Datasets:
File size: 2,471 Bytes
0b99a8c 212b7cb 0b99a8c 0af7fb7 589bcdc c4021f5 0b99a8c 589bcdc 0b99a8c 589bcdc 3ad6eab 589bcdc 3ad6eab 589bcdc 3ad6eab 0b99a8c 589bcdc 0b99a8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: cc-by-nc-sa-4.0
pretty_name: "DAPFAM –\_Domain‑Aware Patent Retrieval at the Family level"
tags:
- patents
- retrieval
- information‑retrieval
- cross‑domain
- patent
- fulltext
size_categories:
- 10K<n<100K
language:
- en
configs:
- config_name: corpus
data_files: "corpus.parquet"
- config_name: queries
data_files: "queries.parquet"
- config_name: relations
data_files: "qrels_all.parquet"
---
# **DAPFAM** dataset
For more details on the dataset construction and baseline experimentations, see the accompanying paper: **Ayaou et al., 2025 — “DAPFAM: A Domain‑Aware Patent Retrieval Dataset Aggregated at the Family Level”[(Here)](https://doi.org/10.48550/arXiv.2506.22141) .**
## Summary
DAPFAM provides **1 247 domain balanced full-text query patent families** and **45 336 full-text target families** with forward/backward‑citation relevance labels (≈ 50 K pairs). Each relevant link is explicitly marked **in‑domain** or **out‑of‑domain** according to IPC 3‑char overlap, enabling rigorous cross‑domain evaluation.
* Full text **(title · abstract · claims · description)** plus rich metadata for *every* family.
* Multi‑jurisdictional, English‑only text (families may originate in US, JP, EP, CN, …).
* Parquet qrel file: `qrels_all.parquet`.
## Dataset Structure
```
corpus.parquet # 45 336 rows, targets – every original column from the paper
queries.parquet # 1 247 rows, queries – same columns + abstract_keywords
qrels_all.parquet # (all | in | out) four‑column tables → query_id · relevant_id · relevance_score · domain_rel
```
## How to load
```python
from datasets import load_dataset
#According to your usage, you might not need to load all 3 subsets
dc = load_dataset("datalyes/DAPFAM_patent", "corpus")
dq = load_dataset("datalyes/DAPFAM_patent", "queries")
dr = load_dataset("datalyes/DAPFAM_patent", "relations")
```
## Citation
If you find our paper or dataset helpful, please consider citing as follows:
```
@misc{ayaou2025dapfam,
title={DAPFAM: A Domain-Aware Patent Retrieval Dataset Aggregated at the Family Level},
author={Iliass Ayaou and Denis Cavallucci and Hicham Chibane},
year={2025},
eprint={2506.22141},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Quick Stats
* **Queries**: 1,247
* **Corpus (targets)**: 45,336
* **Qrels (all)**: 49,869
* **Qrels (in)**: 19,736
* **Qrels (out)**: 5,193 |