Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Arabic
Size:
10K - 100K
Tags:
question-identification
License:
Delete loading script
Browse files- journalists_questions.py +0 -76
journalists_questions.py
DELETED
|
@@ -1,76 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
import csv
|
| 18 |
-
|
| 19 |
-
import datasets
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
_CITATION = """\
|
| 23 |
-
@inproceedings{hasanain2016questions,
|
| 24 |
-
title={What Questions Do Journalists Ask on Twitter?},
|
| 25 |
-
author={Hasanain, Maram and Bagdouri, Mossaab and Elsayed, Tamer and Oard, Douglas W},
|
| 26 |
-
booktitle={Tenth International AAAI Conference on Web and Social Media},
|
| 27 |
-
year={2016}
|
| 28 |
-
}
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
-
_DESCRIPTION = """\
|
| 32 |
-
The journalists_questions corpus (version 1.0) is a collection of 10K human-written Arabic
|
| 33 |
-
tweets manually labeled for question identification over Arabic tweets posted by journalists.
|
| 34 |
-
"""
|
| 35 |
-
_DATA_URL = "https://drive.google.com/uc?export=download&id=1CBrh-9OrSpKmPQBxTK_ji6mq6WTN_U9U"
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
class JournalistsQuestions(datasets.GeneratorBasedBuilder):
|
| 39 |
-
BUILDER_CONFIGS = [
|
| 40 |
-
datasets.BuilderConfig(
|
| 41 |
-
name="plain_text",
|
| 42 |
-
version=datasets.Version("1.0.0", ""),
|
| 43 |
-
description="Journalists tweet IDs and annotation by whether the tweet has a question",
|
| 44 |
-
)
|
| 45 |
-
]
|
| 46 |
-
|
| 47 |
-
def _info(self):
|
| 48 |
-
return datasets.DatasetInfo(
|
| 49 |
-
description=_DESCRIPTION,
|
| 50 |
-
features=datasets.Features(
|
| 51 |
-
{
|
| 52 |
-
"tweet_id": datasets.Value("string"),
|
| 53 |
-
"label": datasets.features.ClassLabel(names=["no", "yes"]),
|
| 54 |
-
"label_confidence": datasets.Value("float"),
|
| 55 |
-
}
|
| 56 |
-
),
|
| 57 |
-
homepage="http://qufaculty.qu.edu.qa/telsayed/datasets/",
|
| 58 |
-
citation=_CITATION,
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
def _split_generators(self, dl_manager):
|
| 62 |
-
dl_dir = dl_manager.download_and_extract(_DATA_URL)
|
| 63 |
-
return [
|
| 64 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": dl_dir}),
|
| 65 |
-
]
|
| 66 |
-
|
| 67 |
-
def _generate_examples(self, filepath):
|
| 68 |
-
"""This function returns the examples in the raw (text) form."""
|
| 69 |
-
with open(filepath, encoding="utf-8") as f:
|
| 70 |
-
reader = csv.DictReader(f, delimiter="\t", fieldnames=["tweet_id", "label", "label_confidence"])
|
| 71 |
-
for idx, row in enumerate(reader):
|
| 72 |
-
yield idx, {
|
| 73 |
-
"tweet_id": row["tweet_id"],
|
| 74 |
-
"label": row["label"],
|
| 75 |
-
"label_confidence": float(row["label_confidence"]),
|
| 76 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|