Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
edadaltocg commited on
Commit
d41459b
·
1 Parent(s): 9ba2b96

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +25 -31
README.md CHANGED
@@ -5,24 +5,9 @@ task_categories:
5
  - image-classification
6
  paperswithcode_id: isun
7
  pretty_name: iSUN
8
- configs:
9
- - config_name: default
10
- data_files:
11
- - split: train
12
- path: data/train-*
13
- dataset_info:
14
- features:
15
- - name: image
16
- dtype: image
17
- splits:
18
- - name: train
19
- num_bytes: 24514257.375
20
- num_examples: 8925
21
- download_size: 0
22
- dataset_size: 24514257.375
23
  ---
24
 
25
- # Dataset Card for iSUN
26
 
27
  <!-- Provide a quick summary of the dataset. -->
28
 
@@ -36,7 +21,8 @@ dataset_info:
36
 
37
 
38
 
39
- - **Authors:** Junting Pan, Xavier Giró-i-Nieto
 
40
  - **Shared by:** Eduardo Dadalto
41
  - **License:** unknown
42
 
@@ -44,7 +30,7 @@ dataset_info:
44
 
45
  <!-- Provide the basic links for the dataset. -->
46
 
47
- - **Paper:** http://arxiv.org/abs/1507.01422v1
48
 
49
 
50
  ### Direct Use
@@ -64,7 +50,7 @@ This dataset is not annotated.
64
 
65
  <!-- Motivation for the creation of this dataset. -->
66
 
67
- The objective in curating and uploading this dataset to HuggingFace is to accelerate research on generalized Out-of-Distribution (OOD) detection.
68
 
69
  ### Personal and Sensitive Information
70
 
@@ -86,22 +72,30 @@ Please check original paper for details on the dataset.
86
  **BibTeX:**
87
 
88
  ```bibtex
89
- @article{1507.01422v1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  Author = {Junting Pan and Xavier Giró-i-Nieto},
91
  Title = {End-to-end Convolutional Network for Saliency Prediction},
92
  Eprint = {http://arxiv.org/abs/1507.01422v1},
93
  ArchivePrefix = {arXiv},
94
- PrimaryClass = {cs.CV},
95
- Abstract = {The prediction of saliency areas in images has been traditionally addressed
96
- with hand crafted features based on neuroscience principles. This paper however
97
- addresses the problem with a completely data-driven approach by training a
98
- convolutional network. The learning process is formulated as a minimization of
99
- a loss function that measures the Euclidean distance of the predicted saliency
100
- map with the provided ground truth. The recent publication of large datasets of
101
- saliency prediction has provided enough data to train a not very deep
102
- architecture which is both fast and accurate. The convolutional network in this
103
- paper, named JuntingNet, won the LSUN 2015 challenge on saliency prediction
104
- with a superior performance in all considered metrics.},
105
  Year = {2015},
106
  Month = {7},
107
  Note = {Winner of the saliency prediction challenge in the Large-scale Scene
 
5
  - image-classification
6
  paperswithcode_id: isun
7
  pretty_name: iSUN
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
+ # Dataset Card for iSUN for OOD Detection
11
 
12
  <!-- Provide a quick summary of the dataset. -->
13
 
 
21
 
22
 
23
 
24
+ - **Original Dataset Authors**: Junting Pan, Xavier Giró-i-Nieto
25
+ - **Authors:** Shiyu Liang, Yixuan Li, R. Srikant
26
  - **Shared by:** Eduardo Dadalto
27
  - **License:** unknown
28
 
 
30
 
31
  <!-- Provide the basic links for the dataset. -->
32
 
33
+ - **Paper:** http://arxiv.org/abs/1706.02690v5
34
 
35
 
36
  ### Direct Use
 
50
 
51
  <!-- Motivation for the creation of this dataset. -->
52
 
53
+ The goal in curating and sharing this dataset to the HuggingFace Hub is to accelerate research and promote reproducibility in generalized Out-of-Distribution (OOD) detection.
54
 
55
  ### Personal and Sensitive Information
56
 
 
72
  **BibTeX:**
73
 
74
  ```bibtex
75
+
76
+ @software{detectors2023,
77
+ author = {Dadalto, Eduardo},
78
+ title = {Detectors: a Python Library for Generalized Out-Of-Distribution Detection},
79
+ url = {https://github.com/edadaltocg/detectors},
80
+ doi = {https://doi.org/10.5281/zenodo.7883596},
81
+ month = {5},
82
+ year = {2023}
83
+ }
84
+ @article{1706.02690v5,
85
+ Author = {Shiyu Liang and Yixuan Li and R. Srikant},
86
+ Title = {Enhancing The Reliability of Out-of-distribution Image Detection in
87
+ Neural Networks},
88
+ Eprint = {http://arxiv.org/abs/1706.02690v5},
89
+ ArchivePrefix = {arXiv},
90
+ Year = {2017},
91
+ Month = {6},
92
+ Note = {ICLR 2018},
93
+ Url = {http://arxiv.org/abs/1706.02690v5}
94
+ }@article{1507.01422v1,
95
  Author = {Junting Pan and Xavier Giró-i-Nieto},
96
  Title = {End-to-end Convolutional Network for Saliency Prediction},
97
  Eprint = {http://arxiv.org/abs/1507.01422v1},
98
  ArchivePrefix = {arXiv},
 
 
 
 
 
 
 
 
 
 
 
99
  Year = {2015},
100
  Month = {7},
101
  Note = {Winner of the saliency prediction challenge in the Large-scale Scene