Snap
Browse files- vps_clustering_benchmark.py +43 -16
vps_clustering_benchmark.py
CHANGED
@@ -73,25 +73,52 @@ class VPClusteringBenchmark(datasets.GeneratorBasedBuilder):
|
|
73 |
downloaded_file = dl_manager.download_and_extract(data_url)
|
74 |
return [
|
75 |
datasets.SplitGenerator(
|
76 |
-
name=
|
77 |
-
gen_kwargs={"file_path": downloaded_file},
|
|
|
|
|
|
|
|
|
78 |
),
|
79 |
]
|
80 |
|
81 |
-
def _generate_examples(self, file_path):
|
82 |
"""Yields examples."""
|
83 |
df = pd.read_pickle(file_path)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
downloaded_file = dl_manager.download_and_extract(data_url)
|
74 |
return [
|
75 |
datasets.SplitGenerator(
|
76 |
+
name="segments",
|
77 |
+
gen_kwargs={"file_path": downloaded_file, "split": "segments"},
|
78 |
+
),
|
79 |
+
datasets.SplitGenerator(
|
80 |
+
name="files",
|
81 |
+
gen_kwargs={"file_path": downloaded_file, "split": "files"},
|
82 |
),
|
83 |
]
|
84 |
|
85 |
+
def _generate_examples(self, file_path, split):
|
86 |
"""Yields examples."""
|
87 |
df = pd.read_pickle(file_path)
|
88 |
|
89 |
+
if split == "segments":
|
90 |
+
for idx, row in df.iterrows():
|
91 |
+
yield idx, {
|
92 |
+
"segment_id": row["segment_id"],
|
93 |
+
"filename": row["filename"],
|
94 |
+
"speaker": row["speaker"],
|
95 |
+
"duration": row["duration"],
|
96 |
+
"segment_clean": row["segment_clean"],
|
97 |
+
"start": row['start'],
|
98 |
+
"end": row['end'],
|
99 |
+
"readable_start": row['readable_start'],
|
100 |
+
"readable_end": row['readable_end'],
|
101 |
+
"vp": np.asarray(row["vp"], dtype=np.float32)
|
102 |
+
}
|
103 |
+
elif split == "files":
|
104 |
+
files = {}
|
105 |
+
for idx, row in df.iterrows():
|
106 |
+
if row["filename"] not in files:
|
107 |
+
files[row["filename"]] = {
|
108 |
+
"filename": row["filename"],
|
109 |
+
"segments": []
|
110 |
+
}
|
111 |
+
files[row["filename"]]["segments"].append({
|
112 |
+
"segment_id": row["segment_id"],
|
113 |
+
"speaker": row["speaker"],
|
114 |
+
"duration": row["duration"],
|
115 |
+
"segment_clean": row["segment_clean"],
|
116 |
+
"start": row['start'],
|
117 |
+
"end": row['end'],
|
118 |
+
"readable_start": row['readable_start'],
|
119 |
+
"readable_end": row['readable_end'],
|
120 |
+
"vp": np.asarray(row["vp"], dtype=np.float32)
|
121 |
+
})
|
122 |
+
|
123 |
+
for idx, file_data in enumerate(files.values()):
|
124 |
+
yield idx, file_data
|