File size: 7,406 Bytes
940f3bb
 
 
 
 
437c555
940f3bb
437c555
 
940f3bb
 
 
 
 
 
 
 
 
04b87dc
940f3bb
 
 
 
 
f27da7f
ae97533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d09c49
ae97533
9d09c49
 
 
 
 
 
 
940f3bb
 
 
 
 
 
 
 
c8f67cc
940f3bb
 
 
c8f67cc
 
940f3bb
 
 
 
 
 
 
 
 
 
 
 
 
108f10d
940f3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f27da7f
940f3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108f10d
 
 
ae97533
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- pl
license:
- cc-by-nc-sa-3.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- text-scoring
- multi-class-classification
- multi-label-classification
- sentiment-classification
- sentiment-scoring
- topic-classification
pretty_name: HateSpeechPl
dataset_info:
  features:
  - name: id
    dtype: uint16
  - name: text_id
    dtype: uint32
  - name: annotator_id
    dtype: uint8
  - name: minority_id
    dtype: uint8
  - name: negative_emotions
    dtype: bool
  - name: call_to_action
    dtype: bool
  - name: source_of_knowledge
    dtype: uint8
  - name: irony_sarcasm
    dtype: bool
  - name: topic
    dtype: uint8
  - name: text
    dtype: string
  - name: rating
    dtype: uint8
  splits:
  - name: train
    num_bytes: 3436182
    num_examples: 13887
  download_size: 2184056
  dataset_size: 3436182
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---


# Dataset Card for HateSpeechPl

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** http://zil.ipipan.waw.pl/HateSpeech
- **Repository:** [N/A]
- **Paper:** http://www.qualitativesociologyreview.org/PL/Volume38/PSJ_13_2_Troszynski_Wawer.pdf
- **Leaderboard:** [N/A]
- **Point of Contact:** [Marek Troszyński]([email protected]), [Aleksander Wawer]([email protected])

### Dataset Summary

The dataset was created to analyze the possibility of automating the recognition of hate speech in Polish. It was collected from the Polish forums and represents various types and degrees of offensive language, expressed towards minorities.

The original dataset is provided as an export of MySQL tables, what makes it hard to load. Due to that, it was converted to CSV and put to a Github repository. 

### Supported Tasks and Leaderboards

- `text-classification`: The dataset might be used to perform the text classification on different target fields, like the presence of irony/sarcasm, minority it describes or a topic. 
- `text-scoring`: The sentiment analysis is another task which might be solved on a dataset.

### Languages

Polish, collected from public forums, including the HTML formatting of the text.

## Dataset Structure

### Data Instances

The dataset consists of three collections, originally provided as separate MySQL tables. Here represented as three CSV files.

```
{
  'id': 1,
  'text_id': 121713,
  'annotator_id': 1,
  'minority_id': 72,
  'negative_emotions': false,
  'call_to_action': false,
  'source_of_knowledge': 2,
  'irony_sarcasm': false,
  'topic': 18,
  'text': ' <font color=\"blue\"> Niemiec</font> mówi co innego',
  'rating': 0
}
```

### Data Fields

List and describe the fields present in the dataset. Mention their data type, and whether they are used as input or output in any of the tasks the dataset currently supports. If the data has span indices, describe their attributes, such as whether they are at the character level or word level, whether they are contiguous or not, etc. If the datasets contains example IDs, state whether they have an inherent meaning, such as a mapping to other datasets or pointing to relationships between data points.

- `id`: unique identifier of the entry
- `text_id`: text identifier, useful when a single text is rated several times by different annotators
- `annotator_id`: identifier of the person who annotated the text
- `minority_id`: the internal identifier of the minority described in the text
- `negative_emotions`: boolean indicator of the presence of negative emotions in the text
- `call_to_action`: boolean indicator set to true, if the text calls the audience to perform any action, typically with a negative emotions
- `source_of_knowledge`: categorical variable, describing the source of knowledge for the post rating - 0, 1 or 2 (direct, lexical or contextual, but the description of the meaning for different values couldn't be found)
- `irony_sarcasm`: boolean indicator of the present of irony or sarcasm
- `topic`: internal identifier of the topic the text is about
- `text`: post text content
- `rating`: integer value, from 0 to 4 - the higher the value, the more negative the text content is

### Data Splits

The dataset was not originally split at all.

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

The dataset was collected from the public forums.

[More Information Needed]

#### Initial Data Collection and Normalization

[More Information Needed]


#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

The dataset doesn't contain any personal or sensitive information.

## Considerations for Using the Data

### Social Impact of Dataset

The automated hate speech recognition is the main beneficial outcome of using the dataset. 

### Discussion of Biases

The dataset contains negative posts only and due to that might underrepresent the whole language.

### Other Known Limitations

Dataset provided for research purposes only. Please check dataset license for additional information.

## Additional Information

### Dataset Curators

The dataset was created by Marek Troszyński and Aleksander Wawer, during work done at [IPI PAN](https://www.ipipan.waw.pl/).

### Licensing Information

According to [Metashare](http://metashare.nlp.ipipan.waw.pl/metashare/repository/browse/polish-hatespeech-corpus/21b7e2366b0011e284b6000423bfd61cbc7616f601724f09bafc8a62c42d56de/), the dataset is licensed under CC-BY-NC-SA, but the version is not mentioned.

### Citation Information

```
@article{troszynski2017czy,
  title={Czy komputer rozpozna hejtera? Wykorzystanie uczenia maszynowego (ML) w jako{\'s}ciowej analizie danych},
  author={Troszy{\'n}ski, Marek and Wawer, Aleksandra},
  journal={Przegl{\k{a}}d Socjologii Jako{\'s}ciowej},
  volume={13},
  number={2},
  pages={62--80},
  year={2017},
  publisher={Uniwersytet {\L}{\'o}dzki, Wydzia{\l} Ekonomiczno-Socjologiczny, Katedra Socjologii~…}
}
```


### Contributions

Thanks to [@kacperlukawski](https://github.com/kacperlukawski) for adding this dataset.