Upload examples/uv/dedupe-dataset.py with huggingface_hub
Browse files- examples/uv/dedupe-dataset.py +259 -0
examples/uv/dedupe-dataset.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /// script
|
2 |
+
# requires-python = ">=3.9"
|
3 |
+
# dependencies = [
|
4 |
+
# "semhash",
|
5 |
+
# "datasets",
|
6 |
+
# "huggingface-hub",
|
7 |
+
# "hf-transfer",
|
8 |
+
# "hf-xet",
|
9 |
+
# ]
|
10 |
+
# ///
|
11 |
+
"""Deduplicate a Hugging Face dataset using SemHash.
|
12 |
+
|
13 |
+
This script uses semantic deduplication to remove duplicate entries from a dataset
|
14 |
+
based on a specified text column, then pushes the results to a new dataset repository.
|
15 |
+
"""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
from datetime import datetime
|
21 |
+
from typing import Optional
|
22 |
+
|
23 |
+
from datasets import Dataset, load_dataset
|
24 |
+
from huggingface_hub import DatasetCard
|
25 |
+
from semhash import SemHash
|
26 |
+
|
27 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = (
|
28 |
+
"1" # Enable HF transfer to speed up transfers
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
def parse_args():
|
33 |
+
"""Parse command line arguments."""
|
34 |
+
parser = argparse.ArgumentParser(
|
35 |
+
description="Deduplicate a Hugging Face dataset using semantic similarity"
|
36 |
+
)
|
37 |
+
parser.add_argument(
|
38 |
+
"dataset_id",
|
39 |
+
type=str,
|
40 |
+
help="Source dataset ID (e.g., 'imdb', 'squad', 'username/dataset-name')",
|
41 |
+
)
|
42 |
+
parser.add_argument(
|
43 |
+
"column",
|
44 |
+
type=str,
|
45 |
+
help="Column name to deduplicate on (e.g., 'text', 'question', 'context')",
|
46 |
+
)
|
47 |
+
parser.add_argument(
|
48 |
+
"repo_id",
|
49 |
+
type=str,
|
50 |
+
help="Target repository ID for deduplicated dataset (e.g., 'username/my-deduplicated-dataset')",
|
51 |
+
)
|
52 |
+
parser.add_argument(
|
53 |
+
"--split",
|
54 |
+
type=str,
|
55 |
+
default="train",
|
56 |
+
help="Dataset split to process (default: train)",
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
"--threshold",
|
60 |
+
type=float,
|
61 |
+
default=None,
|
62 |
+
help="Similarity threshold for deduplication (0-1, default: auto)",
|
63 |
+
)
|
64 |
+
parser.add_argument(
|
65 |
+
"--method",
|
66 |
+
type=str,
|
67 |
+
choices=["deduplicate", "filter_outliers", "find_representative"],
|
68 |
+
default="deduplicate",
|
69 |
+
help="Deduplication method to use (default: deduplicate)",
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
"--private",
|
73 |
+
action="store_true",
|
74 |
+
help="Make the output dataset private",
|
75 |
+
)
|
76 |
+
parser.add_argument(
|
77 |
+
"--max-samples",
|
78 |
+
type=int,
|
79 |
+
default=None,
|
80 |
+
help="Maximum number of samples to process (for testing)",
|
81 |
+
)
|
82 |
+
|
83 |
+
return parser.parse_args()
|
84 |
+
|
85 |
+
|
86 |
+
def create_dataset_card(
|
87 |
+
original_dataset_id: str,
|
88 |
+
column: str,
|
89 |
+
method: str,
|
90 |
+
duplicate_ratio: float,
|
91 |
+
original_size: int,
|
92 |
+
deduplicated_size: int,
|
93 |
+
threshold: Optional[float] = None,
|
94 |
+
) -> str:
|
95 |
+
"""Create a dataset card with deduplication information."""
|
96 |
+
card_content = f"""---
|
97 |
+
tags:
|
98 |
+
- deduplicated
|
99 |
+
- semhash
|
100 |
+
- semantic-deduplication
|
101 |
+
- hfjobs
|
102 |
+
---
|
103 |
+
|
104 |
+
# Deduplicated {original_dataset_id}
|
105 |
+
|
106 |
+
This dataset is a deduplicated version of [{original_dataset_id}](https://huggingface.co/datasets/{original_dataset_id})
|
107 |
+
using semantic deduplication with [SemHash](https://github.com/MinishLab/semhash).
|
108 |
+
|
109 |
+
## Deduplication Details
|
110 |
+
|
111 |
+
- **Method**: {method}
|
112 |
+
- **Column**: `{column}`
|
113 |
+
- **Original size**: {original_size:,} samples
|
114 |
+
- **Deduplicated size**: {deduplicated_size:,} samples
|
115 |
+
- **Duplicate ratio**: {duplicate_ratio:.2%}
|
116 |
+
- **Reduction**: {(1 - deduplicated_size / original_size):.2%}
|
117 |
+
"""
|
118 |
+
|
119 |
+
if threshold is not None:
|
120 |
+
card_content += f"- **Similarity threshold**: {threshold}\n"
|
121 |
+
|
122 |
+
card_content += f"""
|
123 |
+
- **Date processed**: {datetime.now().strftime("%Y-%m-%d")}
|
124 |
+
|
125 |
+
## How to use
|
126 |
+
|
127 |
+
```python
|
128 |
+
from datasets import load_dataset
|
129 |
+
|
130 |
+
dataset = load_dataset("{original_dataset_id.split("/")[-1]}-deduplicated")
|
131 |
+
```
|
132 |
+
|
133 |
+
## Processing script
|
134 |
+
|
135 |
+
This dataset was created using the following script:
|
136 |
+
|
137 |
+
```bash
|
138 |
+
uv run dedupe-dataset.py {original_dataset_id} {column} <repo_id> --method {method}
|
139 |
+
```
|
140 |
+
|
141 |
+
## About semantic deduplication
|
142 |
+
|
143 |
+
Unlike exact deduplication, semantic deduplication identifies and removes samples that are
|
144 |
+
semantically similar even if they use different words. This helps create cleaner training
|
145 |
+
datasets and prevents data leakage between train/test splits.
|
146 |
+
"""
|
147 |
+
|
148 |
+
return card_content
|
149 |
+
|
150 |
+
|
151 |
+
def main():
|
152 |
+
"""Main function to run deduplication."""
|
153 |
+
args = parse_args()
|
154 |
+
|
155 |
+
# Check for HF token
|
156 |
+
token = os.environ.get("HF_TOKEN")
|
157 |
+
if not token:
|
158 |
+
print(
|
159 |
+
"Warning: HF_TOKEN not found in environment. You may not be able to push to private repos."
|
160 |
+
)
|
161 |
+
|
162 |
+
# Load dataset
|
163 |
+
print(f"Loading dataset '{args.dataset_id}' (split: {args.split})...")
|
164 |
+
try:
|
165 |
+
if args.max_samples:
|
166 |
+
dataset = load_dataset(
|
167 |
+
args.dataset_id, split=f"{args.split}[:{args.max_samples}]", token=token
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
dataset = load_dataset(args.dataset_id, split=args.split, token=token)
|
171 |
+
except Exception as e:
|
172 |
+
print(f"Error loading dataset: {e}")
|
173 |
+
sys.exit(1)
|
174 |
+
|
175 |
+
# Validate column exists
|
176 |
+
if args.column not in dataset.column_names:
|
177 |
+
print(f"Error: Column '{args.column}' not found in dataset.")
|
178 |
+
print(f"Available columns: {', '.join(dataset.column_names)}")
|
179 |
+
sys.exit(1)
|
180 |
+
|
181 |
+
# Convert dataset to records for semhash
|
182 |
+
print(f"Preparing dataset for deduplication on column '{args.column}'...")
|
183 |
+
records = [dict(row) for row in dataset]
|
184 |
+
original_size = len(records)
|
185 |
+
print(f"Found {original_size:,} samples")
|
186 |
+
|
187 |
+
# Initialize SemHash with the specific column
|
188 |
+
print("Initializing SemHash with default model...")
|
189 |
+
semhash = SemHash.from_records(records=records, columns=[args.column])
|
190 |
+
|
191 |
+
# Apply selected method
|
192 |
+
print(f"Applying {args.method} method...")
|
193 |
+
if args.method == "deduplicate":
|
194 |
+
if args.threshold:
|
195 |
+
result = semhash.self_deduplicate(threshold=args.threshold)
|
196 |
+
else:
|
197 |
+
result = semhash.self_deduplicate()
|
198 |
+
elif args.method == "filter_outliers":
|
199 |
+
result = semhash.self_filter_outliers()
|
200 |
+
elif args.method == "find_representative":
|
201 |
+
result = semhash.self_find_representative()
|
202 |
+
|
203 |
+
# Get deduplicated records
|
204 |
+
deduplicated_records = result.selected
|
205 |
+
deduplicated_size = len(deduplicated_records)
|
206 |
+
|
207 |
+
# Print statistics
|
208 |
+
print("\nDeduplication complete!")
|
209 |
+
print(f"Original size: {original_size:,}")
|
210 |
+
print(f"Deduplicated size: {deduplicated_size:,}")
|
211 |
+
print(
|
212 |
+
f"Removed: {original_size - deduplicated_size:,} ({result.duplicate_ratio:.2%})"
|
213 |
+
)
|
214 |
+
|
215 |
+
# Create new dataset from deduplicated records
|
216 |
+
print("\nCreating deduplicated dataset...")
|
217 |
+
deduplicated_dataset = Dataset.from_list(deduplicated_records)
|
218 |
+
|
219 |
+
# Push dataset to hub first (this creates the repo)
|
220 |
+
print(f"\nPushing deduplicated dataset to '{args.repo_id}'...")
|
221 |
+
try:
|
222 |
+
deduplicated_dataset.push_to_hub(
|
223 |
+
args.repo_id,
|
224 |
+
private=args.private,
|
225 |
+
token=token,
|
226 |
+
commit_message=f"Add deduplicated version of {args.dataset_id}",
|
227 |
+
)
|
228 |
+
print("Dataset pushed successfully!")
|
229 |
+
|
230 |
+
# Create and push dataset card
|
231 |
+
print("Creating and pushing dataset card...")
|
232 |
+
card_content = create_dataset_card(
|
233 |
+
original_dataset_id=args.dataset_id,
|
234 |
+
column=args.column,
|
235 |
+
method=args.method,
|
236 |
+
duplicate_ratio=result.duplicate_ratio,
|
237 |
+
original_size=original_size,
|
238 |
+
deduplicated_size=deduplicated_size,
|
239 |
+
threshold=args.threshold,
|
240 |
+
)
|
241 |
+
|
242 |
+
card = DatasetCard(card_content)
|
243 |
+
card.push_to_hub(
|
244 |
+
repo_id=args.repo_id,
|
245 |
+
repo_type="dataset",
|
246 |
+
token=token,
|
247 |
+
commit_message="Add dataset card",
|
248 |
+
)
|
249 |
+
|
250 |
+
print(
|
251 |
+
f"\nSuccess! Dataset available at: https://huggingface.co/datasets/{args.repo_id}"
|
252 |
+
)
|
253 |
+
except Exception as e:
|
254 |
+
print(f"Error: {e}")
|
255 |
+
sys.exit(1)
|
256 |
+
|
257 |
+
|
258 |
+
if __name__ == "__main__":
|
259 |
+
main()
|