# /// script # requires-python = ">=3.9" # dependencies = [ # "semhash", # "datasets", # "huggingface-hub", # "hf-transfer", # "hf-xet", # ] # /// """Deduplicate a Hugging Face dataset using SemHash. This script uses semantic deduplication to remove duplicate entries from a dataset based on a specified text column, then pushes the results to a new dataset repository. """ import argparse import os import sys from datetime import datetime from typing import Optional from datasets import Dataset, load_dataset from huggingface_hub import DatasetCard from semhash import SemHash from huggingface_hub import login os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = ( "1" # Enable HF transfer to speed up transfers ) HF_TOKEN = os.environ.get("HF_TOKEN", None) # Get Hugging Face token from environment assert HF_TOKEN, "HF_TOKEN environment variable must be set for authentication" login(HF_TOKEN) def parse_args(): """Parse command line arguments.""" parser = argparse.ArgumentParser( description="Deduplicate a Hugging Face dataset using semantic similarity" ) parser.add_argument( "dataset_id", type=str, help="Source dataset ID (e.g., 'imdb', 'squad', 'username/dataset-name')", ) parser.add_argument( "column", type=str, help="Column name to deduplicate on (e.g., 'text', 'question', 'context')", ) parser.add_argument( "repo_id", type=str, help="Target repository ID for deduplicated dataset (e.g., 'username/my-deduplicated-dataset')", ) parser.add_argument( "--split", type=str, default="train", help="Dataset split to process (default: train)", ) parser.add_argument( "--threshold", type=float, default=None, help="Similarity threshold for deduplication (0-1, default: auto)", ) parser.add_argument( "--method", type=str, choices=["deduplicate", "filter_outliers", "find_representative"], default="deduplicate", help="Deduplication method to use (default: deduplicate)", ) parser.add_argument( "--private", action="store_true", help="Make the output dataset private", ) parser.add_argument( "--max-samples", type=int, default=None, help="Maximum number of samples to process (for testing)", ) return parser.parse_args() def create_dataset_card( original_dataset_id: str, column: str, method: str, duplicate_ratio: float, original_size: int, deduplicated_size: int, threshold: Optional[float] = None, ) -> str: """Create a dataset card with deduplication information.""" card_content = f"""--- tags: - deduplicated - semhash - semantic-deduplication - hfjobs --- # Deduplicated {original_dataset_id} This dataset is a deduplicated version of [{original_dataset_id}](https://huggingface.co/datasets/{original_dataset_id}) using semantic deduplication with [SemHash](https://github.com/MinishLab/semhash). ## Deduplication Details - **Method**: {method} - **Column**: `{column}` - **Original size**: {original_size:,} samples - **Deduplicated size**: {deduplicated_size:,} samples - **Duplicate ratio**: {duplicate_ratio:.2%} - **Reduction**: {(1 - deduplicated_size / original_size):.2%} """ if threshold is not None: card_content += f"- **Similarity threshold**: {threshold}\n" card_content += f""" - **Date processed**: {datetime.now().strftime("%Y-%m-%d")} ## How to use ```python from datasets import load_dataset dataset = load_dataset("{original_dataset_id.split("/")[-1]}-deduplicated") ``` ## Processing script This dataset was created using the following script: ```bash uv run dedupe-dataset.py {original_dataset_id} {column} --method {method} ``` ## About semantic deduplication Unlike exact deduplication, semantic deduplication identifies and removes samples that are semantically similar even if they use different words. This helps create cleaner training datasets and prevents data leakage between train/test splits. """ return card_content def main(): """Main function to run deduplication.""" args = parse_args() # Check for HF token token = os.environ.get("HF_TOKEN") if not token: print( "Warning: HF_TOKEN not found in environment. You may not be able to push to private repos." ) # Load dataset print(f"Loading dataset '{args.dataset_id}' (split: {args.split})...") try: if args.max_samples: dataset = load_dataset( args.dataset_id, split=f"{args.split}[:{args.max_samples}]", token=token ) else: dataset = load_dataset(args.dataset_id, split=args.split, token=token) except Exception as e: print(f"Error loading dataset: {e}") sys.exit(1) # Validate column exists if args.column not in dataset.column_names: print(f"Error: Column '{args.column}' not found in dataset.") print(f"Available columns: {', '.join(dataset.column_names)}") sys.exit(1) # Convert dataset to records for semhash print(f"Preparing dataset for deduplication on column '{args.column}'...") records = [dict(row) for row in dataset] original_size = len(records) print(f"Found {original_size:,} samples") # Initialize SemHash with the specific column print("Initializing SemHash with default model...") semhash = SemHash.from_records(records=records, columns=[args.column]) # Apply selected method print(f"Applying {args.method} method...") if args.method == "deduplicate": if args.threshold: result = semhash.self_deduplicate(threshold=args.threshold) else: result = semhash.self_deduplicate() elif args.method == "filter_outliers": result = semhash.self_filter_outliers() elif args.method == "find_representative": result = semhash.self_find_representative() # Get deduplicated records deduplicated_records = result.selected deduplicated_size = len(deduplicated_records) # Print statistics print("\nDeduplication complete!") print(f"Original size: {original_size:,}") print(f"Deduplicated size: {deduplicated_size:,}") print( f"Removed: {original_size - deduplicated_size:,} ({result.duplicate_ratio:.2%})" ) # Create new dataset from deduplicated records print("\nCreating deduplicated dataset...") deduplicated_dataset = Dataset.from_list(deduplicated_records) # Push dataset to hub first (this creates the repo) print(f"\nPushing deduplicated dataset to '{args.repo_id}'...") try: deduplicated_dataset.push_to_hub( args.repo_id, private=args.private, token=token, commit_message=f"Add deduplicated version of {args.dataset_id}", ) print("Dataset pushed successfully!") # Create and push dataset card print("Creating and pushing dataset card...") card_content = create_dataset_card( original_dataset_id=args.dataset_id, column=args.column, method=args.method, duplicate_ratio=result.duplicate_ratio, original_size=original_size, deduplicated_size=deduplicated_size, threshold=args.threshold, ) card = DatasetCard(card_content) card.push_to_hub( repo_id=args.repo_id, repo_type="dataset", token=token, commit_message="Add dataset card", ) print( f"\nSuccess! Dataset available at: https://huggingface.co/datasets/{args.repo_id}" ) except Exception as e: print(f"Error: {e}") sys.exit(1) if __name__ == "__main__": main()