|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""NarrativeQA Reading Comprehension Challenge""" |
|
|
|
|
|
import csv |
|
import os |
|
from os import listdir |
|
from os.path import isfile, join |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{kovcisky2018narrativeqa, |
|
title={The narrativeqa reading comprehension challenge}, |
|
author={Ko{\v{c}}isk{\'y}, Tom{\'a}{\v{s}} and Schwarz, Jonathan and Blunsom, Phil and Dyer, Chris and Hermann, Karl Moritz and Melis, G{\'a}bor and Grefenstette, Edward}, |
|
journal={Transactions of the Association for Computational Linguistics}, |
|
volume={6}, |
|
pages={317--328}, |
|
year={2018}, |
|
publisher={MIT Press} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The Narrative QA Manual dataset is a reading comprehension \ |
|
dataset, in which the reader must answer questions about stories \ |
|
by reading entire books or movie scripts. \ |
|
The QA tasks are designed so that successfully answering their questions \ |
|
requires understanding the underlying narrative rather than \ |
|
relying on shallow pattern matching or salience.\\ |
|
THIS DATASET REQUIRES A MANUALLY DOWNLOADED FILE! \ |
|
Because of a script in the original repository which downloads the stories from original URLs everytime, \ |
|
The links are sometimes broken or invalid. \ |
|
Therefore, you need to manually download the stories for this dataset using the script provided by the authors \ |
|
(https://github.com/deepmind/narrativeqa/blob/master/download_stories.sh). Running the shell script creates a folder named "tmp" \ |
|
in the root directory and downloads the stories there. This folder containing the stories\ |
|
can be used to load the dataset via `datasets.load_dataset("narrativeqa_manual", data_dir="<path/to/folder>")`. """ |
|
|
|
|
|
_HOMEPAGE = "https://deepmind.com/research/publications/narrativeqa-reading-comprehension-challenge" |
|
_LICENSE = "https://github.com/deepmind/narrativeqa/blob/master/LICENSE" |
|
|
|
|
|
|
|
|
|
_URL = "https://github.com/deepmind/narrativeqa" |
|
_URLS = { |
|
"documents": "https://raw.githubusercontent.com/deepmind/narrativeqa/master/documents.csv", |
|
"summaries": "https://raw.githubusercontent.com/deepmind/narrativeqa/master/third_party/wikipedia/summaries.csv", |
|
"qaps": "https://raw.githubusercontent.com/deepmind/narrativeqa/master/qaps.csv", |
|
} |
|
|
|
|
|
class NarrativeqaManual(datasets.GeneratorBasedBuilder): |
|
"""The NarrativeQA Manual dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return """ You need to manually download the stories for this dataset using the script provided by the authors \ |
|
(https://github.com/deepmind/narrativeqa/blob/master/download_stories.sh). Running the shell script creates a folder named "tmp"\ |
|
in the root directory and downloads the stories there. This folder containing the stories\ |
|
can be used to load the dataset via `datasets.load_dataset("narrativeqa_manual", data_dir="<path/to/folder>").""" |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"document": { |
|
"id": datasets.Value("string"), |
|
"kind": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"file_size": datasets.Value("int32"), |
|
"word_count": datasets.Value("int32"), |
|
"start": datasets.Value("string"), |
|
"end": datasets.Value("string"), |
|
"summary": { |
|
"text": datasets.Value("string"), |
|
"tokens": datasets.features.Sequence(datasets.Value("string")), |
|
"url": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
}, |
|
"text": datasets.Value("string"), |
|
}, |
|
"question": { |
|
"text": datasets.Value("string"), |
|
"tokens": datasets.features.Sequence(datasets.Value("string")), |
|
}, |
|
"answers": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"tokens": datasets.features.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
manual_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
|
|
if not os.path.exists(manual_dir): |
|
raise FileNotFoundError( |
|
f"{manual_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('narrativeqa_manual', data_dir=...)` that includes the stories downloaded from the original repository. Manual download instructions: {self.manual_download_instructions}" |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"manual_dir": manual_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"manual_dir": manual_dir, |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"manual_dir": manual_dir, |
|
"split": "valid", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir, manual_dir, split): |
|
"""Yields examples.""" |
|
|
|
documents = {} |
|
with open(data_dir["documents"], encoding="utf-8") as f: |
|
reader = csv.DictReader(f) |
|
for row in reader: |
|
if row["set"] != split: |
|
continue |
|
documents[row["document_id"]] = row |
|
|
|
summaries = {} |
|
with open(data_dir["summaries"], encoding="utf-8") as f: |
|
reader = csv.DictReader(f) |
|
for row in reader: |
|
if row["set"] != split: |
|
continue |
|
summaries[row["document_id"]] = row |
|
|
|
onlyfiles = [f for f in listdir(manual_dir) if isfile(join(manual_dir, f))] |
|
story_texts = {} |
|
for i in onlyfiles: |
|
if "content" in i: |
|
with open(os.path.join(manual_dir, i), "r", encoding="utf-8", errors="ignore") as f: |
|
text = f.read() |
|
story_texts[i.split(".")[0]] = text |
|
|
|
with open(data_dir["qaps"], encoding="utf-8") as f: |
|
reader = csv.DictReader(f) |
|
for id_, row in enumerate(reader): |
|
if row["set"] != split: |
|
continue |
|
document_id = row["document_id"] |
|
document = documents[document_id] |
|
summary = summaries[document_id] |
|
full_text = story_texts[document_id] |
|
res = { |
|
"document": { |
|
"id": document["document_id"], |
|
"kind": document["kind"], |
|
"url": document["story_url"], |
|
"file_size": document["story_file_size"], |
|
"word_count": document["story_word_count"], |
|
"start": document["story_start"], |
|
"end": document["story_end"], |
|
"summary": { |
|
"text": summary["summary"], |
|
"tokens": summary["summary_tokenized"].split(), |
|
"url": document["wiki_url"], |
|
"title": document["wiki_title"], |
|
}, |
|
"text": full_text, |
|
}, |
|
"question": {"text": row["question"], "tokens": row["question_tokenized"].split()}, |
|
"answers": [ |
|
{"text": row["answer1"], "tokens": row["answer1_tokenized"].split()}, |
|
{"text": row["answer2"], "tokens": row["answer2_tokenized"].split()}, |
|
], |
|
} |
|
yield id_, res |
|
|