Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Romanian
Size:
10K - 100K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| # Find for instance the citation on arxiv or on the dataset repo/website | |
| _CITATION = """\ | |
| @article{dumitrescu2019introducing, | |
| title={Introducing RONEC--the Romanian Named Entity Corpus}, | |
| author={Dumitrescu, Stefan Daniel and Avram, Andrei-Marius}, | |
| journal={arXiv preprint arXiv:1909.01247}, | |
| year={2019} | |
| } | |
| """ | |
| # You can copy an official description | |
| _DESCRIPTION = """\ | |
| RONEC - the Romanian Named Entity Corpus, at version 2.0, holds 12330 sentences with over 0.5M tokens, annotated with 15 classes, to a total of 80.283 distinctly annotated entities. It is used for named entity recognition and represents the largest Romanian NER corpus to date. | |
| """ | |
| _HOMEPAGE = "https://github.com/dumitrescustefan/ronec" | |
| _LICENSE = "MIT License" | |
| # The HuggingFace dataset library don't host the datasets but only point to the original files | |
| # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
| _URL = "https://raw.githubusercontent.com/dumitrescustefan/ronec/master/data/" | |
| _TRAINING_FILE = "train.json" | |
| _DEV_FILE = "valid.json" | |
| _TEST_FILE = "test.json" | |
| class RONECConfig(datasets.BuilderConfig): | |
| """BuilderConfig for RONEC dataset""" | |
| def __init__(self, **kwargs): | |
| super(RONECConfig, self).__init__(**kwargs) | |
| class RONEC(datasets.GeneratorBasedBuilder): | |
| """RONEC dataset""" | |
| VERSION = datasets.Version("2.0.0") | |
| BUILDER_CONFIGS = [ | |
| RONECConfig(name="ronec", version=VERSION, description="RONEC dataset"), | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("int32"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "ner_ids": datasets.Sequence(datasets.Value("int32")), | |
| "space_after": datasets.Sequence(datasets.Value("bool")), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "O", | |
| "B-PERSON", | |
| "I-PERSON", | |
| "B-ORG", | |
| "I-ORG", | |
| "B-GPE", | |
| "I-GPE", | |
| "B-LOC", | |
| "I-LOC", | |
| "B-NAT_REL_POL", | |
| "I-NAT_REL_POL", | |
| "B-EVENT", | |
| "I-EVENT", | |
| "B-LANGUAGE", | |
| "I-LANGUAGE", | |
| "B-WORK_OF_ART", | |
| "I-WORK_OF_ART", | |
| "B-DATETIME", | |
| "I-DATETIME", | |
| "B-PERIOD", | |
| "I-PERIOD", | |
| "B-MONEY", | |
| "I-MONEY", | |
| "B-QUANTITY", | |
| "I-QUANTITY", | |
| "B-NUMERIC", | |
| "I-NUMERIC", | |
| "B-ORDINAL", | |
| "I-ORDINAL", | |
| "B-FACILITY", | |
| "I-FACILITY", | |
| ] | |
| ) | |
| ), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| # This is the description that will appear on the datasets page. | |
| description=_DESCRIPTION, | |
| # This defines the different columns of the dataset and their types | |
| features=features, # Here we define them above because they are different between the two configurations | |
| # If there's a common (input, target) tuple from the features, | |
| # specify them here. They'll be used if as_supervised=True in | |
| # builder.as_dataset. | |
| supervised_keys=None, | |
| # Homepage of the dataset for documentation | |
| homepage=_HOMEPAGE, | |
| # License for the dataset if available | |
| license=_LICENSE, | |
| # Citation for the dataset | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| urls_to_download = {"train": _URL + _TRAINING_FILE, "dev": _URL + _DEV_FILE, "test": _URL + _TEST_FILE} | |
| downloaded_files = dl_manager.download(urls_to_download) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": downloaded_files["train"]}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": downloaded_files["dev"]}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": downloaded_files["test"]}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """Yields examples.""" | |
| logger.info("⏳ Generating examples from = %s", filepath) | |
| with open(filepath, "r", encoding="utf-8") as f: | |
| data = json.load(f) | |
| for instance in data: | |
| yield instance["id"], instance | |