meg HF Staff commited on
Commit
ad87890
·
verified ·
1 Parent(s): ef63a1e

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Dockerfile +1 -1
  2. app.py +15 -7
  3. pytorch-image-models/hfdocs/source/models.mdx +3 -3
  4. pytorch-image-models/hfdocs/source/models/adversarial-inception-v3.mdx +1 -1
  5. pytorch-image-models/hfdocs/source/models/advprop.mdx +1 -1
  6. pytorch-image-models/hfdocs/source/models/big-transfer.mdx +1 -1
  7. pytorch-image-models/hfdocs/source/models/csp-darknet.mdx +1 -1
  8. pytorch-image-models/hfdocs/source/models/csp-resnet.mdx +1 -1
  9. pytorch-image-models/hfdocs/source/models/csp-resnext.mdx +1 -1
  10. pytorch-image-models/hfdocs/source/models/densenet.mdx +1 -1
  11. pytorch-image-models/hfdocs/source/models/dla.mdx +1 -1
  12. pytorch-image-models/hfdocs/source/models/dpn.mdx +1 -1
  13. pytorch-image-models/hfdocs/source/models/ecaresnet.mdx +1 -1
  14. pytorch-image-models/hfdocs/source/models/efficientnet-pruned.mdx +2 -2
  15. pytorch-image-models/hfdocs/source/models/efficientnet.mdx +2 -2
  16. pytorch-image-models/hfdocs/source/models/ensemble-adversarial.mdx +1 -1
  17. pytorch-image-models/hfdocs/source/models/ese-vovnet.mdx +1 -1
  18. pytorch-image-models/hfdocs/source/models/fbnet.mdx +1 -1
  19. pytorch-image-models/hfdocs/source/models/gloun-inception-v3.mdx +1 -1
  20. pytorch-image-models/hfdocs/source/models/gloun-resnet.mdx +1 -1
  21. pytorch-image-models/hfdocs/source/models/gloun-resnext.mdx +1 -1
  22. pytorch-image-models/hfdocs/source/models/gloun-senet.mdx +1 -1
  23. pytorch-image-models/hfdocs/source/models/gloun-seresnext.mdx +1 -1
  24. pytorch-image-models/hfdocs/source/models/gloun-xception.mdx +1 -1
  25. pytorch-image-models/hfdocs/source/models/hrnet.mdx +1 -1
  26. pytorch-image-models/hfdocs/source/models/ig-resnext.mdx +1 -1
  27. pytorch-image-models/hfdocs/source/models/inception-resnet-v2.mdx +1 -1
  28. pytorch-image-models/hfdocs/source/models/inception-v3.mdx +1 -1
  29. pytorch-image-models/hfdocs/source/models/inception-v4.mdx +1 -1
  30. pytorch-image-models/hfdocs/source/models/legacy-se-resnet.mdx +1 -1
  31. pytorch-image-models/hfdocs/source/models/legacy-se-resnext.mdx +1 -1
  32. pytorch-image-models/hfdocs/source/models/legacy-senet.mdx +1 -1
  33. pytorch-image-models/hfdocs/source/models/mixnet.mdx +1 -1
  34. pytorch-image-models/hfdocs/source/models/mnasnet.mdx +1 -1
  35. pytorch-image-models/hfdocs/source/models/mobilenet-v2.mdx +1 -1
  36. pytorch-image-models/hfdocs/source/models/mobilenet-v3.mdx +1 -1
  37. pytorch-image-models/hfdocs/source/models/nasnet.mdx +1 -1
  38. pytorch-image-models/hfdocs/source/models/noisy-student.mdx +1 -1
  39. pytorch-image-models/hfdocs/source/models/pnasnet.mdx +1 -1
  40. pytorch-image-models/hfdocs/source/models/regnetx.mdx +4 -4
  41. pytorch-image-models/hfdocs/source/models/regnety.mdx +4 -4
  42. pytorch-image-models/hfdocs/source/models/res2net.mdx +1 -1
  43. pytorch-image-models/hfdocs/source/models/res2next.mdx +1 -1
  44. pytorch-image-models/hfdocs/source/models/resnest.mdx +2 -2
  45. pytorch-image-models/hfdocs/source/models/resnet-d.mdx +1 -1
  46. pytorch-image-models/hfdocs/source/models/resnet.mdx +1 -1
  47. pytorch-image-models/hfdocs/source/models/resnext.mdx +1 -1
  48. pytorch-image-models/hfdocs/source/models/rexnet.mdx +1 -1
  49. pytorch-image-models/hfdocs/source/models/se-resnet.mdx +1 -1
  50. pytorch-image-models/hfdocs/source/models/selecsls.mdx +1 -1
Dockerfile CHANGED
@@ -16,4 +16,4 @@ COPY --chown=user train.sh pytorch-image-models
16
  RUN chmod +x pytorch-image-models/train.sh
17
 
18
  COPY --chown=user . /app
19
- CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
 
16
  RUN chmod +x pytorch-image-models/train.sh
17
 
18
  COPY --chown=user . /app
19
+ CMD ["python", "app.py"]
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import os
2
- from fastapi import FastAPI
3
- import subprocess
4
  import wandb
5
  from huggingface_hub import HfApi
6
 
@@ -9,13 +9,11 @@ API = HfApi(token=TOKEN)
9
  wandb_api_key = os.environ.get('wandb_api_key')
10
  wandb.login(key=wandb_api_key)
11
 
12
- random_num = 80.0
13
  subset = 'frac-1over64'
14
  experiment_name = f"ImageNetTraining{random_num}-{subset}"
15
  experiment_repo = f"datacomp/{experiment_name}"
16
- app = FastAPI()
17
 
18
- @app.get("/")
19
  def start_train():
20
  os.system("echo '#### pwd'")
21
  os.system("pwd")
@@ -33,11 +31,21 @@ def start_train():
33
  # Handles CUDA OOM errors.
34
  os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True")
35
  os.system("echo 'Okay, trying training.'")
36
- os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/datacomp/imagenet-1k-random-{random_num}-{subset} --log-wandb --experiment ImageNetTraining{random_num}-{subset} --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4")
37
  os.system("echo 'Done'.")
38
  os.system("ls")
39
  # Upload output to repository
40
  os.system("echo 'trying to upload...'")
41
  API.upload_folder(folder_path="/app", repo_id=f"{experiment_repo}", repo_type="dataset",)
42
  API.pause_space(experiment_repo)
43
- return {"Completed": "!"}
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import gradio as gr
3
+
4
  import wandb
5
  from huggingface_hub import HfApi
6
 
 
9
  wandb_api_key = os.environ.get('wandb_api_key')
10
  wandb.login(key=wandb_api_key)
11
 
12
+ random_num = '80.0'
13
  subset = 'frac-1over64'
14
  experiment_name = f"ImageNetTraining{random_num}-{subset}"
15
  experiment_repo = f"datacomp/{experiment_name}"
 
16
 
 
17
  def start_train():
18
  os.system("echo '#### pwd'")
19
  os.system("pwd")
 
31
  # Handles CUDA OOM errors.
32
  os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True")
33
  os.system("echo 'Okay, trying training.'")
34
+ os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/datacomp/imagenet-1k-random-{random_num}-{subset} --log-wandb --wandb-project {experiment_name} --experiment ImageNetTraining{random_num}-{subset} --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4")
35
  os.system("echo 'Done'.")
36
  os.system("ls")
37
  # Upload output to repository
38
  os.system("echo 'trying to upload...'")
39
  API.upload_folder(folder_path="/app", repo_id=f"{experiment_repo}", repo_type="dataset",)
40
  API.pause_space(experiment_repo)
41
+
42
+ def run():
43
+ with gr.Blocks() as app:
44
+ gr.Markdown(f"Randomization: {random_num}")
45
+ gr.Markdown(f"Subset: {subset}")
46
+ start = gr.Button("Start")
47
+ start.click(start_train)
48
+ app.launch(server_name="0.0.0.0", server_port=7860)
49
+
50
+ if __name__ == '__main__':
51
+ run()
pytorch-image-models/hfdocs/source/models.mdx CHANGED
@@ -33,7 +33,7 @@ A more exciting view (with pretty pictures) of the models within `timm` can be f
33
  ## DLA
34
 
35
  * Implementation: [dla.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/dla.py)
36
- * Paper: https://arxiv.org/abs/1707.06484
37
  * Code: https://github.com/ucbdrive/dla
38
 
39
  ## Dual-Path Networks
@@ -78,14 +78,14 @@ A more exciting view (with pretty pictures) of the models within `timm` can be f
78
  ## NASNet-A
79
 
80
  * Implementation: [nasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/nasnet.py)
81
- * Papers: `Learning Transferable Architectures for Scalable Image Recognition` - https://arxiv.org/abs/1707.07012
82
  * Code: https://github.com/Cadene/pretrained-models.pytorch
83
  * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
84
 
85
  ## PNasNet-5
86
 
87
  * Implementation: [pnasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/pnasnet.py)
88
- * Papers: `Progressive Neural Architecture Search` - https://arxiv.org/abs/1712.00559
89
  * Code: https://github.com/Cadene/pretrained-models.pytorch
90
  * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
91
 
 
33
  ## DLA
34
 
35
  * Implementation: [dla.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/dla.py)
36
+ * Paper: `Deep Layer Aggregation` - https://arxiv.org/abs/1707.06484
37
  * Code: https://github.com/ucbdrive/dla
38
 
39
  ## Dual-Path Networks
 
78
  ## NASNet-A
79
 
80
  * Implementation: [nasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/nasnet.py)
81
+ * Paper: `Learning Transferable Architectures for Scalable Image Recognition` - https://arxiv.org/abs/1707.07012
82
  * Code: https://github.com/Cadene/pretrained-models.pytorch
83
  * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
84
 
85
  ## PNasNet-5
86
 
87
  * Implementation: [pnasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/pnasnet.py)
88
+ * Paper: `Progressive Neural Architecture Search` - https://arxiv.org/abs/1712.00559
89
  * Code: https://github.com/Cadene/pretrained-models.pytorch
90
  * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
91
 
pytorch-image-models/hfdocs/source/models/adversarial-inception-v3.mdx CHANGED
@@ -77,7 +77,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
77
 
78
  ## How do I train this model?
79
 
80
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
81
 
82
  ## Citation
83
 
 
77
 
78
  ## How do I train this model?
79
 
80
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
81
 
82
  ## Citation
83
 
pytorch-image-models/hfdocs/source/models/advprop.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/big-transfer.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/csp-darknet.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/csp-resnet.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/csp-resnext.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/densenet.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/dla.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/dpn.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/ecaresnet.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/efficientnet-pruned.mdx CHANGED
@@ -1,6 +1,6 @@
1
  # EfficientNet (Knapsack Pruned)
2
 
3
- **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way.
4
 
5
  The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image.
6
 
@@ -79,7 +79,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
79
 
80
  ## How do I train this model?
81
 
82
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
83
 
84
  ## Citation
85
 
 
1
  # EfficientNet (Knapsack Pruned)
2
 
3
+ **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scale network width, depth, and resolution in a principled way.
4
 
5
  The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image.
6
 
 
79
 
80
  ## How do I train this model?
81
 
82
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
83
 
84
  ## Citation
85
 
pytorch-image-models/hfdocs/source/models/efficientnet.mdx CHANGED
@@ -1,6 +1,6 @@
1
  # EfficientNet
2
 
3
- **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scales network width, depth, and resolution in a principled way.
4
 
5
  The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image.
6
 
@@ -77,7 +77,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
77
 
78
  ## How do I train this model?
79
 
80
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
81
 
82
  ## Citation
83
 
 
1
  # EfficientNet
2
 
3
+ **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use \\( 2^N \\) times more computational resources, then we can simply increase the network depth by \\( \alpha ^ N \\), width by \\( \beta ^ N \\), and image size by \\( \gamma ^ N \\), where \\( \alpha, \beta, \gamma \\) are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient \\( \phi \\) to uniformly scale network width, depth, and resolution in a principled way.
4
 
5
  The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image.
6
 
 
77
 
78
  ## How do I train this model?
79
 
80
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
81
 
82
  ## Citation
83
 
pytorch-image-models/hfdocs/source/models/ensemble-adversarial.mdx CHANGED
@@ -77,7 +77,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
77
 
78
  ## How do I train this model?
79
 
80
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
81
 
82
  ## Citation
83
 
 
77
 
78
  ## How do I train this model?
79
 
80
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
81
 
82
  ## Citation
83
 
pytorch-image-models/hfdocs/source/models/ese-vovnet.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/fbnet.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/gloun-inception-v3.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/gloun-resnet.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/gloun-resnext.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/gloun-senet.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/gloun-seresnext.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/gloun-xception.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/hrnet.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/ig-resnext.mdx CHANGED
@@ -77,7 +77,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
77
 
78
  ## How do I train this model?
79
 
80
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
81
 
82
  ## Citation
83
 
 
77
 
78
  ## How do I train this model?
79
 
80
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
81
 
82
  ## Citation
83
 
pytorch-image-models/hfdocs/source/models/inception-resnet-v2.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/inception-v3.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/inception-v4.mdx CHANGED
@@ -72,7 +72,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
72
 
73
  ## How do I train this model?
74
 
75
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
76
 
77
  ## Citation
78
 
 
72
 
73
  ## How do I train this model?
74
 
75
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
76
 
77
  ## Citation
78
 
pytorch-image-models/hfdocs/source/models/legacy-se-resnet.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/legacy-se-resnext.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/legacy-senet.mdx CHANGED
@@ -75,7 +75,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
75
 
76
  ## How do I train this model?
77
 
78
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
79
 
80
  ## Citation
81
 
 
75
 
76
  ## How do I train this model?
77
 
78
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
79
 
80
  ## Citation
81
 
pytorch-image-models/hfdocs/source/models/mixnet.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/mnasnet.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/mobilenet-v2.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/mobilenet-v3.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/nasnet.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/noisy-student.mdx CHANGED
@@ -82,7 +82,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
82
 
83
  ## How do I train this model?
84
 
85
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
86
 
87
  ## Citation
88
 
 
82
 
83
  ## How do I train this model?
84
 
85
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
86
 
87
  ## Citation
88
 
pytorch-image-models/hfdocs/source/models/pnasnet.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/regnetx.mdx CHANGED
@@ -1,10 +1,10 @@
1
  # RegNetX
2
 
3
- **RegNetX** is a convolutional network design space with simple, regular models with parameters: depth \\( d \\), initial width \\( w\_{0} > 0 \\), and slope \\( w\_{a} > 0 \\), and generates a different block width \\( u\_{j} \\) for each block \\( j < d \\). The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure):
4
 
5
- \\( \\) u\_{j} = w\_{0} + w\_{a}\cdot{j} \\( \\)
6
 
7
- For **RegNetX** we have additional restrictions: we set \\( b = 1 \\) (the bottleneck ratio), \\( 12 \leq d \leq 28 \\), and \\( w\_{m} \geq 2 \\) (the width multiplier).
8
 
9
  ## How do I use this model on an image?
10
 
@@ -77,7 +77,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
77
 
78
  ## How do I train this model?
79
 
80
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
81
 
82
  ## Citation
83
 
 
1
  # RegNetX
2
 
3
+ **RegNetX** is a convolutional network design space with simple, regular models with parameters: depth \\( d \\), initial width \\( w_{0} > 0 \\), and slope \\( w_{a} > 0 \\), and generates a different block width \\( u_{j} \\) for each block \\( j < d \\). The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure):
4
 
5
+ \\( u_{j} = w_{0} + w_{a}\cdot{j} \\)
6
 
7
+ For **RegNetX** we have additional restrictions: we set \\( b = 1 \\) (the bottleneck ratio), \\( 12 \leq d \leq 28 \\), and \\( w_{m} \geq 2 \\) (the width multiplier).
8
 
9
  ## How do I use this model on an image?
10
 
 
77
 
78
  ## How do I train this model?
79
 
80
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
81
 
82
  ## Citation
83
 
pytorch-image-models/hfdocs/source/models/regnety.mdx CHANGED
@@ -1,10 +1,10 @@
1
  # RegNetY
2
 
3
- **RegNetY** is a convolutional network design space with simple, regular models with parameters: depth \\( d \\), initial width \\( w\_{0} > 0 \\), and slope \\( w\_{a} > 0 \\), and generates a different block width \\( u\_{j} \\) for each block \\( j < d \\). The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure):
4
 
5
- \\( \\) u\_{j} = w\_{0} + w\_{a}\cdot{j} \\( \\)
6
 
7
- For **RegNetX** authors have additional restrictions: we set \\( b = 1 \\) (the bottleneck ratio), \\( 12 \leq d \leq 28 \\), and \\( w\_{m} \geq 2 \\) (the width multiplier).
8
 
9
  For **RegNetY** authors make one change, which is to include [Squeeze-and-Excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block).
10
 
@@ -79,7 +79,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
79
 
80
  ## How do I train this model?
81
 
82
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
83
 
84
  ## Citation
85
 
 
1
  # RegNetY
2
 
3
+ **RegNetY** is a convolutional network design space with simple, regular models with parameters: depth \\( d \\), initial width \\( w_{0} > 0 \\), and slope \\( w_{a} > 0 \\), and generates a different block width \\( u_{j} \\) for each block \\( j < d \\). The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure):
4
 
5
+ \\( u_{j} = w_{0} + w_{a}\cdot{j} \\)
6
 
7
+ For **RegNetX** authors have additional restrictions: we set \\( b = 1 \\) (the bottleneck ratio), \\( 12 \leq d \leq 28 \\), and \\( w_{m} \geq 2 \\) (the width multiplier).
8
 
9
  For **RegNetY** authors make one change, which is to include [Squeeze-and-Excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block).
10
 
 
79
 
80
  ## How do I train this model?
81
 
82
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
83
 
84
  ## Citation
85
 
pytorch-image-models/hfdocs/source/models/res2net.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/res2next.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/resnest.mdx CHANGED
@@ -1,6 +1,6 @@
1
  # ResNeSt
2
 
3
- A **ResNeSt** is a variant on a [ResNet](https://paperswithcode.com/method/resnet), which instead stacks [Split-Attention blocks](https://paperswithcode.com/method/split-attention). The cardinal group representations are then concatenated along the channel dimension: \\( V = \text{Concat} \\){\\( V^{1},V^{2},\cdots{V}^{K} \\)}. As in standard residual blocks, the final output \\( Y \\) of otheur Split-Attention block is produced using a shortcut connection: \\( Y=V+X \\), if the input and output feature-map share the same shape. For blocks with a stride, an appropriate transformation \\( \mathcal{T} \\) is applied to the shortcut connection to align the output shapes: \\( Y=V+\mathcal{T}(X) \\). For example, \\( \mathcal{T} \\) can be strided convolution or combined convolution-with-pooling.
4
 
5
  ## How do I use this model on an image?
6
 
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
1
  # ResNeSt
2
 
3
+ A **ResNeSt** is a variant on a [ResNet](https://paperswithcode.com/method/resnet), which instead stacks [Split-Attention blocks](https://paperswithcode.com/method/split-attention). The cardinal group representations are then concatenated along the channel dimension: \\( V = \text{Concat} \{ V^{1},V^{2},\cdots,{V}^{K} \} \\). As in standard residual blocks, the final output \\( Y \\) of otheur Split-Attention block is produced using a shortcut connection: \\( Y=V+X \\), if the input and output feature-map share the same shape. For blocks with a stride, an appropriate transformation \\( \mathcal{T} \\) is applied to the shortcut connection to align the output shapes: \\( Y=V+\mathcal{T}(X) \\). For example, \\( \mathcal{T} \\) can be strided convolution or combined convolution-with-pooling.
4
 
5
  ## How do I use this model on an image?
6
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/resnet-d.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/resnet.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/resnext.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/rexnet.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/se-resnet.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79
 
pytorch-image-models/hfdocs/source/models/selecsls.mdx CHANGED
@@ -73,7 +73,7 @@ script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py)
73
 
74
  ## How do I train this model?
75
 
76
- You can follow the [timm recipe scripts](../scripts) for training a new model afresh.
77
 
78
  ## Citation
79
 
 
73
 
74
  ## How do I train this model?
75
 
76
+ You can follow the [timm recipe scripts](../training_script) for training a new model afresh.
77
 
78
  ## Citation
79