example["content"]))}
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def line_stats(example):
|
| 36 |
+
"""Calculates mean and max line length of file."""
|
| 37 |
+
line_lengths = [len(line) for line in example["content"].splitlines()]
|
| 38 |
+
return {"line_mean": np.mean(line_lengths), "line_max": max(line_lengths)}
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def alpha_stats(example):
|
| 42 |
+
"""Calculates mean and max line length of file."""
|
| 43 |
+
alpha_frac = np.mean([c.isalnum() for c in example["content"]])
|
| 44 |
+
return {"alpha_frac": alpha_frac}
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def check_uniques(example, uniques):
|
| 48 |
+
"""Check if current hash is still in set of unique hashes and remove if true."""
|
| 49 |
+
if example["hash"] in uniques:
|
| 50 |
+
uniques.remove(example["hash"])
|
| 51 |
+
return True
|
| 52 |
+
else:
|
| 53 |
+
return False
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def is_autogenerated(example, scan_width=5):
|
| 57 |
+
"""Check if file is autogenerated by looking for keywords in the first few lines of the file."""
|
| 58 |
+
keywords = ["auto-generated", "autogenerated", "automatically generated"]
|
| 59 |
+
lines = example["content"].splitlines()
|
| 60 |
+
for _, line in zip(range(scan_width), lines):
|
| 61 |
+
for keyword in keywords:
|
| 62 |
+
if keyword in line.lower():
|
| 63 |
+
return {"autogenerated": True}
|
| 64 |
+
else:
|
| 65 |
+
return {"autogenerated": False}
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def preprocess(example):
|
| 69 |
+
"""Chain all preprocessing steps into one function to not fill cache."""
|
| 70 |
+
results = dict()
|
| 71 |
+
results.update(get_hash(example))
|
| 72 |
+
results.update(line_stats(example))
|
| 73 |
+
return results
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def filter(example, uniques, args):
|
| 77 |
+
"""Filter dataset with heuristics."""
|
| 78 |
+
if not check_uniques(example, uniques):
|
| 79 |
+
return False
|
| 80 |
+
elif example["line_max"] > args.line_max:
|
| 81 |
+
return False
|
| 82 |
+
else:
|
| 83 |
+
return True
|
| 84 |
+
|
| 85 |
+
def save_shard(shard_tuple):
|
| 86 |
+
"""Save shard"""
|
| 87 |
+
filename, shard = shard_tuple
|
| 88 |
+
shard.to_parquet(filename)
|
| 89 |
+
|
| 90 |
+
# Load dataset
|
| 91 |
+
t_start = time.time()
|
| 92 |
+
ds = load_dataset(args.dataset_name, split="train", chunksize=40<<20)
|
| 93 |
+
print(f"Time to load dataset: {time.time()-t_start:.2f}")
|
| 94 |
+
|
| 95 |
+
# Run preprocessing
|
| 96 |
+
t_start = time.time()
|
| 97 |
+
ds = ds.map(preprocess, num_proc=args.num_workers)
|
| 98 |
+
print(f"Time to preprocess dataset: {time.time()-t_start:.2f}")
|
| 99 |
+
print(ds)
|
| 100 |
+
|
| 101 |
+
# Deduplicate hashes
|
| 102 |
+
uniques = set(ds.unique("hash"))
|
| 103 |
+
frac = len(uniques) / len(ds)
|
| 104 |
+
print(f"Fraction of duplicates: {1-frac:.2%}")
|
| 105 |
+
|
| 106 |
+
# Deduplicate data and apply heuristics
|
| 107 |
+
t_start = time.time()
|
| 108 |
+
ds = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args})
|
| 109 |
+
ds = ds.remove_columns(["line_mean", "line_max", "copies", "hash"])
|
| 110 |
+
print(f"Time to filter dataset: {time.time()-t_start:.2f}")
|
| 111 |
+
print(f"Size of filtered dataset: {len(ds)}")
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# Save dataset in repo
|
| 115 |
+
repo = Repository(
|
| 116 |
+
local_dir=args.out_path,
|
| 117 |
+
clone_from=args.org + "/" + args.repo_name,
|
| 118 |
+
repo_type="dataset",
|
| 119 |
+
private=True,
|
| 120 |
+
use_auth_token=True,
|
| 121 |
+
git_user="lvwerra",
|
| 122 |
+
git_email="[email protected]",
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
os.mkdir(args.out_path + "/data")
|
| 126 |
+
|
| 127 |
+
if ds._indices is not None:
|
| 128 |
+
dataset_nbytes = ds.data.nbytes * len(ds._indices) / len(ds.data)
|
| 129 |
+
else:
|
| 130 |
+
dataset_nbytes = ds.data.nbytes
|
| 131 |
+
|
| 132 |
+
num_shards = int(dataset_nbytes / args.shard_size) + 1
|
| 133 |
+
print(f"Number of shards: {num_shards}")
|
| 134 |
+
|
| 135 |
+
t_start = time.time()
|
| 136 |
+
shards = (ds.shard(num_shards=num_shards, index=i, contiguous=True) for i in range(num_shards))
|
| 137 |
+
filenames = (f"{args.out_path}/data/train-{index:05d}-of-{num_shards:05d}.parquet" for index in range(num_shards))
|
| 138 |
+
|
| 139 |
+
with Pool(16) as p:
|
| 140 |
+
list(tqdm(p.imap_unordered(save_shard, zip(filenames, shards), chunksize=4), total=num_shards))
|
| 141 |
+
print(f"Time to save dataset: {time.time()-t_start:.2f}")
|
| 142 |
+
|
| 143 |
+
# To push to hub run `git add` and `git push` inside dataset repo folder
|