Guscerra commited on
Commit
bee4a93
·
1 Parent(s): d2a0ba9
Files changed (1) hide show
  1. vps_clustering_benchmark.py +10 -6
vps_clustering_benchmark.py CHANGED
@@ -1,10 +1,6 @@
1
- import os
2
- import json
3
  import datasets
4
  import pandas as pd
5
  import numpy as np
6
- from typing import List
7
- from tqdm import tqdm
8
 
9
  logger = datasets.logging.get_logger(__name__)
10
 
@@ -48,6 +44,7 @@ class VPClusteringBenchmark(datasets.GeneratorBasedBuilder):
48
  version=VERSION,
49
  description="Conversy Benchmark for ML models evaluation",
50
  features=["segment_id", "filename", "speaker", "duration", "vp",
 
51
  "segment_clean"],
52
  data_url=_HF_REPO_PATH,
53
  nb_data_shards=1)
@@ -64,6 +61,10 @@ class VPClusteringBenchmark(datasets.GeneratorBasedBuilder):
64
  "speaker": datasets.Value("string"),
65
  "duration": datasets.Value("float32"),
66
  "segment_clean": datasets.Value("bool"),
 
 
 
 
67
  "vp": datasets.Sequence(datasets.Value("float32"))
68
  })
69
  return datasets.DatasetInfo(
@@ -95,6 +96,9 @@ class VPClusteringBenchmark(datasets.GeneratorBasedBuilder):
95
  "speaker": row["speaker"],
96
  "duration": row["duration"],
97
  "segment_clean": row["segment_clean"],
98
- "vp": np.asarray(row["vp"], dtype=np.float32),
99
- "aaa": "aaa"
 
 
 
100
  }
 
 
 
1
  import datasets
2
  import pandas as pd
3
  import numpy as np
 
 
4
 
5
  logger = datasets.logging.get_logger(__name__)
6
 
 
44
  version=VERSION,
45
  description="Conversy Benchmark for ML models evaluation",
46
  features=["segment_id", "filename", "speaker", "duration", "vp",
47
+ "start", "end", "readable_start", "readable_end",
48
  "segment_clean"],
49
  data_url=_HF_REPO_PATH,
50
  nb_data_shards=1)
 
61
  "speaker": datasets.Value("string"),
62
  "duration": datasets.Value("float32"),
63
  "segment_clean": datasets.Value("bool"),
64
+ "start": datasets.Value("float32"),
65
+ "end": datasets.Value("float32"),
66
+ "readable_start": datasets.Value("string"),
67
+ "readable_end": datasets.Value("string"),
68
  "vp": datasets.Sequence(datasets.Value("float32"))
69
  })
70
  return datasets.DatasetInfo(
 
96
  "speaker": row["speaker"],
97
  "duration": row["duration"],
98
  "segment_clean": row["segment_clean"],
99
+ "start": row['start'],
100
+ "end": row['end'],
101
+ "readable_start": row['readable_start'],
102
+ "readable_end": row['readable_end'],
103
+ "vp": np.asarray(row["vp"], dtype=np.float32)
104
  }