cxyzhang commited on
Commit
e11dc70
·
verified ·
1 Parent(s): e801038

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md CHANGED
@@ -23,3 +23,72 @@ task_ids:
23
  - multi-label-classification
24
  - open-domain-qa
25
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  - multi-label-classification
24
  - open-domain-qa
25
  ---
26
+
27
+ # CaseReportBench: Clinical Dense Extraction Benchmark
28
+
29
+ **CaseReportBench** is a curated benchmark dataset designed to evaluate how well large language models (LLMs) can perform **dense information extraction** from **clinical case reports**, with a focus on **rare disease diagnosis**.
30
+
31
+ It supports fine-grained, system-level phenotype extraction and structured diagnostic reasoning — enabling model evaluation in real-world medical decision-making contexts.
32
+
33
+ ---
34
+
35
+ ## 🔔 Note
36
+
37
+ This dataset accompanies our upcoming publication:
38
+
39
+ > **Zhang et al. CaseReportBench: An LLM Benchmark Dataset for Dense Information Extraction in Clinical Case Reports.**
40
+ > *To appear in the Proceedings of the Conference on Health, Inference, and Learning (CHIL 2025), PMLR.*
41
+
42
+ The official PMLR citation and link will be added upon publication.
43
+
44
+ ---
45
+
46
+ ## 🧾 Key Features
47
+
48
+ - **Expert-annotated**, system-wise phenotypic labels mimicking clinical assessments
49
+ - Based on real-world **PubMed Central-indexed clinical case reports**
50
+ - Format: JSON with structured head-to-toe organ system outputs
51
+ - Designed for: Biomedical NLP, IE, rare disease reasoning, and LLM benchmarking
52
+ - Metrics include: Token Selection Rate, Levenshtein Similarity, Exact Match
53
+
54
+ ---
55
+
56
+ ## Dataset Structure
57
+
58
+ Each record includes:
59
+
60
+ - `id`: Unique document ID
61
+ - `text`: Full raw case report
62
+ - `extracted_labels`: System-organized dense annotations (e.g., neuro, heme, derm, etc.)
63
+ - `diagnosis`: Final confirmed diagnosis (Inborn Error of Metabolism)
64
+ - `source`: PubMed ID or citation
65
+
66
+ ---
67
+
68
+ ## Usage
69
+
70
+ ```python
71
+ from datasets import load_dataset
72
+
73
+ ds = load_dataset("cxyzhang/caseReportBench_ClinicalDenseExtraction_Benchmark")
74
+ print(ds["train"][0])
75
+ ```
76
+
77
+ ## Citation
78
+
79
+ ```bibtex
80
+ @inproceedings{zhang2025casereportbench,
81
+ title = {CaseReportBench: An LLM Benchmark Dataset for Dense Information Extraction in Clinical Case Reports},
82
+ author = {Zhang, Cindy and Others},
83
+ booktitle = {Proceedings of the Conference on Health, Inference, and Learning (CHIL)},
84
+ series = {Proceedings of Machine Learning Research},
85
+ volume = {vX}, % Update when available
86
+ year = {2025},
87
+ publisher = {PMLR},
88
+ note = {To appear}
89
+ }
90
+
91
+
92
+
93
+ ```
94
+