Datasets:

Modalities:
Image
Languages:
English
DOI:
Libraries:
Datasets
License:
vlbthambawita commited on
Commit
2b88d75
·
verified ·
1 Parent(s): 84127c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -81
README.md CHANGED
@@ -1,119 +1,105 @@
1
  ---
2
- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
3
- # Doc / guide: https://huggingface.co/docs/hub/datasets-cards
4
- {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
- Comming soon...!
7
- # Dataset Card for Dataset Name
8
 
9
- ## Dataset Description
10
 
11
- - **Homepage:**
12
- - **Repository:**
13
- - **Paper:**
14
- - **Leaderboard:**
15
- - **Point of Contact:**
16
 
17
- ### Dataset Summary
18
 
19
- This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
 
20
 
21
- ### Supported Tasks and Leaderboards
22
 
23
- [More Information Needed]
24
 
25
- ### Languages
 
26
 
27
- [More Information Needed]
28
 
29
- ## Dataset Structure
30
-
31
- ### Data Instances
32
 
33
- [More Information Needed]
34
 
35
- ### Data Fields
 
 
36
 
37
- [More Information Needed]
38
 
39
- ### Data Splits
40
 
41
- [More Information Needed]
 
 
42
 
43
  ## Dataset Creation
44
 
45
  ### Curation Rationale
46
 
47
- [More Information Needed]
 
 
48
 
49
  ### Source Data
50
 
51
- #### Initial Data Collection and Normalization
52
-
53
- [More Information Needed]
54
-
55
- #### Who are the source language producers?
56
-
57
- [More Information Needed]
58
 
59
  ### Annotations
60
 
61
- #### Annotation process
62
-
63
- [More Information Needed]
64
-
65
- #### Who are the annotators?
66
-
67
- [More Information Needed]
68
-
69
- ### Personal and Sensitive Information
70
 
71
- [More Information Needed]
72
 
73
- ## Considerations for Using the Data
 
 
 
74
 
75
- ### Social Impact of Dataset
76
 
77
- [More Information Needed]
78
 
79
- ### Discussion of Biases
80
 
81
- [More Information Needed]
82
-
83
- ### Other Known Limitations
84
-
85
- [More Information Needed]
86
-
87
- ## Additional Information
88
-
89
- ### Dataset Curators
90
-
91
- [More Information Needed]
92
-
93
- ### Licensing Information
94
-
95
- [More Information Needed]
96
-
97
- ### Citation Information
98
  ```
99
- @inproceedings{10.1145/3592571.3592978,
100
- author = {Mach\'{a}\v{c}ek, Roman and Mozaffari, Leila and Sepasdar, Zahra and Parasa, Sravanthi and Halvorsen, P\r{a}l and Riegler, Michael A. and Thambawita, Vajira},
101
- title = {Mask-conditioned latent diffusion for generating gastrointestinal polyp images},
102
- year = {2023},
103
- isbn = {9798400701863},
104
- publisher = {Association for Computing Machinery},
105
- address = {New York, NY, USA},
106
- url = {https://doi.org/10.1145/3592571.3592978},
107
- doi = {10.1145/3592571.3592978},
108
- booktitle = {Proceedings of the 4th ACM Workshop on Intelligent Cross-Data Analysis and Retrieval},
109
- pages = {1–9},
110
- numpages = {9},
111
- keywords = {polyp segmentation, polyp generative model, generating synthetic data, diffusion model},
112
- location = {Thessaloniki, Greece},
113
- series = {ICDAR '23}
114
  }
115
  ```
116
 
117
- ### Contributions
 
 
 
 
118
 
119
- [More Information Needed]
 
 
1
  ---
2
+ dataset: conditional-polyp-diffusion
3
+ annotations_creators:
4
+ - expert-generated
5
+ language:
6
+ - en
7
+ license: apache-2.0
8
+ multilinguality:
9
+ - monolingual
10
+ pretty_name: Conditional Polyp Diffusion
11
+ size_categories:
12
+ - 1K<n<10K
13
+ source_datasets:
14
+ - original
15
+ task_categories:
16
+ - image-generation
17
+ - image-segmentation
18
+ task_ids:
19
+ - image-to-image-translation
20
+ - semantic-segmentation
21
+ paperswithcode_id: mask-conditioned-latent-diffusion
22
  ---
 
 
23
 
24
+ # Dataset Card for Conditional Polyp Diffusion
25
 
26
+ ## Dataset Summary
 
 
 
 
27
 
28
+ The **Conditional Polyp Diffusion** dataset provides synthetic gastrointestinal (GI) polyp images along with segmentation masks, generated using a two-stage diffusion modeling framework. The dataset is aimed at mitigating the challenges of data scarcity and privacy in medical imaging, especially for supervised polyp segmentation tasks.
29
 
30
+ - **Stage 1**: Improved diffusion model generates synthetic segmentation masks.
31
+ - **Stage 2**: Latent diffusion model generates corresponding realistic polyp images, conditioned on the masks.
32
 
33
+ This dataset enables training and benchmarking of polyp segmentation models, improving generalizability and reducing dependence on scarce annotated real data.
34
 
35
+ ## Supported Tasks and Leaderboards
36
 
37
+ - **Image-to-Image Translation**: Generating realistic medical images from segmentation masks.
38
+ - **Semantic Segmentation**: Supervised training of segmentation models for polyp detection.
39
 
40
+ ## Languages
41
 
42
+ The metadata and documentation are in English.
 
 
43
 
44
+ ## Dataset Structure
45
 
46
+ Each sample includes:
47
+ - A synthetic GI polyp image.
48
+ - A corresponding segmentation mask.
49
 
50
+ The images are generated to mimic the distribution of Kvasir-SEG masks and HyperKvasir polyp appearances.
51
 
52
+ ## Data Splits
53
 
54
+ The dataset contains:
55
+ - 1,000 synthetic masks
56
+ - 1,000 corresponding synthetic polyp images
57
 
58
  ## Dataset Creation
59
 
60
  ### Curation Rationale
61
 
62
+ Due to privacy and annotation constraints in medical imaging, the dataset addresses:
63
+ - Lack of large-scale annotated datasets for polyp segmentation.
64
+ - Need for diverse, high-fidelity training data for robust CAD systems.
65
 
66
  ### Source Data
67
 
68
+ The improved diffusion model is trained on the Kvasir-SEG dataset’s segmentation masks. The conditional polyp generator is trained using these generated masks to create realistic polyp images.
 
 
 
 
 
 
69
 
70
  ### Annotations
71
 
72
+ - Masks are generated via diffusion models conditioned on prior distributions.
73
+ - No manual annotations are provided; instead, generated masks are verified for similarity and diversity.
 
 
 
 
 
 
 
74
 
75
+ ## Usage
76
 
77
+ The dataset is intended for research in:
78
+ - Medical image generation
79
+ - Semi-supervised and supervised segmentation
80
+ - Evaluation of synthetic data utility in clinical tasks
81
 
82
+ ## Evaluation
83
 
84
+ Three segmentation models (UNet++, FPN, DeepLabv3+) were trained with various combinations of real and synthetic data. Results demonstrated that using synthetic data can improve model performance, particularly with DeepLabv3+ achieving a micro-imagewise IoU of 0.7751.
85
 
86
+ ## Citation
87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  ```
89
+ @inproceedings{machacek2023mask,
90
+ title={Mask-conditioned latent diffusion for generating gastrointestinal polyp images},
91
+ author={Macháček, Roman and Mozaffari, Leila and Sepasdar, Zahra and Parasa, Sravanthi and Halvorsen, Pål and Riegler, Michael A and Thambawita, Vajira},
92
+ booktitle={Proceedings of the 4th Workshop on Intelligent Cross-Data Analysis and Retrieval (ICDAR '23)},
93
+ year={2023},
94
+ doi={10.1145/3592571.3592978}
 
 
 
 
 
 
 
 
 
95
  }
96
  ```
97
 
98
+ ## License
99
+
100
+ Apache License 2.0
101
+
102
+ ## Dataset URL
103
 
104
+ - Dataset: [https://huggingface.co/datasets/deepsynthbody/conditional-polyp-diffusion](https://huggingface.co/datasets/deepsynthbody/conditional-polyp-diffusion)
105
+ - Code: [https://github.com/simulamet-host/conditional-polyp-diffusion](https://github.com/simulamet-host/conditional-polyp-diffusion)