| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import inspect | 
					
					
						
						| 
							 | 
						from collections.abc import Callable | 
					
					
						
						| 
							 | 
						from typing import Any, List, Optional, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import PIL | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						from transformers import ( | 
					
					
						
						| 
							 | 
						    CLIPTextModel, | 
					
					
						
						| 
							 | 
						    CLIPTextModelWithProjection, | 
					
					
						
						| 
							 | 
						    CLIPTokenizer, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from diffusers import DiffusionPipeline | 
					
					
						
						| 
							 | 
						from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | 
					
					
						
						| 
							 | 
						from diffusers.loaders import ( | 
					
					
						
						| 
							 | 
						    FromSingleFileMixin, | 
					
					
						
						| 
							 | 
						    LoraLoaderMixin, | 
					
					
						
						| 
							 | 
						    StableDiffusionXLLoraLoaderMixin, | 
					
					
						
						| 
							 | 
						    TextualInversionLoaderMixin, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from diffusers.models import ( | 
					
					
						
						| 
							 | 
						    AutoencoderKL, | 
					
					
						
						| 
							 | 
						    ControlNetModel, | 
					
					
						
						| 
							 | 
						    MultiAdapter, | 
					
					
						
						| 
							 | 
						    T2IAdapter, | 
					
					
						
						| 
							 | 
						    UNet2DConditionModel, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from diffusers.models.attention_processor import ( | 
					
					
						
						| 
							 | 
						    AttnProcessor2_0, | 
					
					
						
						| 
							 | 
						    LoRAAttnProcessor2_0, | 
					
					
						
						| 
							 | 
						    LoRAXFormersAttnProcessor, | 
					
					
						
						| 
							 | 
						    XFormersAttnProcessor, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from diffusers.models.lora import adjust_lora_scale_text_encoder | 
					
					
						
						| 
							 | 
						from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | 
					
					
						
						| 
							 | 
						from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | 
					
					
						
						| 
							 | 
						from diffusers.schedulers import KarrasDiffusionSchedulers | 
					
					
						
						| 
							 | 
						from diffusers.utils import ( | 
					
					
						
						| 
							 | 
						    PIL_INTERPOLATION, | 
					
					
						
						| 
							 | 
						    USE_PEFT_BACKEND, | 
					
					
						
						| 
							 | 
						    logging, | 
					
					
						
						| 
							 | 
						    replace_example_docstring, | 
					
					
						
						| 
							 | 
						    scale_lora_layers, | 
					
					
						
						| 
							 | 
						    unscale_lora_layers, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from diffusers.utils.torch_utils import is_compiled_module, randn_tensor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						EXAMPLE_DOC_STRING = """ | 
					
					
						
						| 
							 | 
						    Examples: | 
					
					
						
						| 
							 | 
						        ```py | 
					
					
						
						| 
							 | 
						        >>> import torch | 
					
					
						
						| 
							 | 
						        >>> from diffusers import DiffusionPipeline, T2IAdapter | 
					
					
						
						| 
							 | 
						        >>> from diffusers.utils import load_image | 
					
					
						
						| 
							 | 
						        >>> from PIL import Image | 
					
					
						
						| 
							 | 
						        >>> from controlnet_aux.midas import MidasDetector | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> adapter = T2IAdapter.from_pretrained( | 
					
					
						
						| 
							 | 
						        ...     "TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" | 
					
					
						
						| 
							 | 
						        ... ).to("cuda") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> controlnet = ControlNetModel.from_pretrained( | 
					
					
						
						| 
							 | 
						        ...    "diffusers/controlnet-depth-sdxl-1.0", | 
					
					
						
						| 
							 | 
						        ...    torch_dtype=torch.float16, | 
					
					
						
						| 
							 | 
						        ...    variant="fp16", | 
					
					
						
						| 
							 | 
						        ...    use_safetensors=True | 
					
					
						
						| 
							 | 
						        ... ).to("cuda") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> pipe = DiffusionPipeline.from_pretrained( | 
					
					
						
						| 
							 | 
						        ...     "diffusers/stable-diffusion-xl-1.0-inpainting-0.1", | 
					
					
						
						| 
							 | 
						        ...     torch_dtype=torch.float16, | 
					
					
						
						| 
							 | 
						        ...     variant="fp16", | 
					
					
						
						| 
							 | 
						        ...     use_safetensors=True, | 
					
					
						
						| 
							 | 
						        ...     custom_pipeline="stable_diffusion_xl_adapter_controlnet_inpaint", | 
					
					
						
						| 
							 | 
						        ...     adapter=adapter, | 
					
					
						
						| 
							 | 
						        ...     controlnet=controlnet, | 
					
					
						
						| 
							 | 
						        ... ).to("cuda") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> prompt = "a tiger sitting on a park bench" | 
					
					
						
						| 
							 | 
						        >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" | 
					
					
						
						| 
							 | 
						        >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> image = load_image(img_url).resize((1024, 1024)) | 
					
					
						
						| 
							 | 
						        >>> mask_image = load_image(mask_url).resize((1024, 1024)) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> midas_depth = MidasDetector.from_pretrained( | 
					
					
						
						| 
							 | 
						        ...    "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large" | 
					
					
						
						| 
							 | 
						        ... ).to("cuda") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> depth_image = midas_depth( | 
					
					
						
						| 
							 | 
						        ...    image, detect_resolution=512, image_resolution=1024 | 
					
					
						
						| 
							 | 
						        ... ) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> strength = 0.4 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> generator = torch.manual_seed(42) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> result_image = pipe( | 
					
					
						
						| 
							 | 
						        ...     image=image, | 
					
					
						
						| 
							 | 
						        ...     mask_image=mask, | 
					
					
						
						| 
							 | 
						        ...     adapter_image=depth_image, | 
					
					
						
						| 
							 | 
						        ...     control_image=depth_image, | 
					
					
						
						| 
							 | 
						        ...     controlnet_conditioning_scale=strength, | 
					
					
						
						| 
							 | 
						        ...     adapter_conditioning_scale=strength, | 
					
					
						
						| 
							 | 
						        ...     strength=0.7, | 
					
					
						
						| 
							 | 
						        ...     generator=generator, | 
					
					
						
						| 
							 | 
						        ...     prompt=prompt, | 
					
					
						
						| 
							 | 
						        ...     negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality", | 
					
					
						
						| 
							 | 
						        ...        num_inference_steps=50 | 
					
					
						
						| 
							 | 
						        ... ).images[0] | 
					
					
						
						| 
							 | 
						        ``` | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _preprocess_adapter_image(image, height, width): | 
					
					
						
						| 
							 | 
						    if isinstance(image, torch.Tensor): | 
					
					
						
						| 
							 | 
						        return image | 
					
					
						
						| 
							 | 
						    elif isinstance(image, PIL.Image.Image): | 
					
					
						
						| 
							 | 
						        image = [image] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if isinstance(image[0], PIL.Image.Image): | 
					
					
						
						| 
							 | 
						        image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])) for i in image] | 
					
					
						
						| 
							 | 
						        image = [ | 
					
					
						
						| 
							 | 
						            i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image | 
					
					
						
						| 
							 | 
						        ]   | 
					
					
						
						| 
							 | 
						        image = np.concatenate(image, axis=0) | 
					
					
						
						| 
							 | 
						        image = np.array(image).astype(np.float32) / 255.0 | 
					
					
						
						| 
							 | 
						        image = image.transpose(0, 3, 1, 2) | 
					
					
						
						| 
							 | 
						        image = torch.from_numpy(image) | 
					
					
						
						| 
							 | 
						    elif isinstance(image[0], torch.Tensor): | 
					
					
						
						| 
							 | 
						        if image[0].ndim == 3: | 
					
					
						
						| 
							 | 
						            image = torch.stack(image, dim=0) | 
					
					
						
						| 
							 | 
						        elif image[0].ndim == 4: | 
					
					
						
						| 
							 | 
						            image = torch.cat(image, dim=0) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						    return image | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def mask_pil_to_torch(mask, height, width): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if isinstance(mask, Union[PIL.Image.Image, np.ndarray]): | 
					
					
						
						| 
							 | 
						        mask = [mask] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): | 
					
					
						
						| 
							 | 
						        mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] | 
					
					
						
						| 
							 | 
						        mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) | 
					
					
						
						| 
							 | 
						        mask = mask.astype(np.float32) / 255.0 | 
					
					
						
						| 
							 | 
						    elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): | 
					
					
						
						| 
							 | 
						        mask = np.concatenate([m[None, None, :] for m in mask], axis=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    mask = torch.from_numpy(mask) | 
					
					
						
						| 
							 | 
						    return mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be | 
					
					
						
						| 
							 | 
						    converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the | 
					
					
						
						| 
							 | 
						    ``image`` and ``1`` for the ``mask``. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be | 
					
					
						
						| 
							 | 
						    binarized (``mask > 0.5``) and cast to ``torch.float32`` too. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. | 
					
					
						
						| 
							 | 
						            It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` | 
					
					
						
						| 
							 | 
						            ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. | 
					
					
						
						| 
							 | 
						        mask (_type_): The mask to apply to the image, i.e. regions to inpaint. | 
					
					
						
						| 
							 | 
						            It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` | 
					
					
						
						| 
							 | 
						            ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Raises: | 
					
					
						
						| 
							 | 
						        ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask | 
					
					
						
						| 
							 | 
						        should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. | 
					
					
						
						| 
							 | 
						        TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not | 
					
					
						
						| 
							 | 
						            (ot the other way around). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4 | 
					
					
						
						| 
							 | 
						            dimensions: ``batch x channels x height x width``. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if image is None: | 
					
					
						
						| 
							 | 
						        raise ValueError("`image` input cannot be undefined.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if mask is None: | 
					
					
						
						| 
							 | 
						        raise ValueError("`mask_image` input cannot be undefined.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if isinstance(image, torch.Tensor): | 
					
					
						
						| 
							 | 
						        if not isinstance(mask, torch.Tensor): | 
					
					
						
						| 
							 | 
						            mask = mask_pil_to_torch(mask, height, width) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if image.ndim == 3: | 
					
					
						
						| 
							 | 
						            image = image.unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if mask.ndim == 2: | 
					
					
						
						| 
							 | 
						            mask = mask.unsqueeze(0).unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if mask.ndim == 3: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if mask.shape[0] == 1: | 
					
					
						
						| 
							 | 
						                mask = mask.unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                mask = mask.unsqueeze(1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if mask.min() < 0 or mask.max() > 1: | 
					
					
						
						| 
							 | 
						            raise ValueError("Mask should be in [0, 1] range") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        mask[mask < 0.5] = 0 | 
					
					
						
						| 
							 | 
						        mask[mask >= 0.5] = 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        image = image.to(dtype=torch.float32) | 
					
					
						
						| 
							 | 
						    elif isinstance(mask, torch.Tensor): | 
					
					
						
						| 
							 | 
						        raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if isinstance(image, Union[PIL.Image.Image, np.ndarray]): | 
					
					
						
						| 
							 | 
						            image = [image] | 
					
					
						
						| 
							 | 
						        if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image] | 
					
					
						
						| 
							 | 
						            image = [np.array(i.convert("RGB"))[None, :] for i in image] | 
					
					
						
						| 
							 | 
						            image = np.concatenate(image, axis=0) | 
					
					
						
						| 
							 | 
						        elif isinstance(image, list) and isinstance(image[0], np.ndarray): | 
					
					
						
						| 
							 | 
						            image = np.concatenate([i[None, :] for i in image], axis=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image = image.transpose(0, 3, 1, 2) | 
					
					
						
						| 
							 | 
						        image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        mask = mask_pil_to_torch(mask, height, width) | 
					
					
						
						| 
							 | 
						        mask[mask < 0.5] = 0 | 
					
					
						
						| 
							 | 
						        mask[mask >= 0.5] = 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if image.shape[1] == 4: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        masked_image = None | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        masked_image = image * (mask < 0.5) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if return_image: | 
					
					
						
						| 
							 | 
						        return mask, masked_image, image | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return mask, masked_image | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | 
					
					
						
						| 
							 | 
						    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | 
					
					
						
						| 
							 | 
						    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | 
					
					
						
						| 
							 | 
						    return noise_cfg | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class StableDiffusionXLControlNetAdapterInpaintPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter | 
					
					
						
						| 
							 | 
						    https://arxiv.org/abs/2302.08453 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
					
						
						| 
							 | 
						    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        adapter ([`T2IAdapter`] or [`MultiAdapter`] or `List[T2IAdapter]`): | 
					
					
						
						| 
							 | 
						            Provides additional conditioning to the unet during the denoising process. If you set multiple Adapter as a | 
					
					
						
						| 
							 | 
						            list, the outputs from each Adapter are added together to create one combined additional conditioning. | 
					
					
						
						| 
							 | 
						        adapter_weights (`List[float]`, *optional*, defaults to None): | 
					
					
						
						| 
							 | 
						            List of floats representing the weight which will be multiply to each adapter's output before adding them | 
					
					
						
						| 
							 | 
						            together. | 
					
					
						
						| 
							 | 
						        vae ([`AutoencoderKL`]): | 
					
					
						
						| 
							 | 
						            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
					
						
						| 
							 | 
						        text_encoder ([`CLIPTextModel`]): | 
					
					
						
						| 
							 | 
						            Frozen text-encoder. Stable Diffusion uses the text portion of | 
					
					
						
						| 
							 | 
						            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | 
					
					
						
						| 
							 | 
						            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | 
					
					
						
						| 
							 | 
						        tokenizer (`CLIPTokenizer`): | 
					
					
						
						| 
							 | 
						            Tokenizer of class | 
					
					
						
						| 
							 | 
						            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
					
						
						| 
							 | 
						        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | 
					
					
						
						| 
							 | 
						        scheduler ([`SchedulerMixin`]): | 
					
					
						
						| 
							 | 
						            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
					
						
						| 
							 | 
						            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
					
						
						| 
							 | 
						        safety_checker ([`StableDiffusionSafetyChecker`]): | 
					
					
						
						| 
							 | 
						            Classification module that estimates whether generated images could be considered offensive or harmful. | 
					
					
						
						| 
							 | 
						            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | 
					
					
						
						| 
							 | 
						        feature_extractor ([`CLIPFeatureExtractor`]): | 
					
					
						
						| 
							 | 
						            Model that extracts features from generated images to be used as inputs for the `safety_checker`. | 
					
					
						
						| 
							 | 
						        requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`): | 
					
					
						
						| 
							 | 
						            Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config | 
					
					
						
						| 
							 | 
						            of `stabilityai/stable-diffusion-xl-refiner-1-0`. | 
					
					
						
						| 
							 | 
						        force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): | 
					
					
						
						| 
							 | 
						            Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of | 
					
					
						
						| 
							 | 
						            `stabilityai/stable-diffusion-xl-base-1-0`. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vae: AutoencoderKL, | 
					
					
						
						| 
							 | 
						        text_encoder: CLIPTextModel, | 
					
					
						
						| 
							 | 
						        text_encoder_2: CLIPTextModelWithProjection, | 
					
					
						
						| 
							 | 
						        tokenizer: CLIPTokenizer, | 
					
					
						
						| 
							 | 
						        tokenizer_2: CLIPTokenizer, | 
					
					
						
						| 
							 | 
						        unet: UNet2DConditionModel, | 
					
					
						
						| 
							 | 
						        adapter: Union[T2IAdapter, MultiAdapter], | 
					
					
						
						| 
							 | 
						        controlnet: Union[ControlNetModel, MultiControlNetModel], | 
					
					
						
						| 
							 | 
						        scheduler: KarrasDiffusionSchedulers, | 
					
					
						
						| 
							 | 
						        requires_aesthetics_score: bool = False, | 
					
					
						
						| 
							 | 
						        force_zeros_for_empty_prompt: bool = True, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if isinstance(controlnet, (list, tuple)): | 
					
					
						
						| 
							 | 
						            controlnet = MultiControlNetModel(controlnet) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.register_modules( | 
					
					
						
						| 
							 | 
						            vae=vae, | 
					
					
						
						| 
							 | 
						            text_encoder=text_encoder, | 
					
					
						
						| 
							 | 
						            text_encoder_2=text_encoder_2, | 
					
					
						
						| 
							 | 
						            tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						            tokenizer_2=tokenizer_2, | 
					
					
						
						| 
							 | 
						            unet=unet, | 
					
					
						
						| 
							 | 
						            adapter=adapter, | 
					
					
						
						| 
							 | 
						            controlnet=controlnet, | 
					
					
						
						| 
							 | 
						            scheduler=scheduler, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | 
					
					
						
						| 
							 | 
						        self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) | 
					
					
						
						| 
							 | 
						        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
					
						
						| 
							 | 
						        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
					
						
						| 
							 | 
						        self.control_image_processor = VaeImageProcessor( | 
					
					
						
						| 
							 | 
						            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.default_sample_size = self.unet.config.sample_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def enable_vae_slicing(self): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | 
					
					
						
						| 
							 | 
						        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        self.vae.enable_slicing() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def disable_vae_slicing(self): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | 
					
					
						
						| 
							 | 
						        computing decoding in one step. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        self.vae.disable_slicing() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def enable_vae_tiling(self): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | 
					
					
						
						| 
							 | 
						        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | 
					
					
						
						| 
							 | 
						        processing larger images. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        self.vae.enable_tiling() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def disable_vae_tiling(self): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | 
					
					
						
						| 
							 | 
						        computing decoding in one step. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        self.vae.disable_tiling() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def encode_prompt( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt: str, | 
					
					
						
						| 
							 | 
						        prompt_2: Optional[str] = None, | 
					
					
						
						| 
							 | 
						        device: Optional[torch.device] = None, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt: int = 1, | 
					
					
						
						| 
							 | 
						        do_classifier_free_guidance: bool = True, | 
					
					
						
						| 
							 | 
						        negative_prompt: Optional[str] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_2: Optional[str] = None, | 
					
					
						
						| 
							 | 
						        prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        lora_scale: Optional[float] = None, | 
					
					
						
						| 
							 | 
						        clip_skip: Optional[int] = None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Encodes the prompt into text encoder hidden states. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                prompt to be encoded | 
					
					
						
						| 
							 | 
						            prompt_2 (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
					
						
						| 
							 | 
						                used in both text-encoders | 
					
					
						
						| 
							 | 
						            device: (`torch.device`): | 
					
					
						
						| 
							 | 
						                torch device | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`): | 
					
					
						
						| 
							 | 
						                number of images that should be generated per prompt | 
					
					
						
						| 
							 | 
						            do_classifier_free_guidance (`bool`): | 
					
					
						
						| 
							 | 
						                whether to use classifier free guidance or not | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
					
						
						| 
							 | 
						                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
					
						
						| 
							 | 
						                less than `1`). | 
					
					
						
						| 
							 | 
						            negative_prompt_2 (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | 
					
					
						
						| 
							 | 
						                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | 
					
					
						
						| 
							 | 
						            prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
					
						
						| 
							 | 
						                provided, text embeddings will be generated from `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
					
						
						| 
							 | 
						                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
					
						
						| 
							 | 
						                argument. | 
					
					
						
						| 
							 | 
						            pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
					
						
						| 
							 | 
						                If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
					
						
						| 
							 | 
						                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | 
					
					
						
						| 
							 | 
						                input argument. | 
					
					
						
						| 
							 | 
						            lora_scale (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
					
						
						| 
							 | 
						            clip_skip (`int`, *optional*): | 
					
					
						
						| 
							 | 
						                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
					
						
						| 
							 | 
						                the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        device = device or self._execution_device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): | 
					
					
						
						| 
							 | 
						            self._lora_scale = lora_scale | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if self.text_encoder is not None: | 
					
					
						
						| 
							 | 
						                if not USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						                    adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    scale_lora_layers(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.text_encoder_2 is not None: | 
					
					
						
						| 
							 | 
						                if not USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						                    adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    scale_lora_layers(self.text_encoder_2, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        prompt = [prompt] if isinstance(prompt, str) else prompt | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt is not None: | 
					
					
						
						| 
							 | 
						            batch_size = len(prompt) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = prompt_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | 
					
					
						
						| 
							 | 
						        text_encoders = ( | 
					
					
						
						| 
							 | 
						            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            prompt_2 = prompt_2 or prompt | 
					
					
						
						| 
							 | 
						            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            prompt_embeds_list = [] | 
					
					
						
						| 
							 | 
						            prompts = [prompt, prompt_2] | 
					
					
						
						| 
							 | 
						            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | 
					
					
						
						| 
							 | 
						                if isinstance(self, TextualInversionLoaderMixin): | 
					
					
						
						| 
							 | 
						                    prompt = self.maybe_convert_prompt(prompt, tokenizer) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                text_inputs = tokenizer( | 
					
					
						
						| 
							 | 
						                    prompt, | 
					
					
						
						| 
							 | 
						                    padding="max_length", | 
					
					
						
						| 
							 | 
						                    max_length=tokenizer.model_max_length, | 
					
					
						
						| 
							 | 
						                    truncation=True, | 
					
					
						
						| 
							 | 
						                    return_tensors="pt", | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                text_input_ids = text_inputs.input_ids | 
					
					
						
						| 
							 | 
						                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
					
						
						| 
							 | 
						                    text_input_ids, untruncated_ids | 
					
					
						
						| 
							 | 
						                ): | 
					
					
						
						| 
							 | 
						                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | 
					
					
						
						| 
							 | 
						                    logger.warning( | 
					
					
						
						| 
							 | 
						                        "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
					
						
						| 
							 | 
						                        f" {tokenizer.model_max_length} tokens: {removed_text}" | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                pooled_prompt_embeds = prompt_embeds[0] | 
					
					
						
						| 
							 | 
						                if clip_skip is None: | 
					
					
						
						| 
							 | 
						                    prompt_embeds = prompt_embeds.hidden_states[-2] | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                prompt_embeds_list.append(prompt_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = torch.zeros_like(prompt_embeds) | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | 
					
					
						
						| 
							 | 
						        elif do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            negative_prompt = negative_prompt or "" | 
					
					
						
						| 
							 | 
						            negative_prompt_2 = negative_prompt_2 or negative_prompt | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | 
					
					
						
						| 
							 | 
						            negative_prompt_2 = ( | 
					
					
						
						| 
							 | 
						                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            uncond_tokens: List[str] | 
					
					
						
						| 
							 | 
						            if prompt is not None and type(prompt) is not type(negative_prompt): | 
					
					
						
						| 
							 | 
						                raise TypeError( | 
					
					
						
						| 
							 | 
						                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
					
						
						| 
							 | 
						                    f" {type(prompt)}." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            elif batch_size != len(negative_prompt): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
					
						
						| 
							 | 
						                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
					
						
						| 
							 | 
						                    " the batch size of `prompt`." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                uncond_tokens = [negative_prompt, negative_prompt_2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds_list = [] | 
					
					
						
						| 
							 | 
						            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | 
					
					
						
						| 
							 | 
						                if isinstance(self, TextualInversionLoaderMixin): | 
					
					
						
						| 
							 | 
						                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                max_length = prompt_embeds.shape[1] | 
					
					
						
						| 
							 | 
						                uncond_input = tokenizer( | 
					
					
						
						| 
							 | 
						                    negative_prompt, | 
					
					
						
						| 
							 | 
						                    padding="max_length", | 
					
					
						
						| 
							 | 
						                    max_length=max_length, | 
					
					
						
						| 
							 | 
						                    truncation=True, | 
					
					
						
						| 
							 | 
						                    return_tensors="pt", | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                negative_prompt_embeds = text_encoder( | 
					
					
						
						| 
							 | 
						                    uncond_input.input_ids.to(device), | 
					
					
						
						| 
							 | 
						                    output_hidden_states=True, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                negative_pooled_prompt_embeds = negative_prompt_embeds[0] | 
					
					
						
						| 
							 | 
						                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                negative_prompt_embeds_list.append(negative_prompt_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.text_encoder_2 is not None: | 
					
					
						
						| 
							 | 
						            prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bs_embed, seq_len, _ = prompt_embeds.shape | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            seq_len = negative_prompt_embeds.shape[1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.text_encoder_2 is not None: | 
					
					
						
						| 
							 | 
						                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | 
					
					
						
						| 
							 | 
						            bs_embed * num_images_per_prompt, -1 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | 
					
					
						
						| 
							 | 
						                bs_embed * num_images_per_prompt, -1 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.text_encoder is not None: | 
					
					
						
						| 
							 | 
						            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                unscale_lora_layers(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.text_encoder_2 is not None: | 
					
					
						
						| 
							 | 
						            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                unscale_lora_layers(self.text_encoder_2, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def prepare_extra_step_kwargs(self, generator, eta): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
					
						
						| 
							 | 
						        extra_step_kwargs = {} | 
					
					
						
						| 
							 | 
						        if accepts_eta: | 
					
					
						
						| 
							 | 
						            extra_step_kwargs["eta"] = eta | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
					
						
						| 
							 | 
						        if accepts_generator: | 
					
					
						
						| 
							 | 
						            extra_step_kwargs["generator"] = generator | 
					
					
						
						| 
							 | 
						        return extra_step_kwargs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def check_image(self, image, prompt, prompt_embeds): | 
					
					
						
						| 
							 | 
						        image_is_pil = isinstance(image, PIL.Image.Image) | 
					
					
						
						| 
							 | 
						        image_is_tensor = isinstance(image, torch.Tensor) | 
					
					
						
						| 
							 | 
						        image_is_np = isinstance(image, np.ndarray) | 
					
					
						
						| 
							 | 
						        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | 
					
					
						
						| 
							 | 
						        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | 
					
					
						
						| 
							 | 
						        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            not image_is_pil | 
					
					
						
						| 
							 | 
						            and not image_is_tensor | 
					
					
						
						| 
							 | 
						            and not image_is_np | 
					
					
						
						| 
							 | 
						            and not image_is_pil_list | 
					
					
						
						| 
							 | 
						            and not image_is_tensor_list | 
					
					
						
						| 
							 | 
						            and not image_is_np_list | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise TypeError( | 
					
					
						
						| 
							 | 
						                f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if image_is_pil: | 
					
					
						
						| 
							 | 
						            image_batch_size = 1 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            image_batch_size = len(image) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt is not None and isinstance(prompt, str): | 
					
					
						
						| 
							 | 
						            prompt_batch_size = 1 | 
					
					
						
						| 
							 | 
						        elif prompt is not None and isinstance(prompt, list): | 
					
					
						
						| 
							 | 
						            prompt_batch_size = len(prompt) | 
					
					
						
						| 
							 | 
						        elif prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            prompt_batch_size = prompt_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if image_batch_size != 1 and image_batch_size != prompt_batch_size: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def check_inputs( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt, | 
					
					
						
						| 
							 | 
						        prompt_2, | 
					
					
						
						| 
							 | 
						        height, | 
					
					
						
						| 
							 | 
						        width, | 
					
					
						
						| 
							 | 
						        callback_steps, | 
					
					
						
						| 
							 | 
						        negative_prompt=None, | 
					
					
						
						| 
							 | 
						        negative_prompt_2=None, | 
					
					
						
						| 
							 | 
						        prompt_embeds=None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds=None, | 
					
					
						
						| 
							 | 
						        pooled_prompt_embeds=None, | 
					
					
						
						| 
							 | 
						        negative_pooled_prompt_embeds=None, | 
					
					
						
						| 
							 | 
						        callback_on_step_end_tensor_inputs=None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if height % 8 != 0 or width % 8 != 0: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
					
						
						| 
							 | 
						                f" {type(callback_steps)}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if callback_on_step_end_tensor_inputs is not None and not all( | 
					
					
						
						| 
							 | 
						            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt is not None and prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
					
						
						| 
							 | 
						                " only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif prompt_2 is not None and prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
					
						
						| 
							 | 
						                " only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif prompt is None and prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
					
						
						| 
							 | 
						        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
					
						
						| 
							 | 
						                f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | 
					
					
						
						| 
							 | 
						                f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
					
						
						| 
							 | 
						                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
					
						
						| 
							 | 
						                    f" {negative_prompt_embeds.shape}." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt_embeds is not None and pooled_prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def check_conditions( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt, | 
					
					
						
						| 
							 | 
						        prompt_embeds, | 
					
					
						
						| 
							 | 
						        adapter_image, | 
					
					
						
						| 
							 | 
						        control_image, | 
					
					
						
						| 
							 | 
						        adapter_conditioning_scale, | 
					
					
						
						| 
							 | 
						        controlnet_conditioning_scale, | 
					
					
						
						| 
							 | 
						        control_guidance_start, | 
					
					
						
						| 
							 | 
						        control_guidance_end, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if not isinstance(control_guidance_start, (tuple, list)): | 
					
					
						
						| 
							 | 
						            control_guidance_start = [control_guidance_start] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not isinstance(control_guidance_end, (tuple, list)): | 
					
					
						
						| 
							 | 
						            control_guidance_end = [control_guidance_end] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if len(control_guidance_start) != len(control_guidance_end): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if isinstance(self.controlnet, MultiControlNetModel): | 
					
					
						
						| 
							 | 
						            if len(control_guidance_start) != len(self.controlnet.nets): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for start, end in zip(control_guidance_start, control_guidance_end): | 
					
					
						
						| 
							 | 
						            if start >= end: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            if start < 0.0: | 
					
					
						
						| 
							 | 
						                raise ValueError(f"control guidance start: {start} can't be smaller than 0.") | 
					
					
						
						| 
							 | 
						            if end > 1.0: | 
					
					
						
						| 
							 | 
						                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | 
					
					
						
						| 
							 | 
						            self.controlnet, torch._dynamo.eval_frame.OptimizedModule | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            isinstance(self.controlnet, ControlNetModel) | 
					
					
						
						| 
							 | 
						            or is_compiled | 
					
					
						
						| 
							 | 
						            and isinstance(self.controlnet._orig_mod, ControlNetModel) | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            self.check_image(control_image, prompt, prompt_embeds) | 
					
					
						
						| 
							 | 
						        elif ( | 
					
					
						
						| 
							 | 
						            isinstance(self.controlnet, MultiControlNetModel) | 
					
					
						
						| 
							 | 
						            or is_compiled | 
					
					
						
						| 
							 | 
						            and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            if not isinstance(control_image, list): | 
					
					
						
						| 
							 | 
						                raise TypeError("For multiple controlnets: `control_image` must be type `list`") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            elif any(isinstance(i, list) for i in control_image): | 
					
					
						
						| 
							 | 
						                raise ValueError("A single batch of multiple conditionings are supported at the moment.") | 
					
					
						
						| 
							 | 
						            elif len(control_image) != len(self.controlnet.nets): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(control_image)} images and {len(self.controlnet.nets)} ControlNets." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            for image_ in control_image: | 
					
					
						
						| 
							 | 
						                self.check_image(image_, prompt, prompt_embeds) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            assert False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            isinstance(self.controlnet, ControlNetModel) | 
					
					
						
						| 
							 | 
						            or is_compiled | 
					
					
						
						| 
							 | 
						            and isinstance(self.controlnet._orig_mod, ControlNetModel) | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            if not isinstance(controlnet_conditioning_scale, float): | 
					
					
						
						| 
							 | 
						                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") | 
					
					
						
						| 
							 | 
						        elif ( | 
					
					
						
						| 
							 | 
						            isinstance(self.controlnet, MultiControlNetModel) | 
					
					
						
						| 
							 | 
						            or is_compiled | 
					
					
						
						| 
							 | 
						            and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            if isinstance(controlnet_conditioning_scale, list): | 
					
					
						
						| 
							 | 
						                if any(isinstance(i, list) for i in controlnet_conditioning_scale): | 
					
					
						
						| 
							 | 
						                    raise ValueError("A single batch of multiple conditionings are supported at the moment.") | 
					
					
						
						| 
							 | 
						            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( | 
					
					
						
						| 
							 | 
						                self.controlnet.nets | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" | 
					
					
						
						| 
							 | 
						                    " the same length as the number of controlnets" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            assert False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if isinstance(self.adapter, T2IAdapter) or is_compiled and isinstance(self.adapter._orig_mod, T2IAdapter): | 
					
					
						
						| 
							 | 
						            self.check_image(adapter_image, prompt, prompt_embeds) | 
					
					
						
						| 
							 | 
						        elif ( | 
					
					
						
						| 
							 | 
						            isinstance(self.adapter, MultiAdapter) or is_compiled and isinstance(self.adapter._orig_mod, MultiAdapter) | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            if not isinstance(adapter_image, list): | 
					
					
						
						| 
							 | 
						                raise TypeError("For multiple adapters: `adapter_image` must be type `list`") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            elif any(isinstance(i, list) for i in adapter_image): | 
					
					
						
						| 
							 | 
						                raise ValueError("A single batch of multiple conditionings are supported at the moment.") | 
					
					
						
						| 
							 | 
						            elif len(adapter_image) != len(self.adapter.adapters): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"For multiple adapters: `image` must have the same length as the number of adapters, but got {len(adapter_image)} images and {len(self.adapters.nets)} Adapters." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            for image_ in adapter_image: | 
					
					
						
						| 
							 | 
						                self.check_image(image_, prompt, prompt_embeds) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            assert False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if isinstance(self.adapter, T2IAdapter) or is_compiled and isinstance(self.adapter._orig_mod, T2IAdapter): | 
					
					
						
						| 
							 | 
						            if not isinstance(adapter_conditioning_scale, float): | 
					
					
						
						| 
							 | 
						                raise TypeError("For single adapter: `adapter_conditioning_scale` must be type `float`.") | 
					
					
						
						| 
							 | 
						        elif ( | 
					
					
						
						| 
							 | 
						            isinstance(self.adapter, MultiAdapter) or is_compiled and isinstance(self.adapter._orig_mod, MultiAdapter) | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            if isinstance(adapter_conditioning_scale, list): | 
					
					
						
						| 
							 | 
						                if any(isinstance(i, list) for i in adapter_conditioning_scale): | 
					
					
						
						| 
							 | 
						                    raise ValueError("A single batch of multiple conditionings are supported at the moment.") | 
					
					
						
						| 
							 | 
						            elif isinstance(adapter_conditioning_scale, list) and len(adapter_conditioning_scale) != len( | 
					
					
						
						| 
							 | 
						                self.adapter.adapters | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "For multiple adapters: When `adapter_conditioning_scale` is specified as `list`, it must have" | 
					
					
						
						| 
							 | 
						                    " the same length as the number of adapters" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            assert False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_latents( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        batch_size, | 
					
					
						
						| 
							 | 
						        num_channels_latents, | 
					
					
						
						| 
							 | 
						        height, | 
					
					
						
						| 
							 | 
						        width, | 
					
					
						
						| 
							 | 
						        dtype, | 
					
					
						
						| 
							 | 
						        device, | 
					
					
						
						| 
							 | 
						        generator, | 
					
					
						
						| 
							 | 
						        latents=None, | 
					
					
						
						| 
							 | 
						        image=None, | 
					
					
						
						| 
							 | 
						        timestep=None, | 
					
					
						
						| 
							 | 
						        is_strength_max=True, | 
					
					
						
						| 
							 | 
						        add_noise=True, | 
					
					
						
						| 
							 | 
						        return_noise=False, | 
					
					
						
						| 
							 | 
						        return_image_latents=False, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        shape = ( | 
					
					
						
						| 
							 | 
						            batch_size, | 
					
					
						
						| 
							 | 
						            num_channels_latents, | 
					
					
						
						| 
							 | 
						            height // self.vae_scale_factor, | 
					
					
						
						| 
							 | 
						            width // self.vae_scale_factor, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if isinstance(generator, list) and len(generator) != batch_size: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
					
						
						| 
							 | 
						                f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (image is None or timestep is None) and not is_strength_max: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." | 
					
					
						
						| 
							 | 
						                "However, either the image or the noise timestep has not been provided." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if image.shape[1] == 4: | 
					
					
						
						| 
							 | 
						            image_latents = image.to(device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						        elif return_image_latents or (latents is None and not is_strength_max): | 
					
					
						
						| 
							 | 
						            image = image.to(device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						            image_latents = self._encode_vae_image(image=image, generator=generator) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if latents is None and add_noise: | 
					
					
						
						| 
							 | 
						            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents | 
					
					
						
						| 
							 | 
						        elif add_noise: | 
					
					
						
						| 
							 | 
						            noise = latents.to(device) | 
					
					
						
						| 
							 | 
						            latents = noise * self.scheduler.init_noise_sigma | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						            latents = image_latents.to(device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs = (latents,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if return_noise: | 
					
					
						
						| 
							 | 
						            outputs += (noise,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if return_image_latents: | 
					
					
						
						| 
							 | 
						            outputs += (image_latents,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | 
					
					
						
						| 
							 | 
						        dtype = image.dtype | 
					
					
						
						| 
							 | 
						        if self.vae.config.force_upcast: | 
					
					
						
						| 
							 | 
						            image = image.float() | 
					
					
						
						| 
							 | 
						            self.vae.to(dtype=torch.float32) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if isinstance(generator, list): | 
					
					
						
						| 
							 | 
						            image_latents = [ | 
					
					
						
						| 
							 | 
						                self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i]) | 
					
					
						
						| 
							 | 
						                for i in range(image.shape[0]) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						            image_latents = torch.cat(image_latents, dim=0) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.vae.config.force_upcast: | 
					
					
						
						| 
							 | 
						            self.vae.to(dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image_latents = image_latents.to(dtype) | 
					
					
						
						| 
							 | 
						        image_latents = self.vae.config.scaling_factor * image_latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return image_latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_mask_latents( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        mask, | 
					
					
						
						| 
							 | 
						        masked_image, | 
					
					
						
						| 
							 | 
						        batch_size, | 
					
					
						
						| 
							 | 
						        height, | 
					
					
						
						| 
							 | 
						        width, | 
					
					
						
						| 
							 | 
						        dtype, | 
					
					
						
						| 
							 | 
						        device, | 
					
					
						
						| 
							 | 
						        generator, | 
					
					
						
						| 
							 | 
						        do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        mask = torch.nn.functional.interpolate( | 
					
					
						
						| 
							 | 
						            mask, | 
					
					
						
						| 
							 | 
						            size=( | 
					
					
						
						| 
							 | 
						                height // self.vae_scale_factor, | 
					
					
						
						| 
							 | 
						                width // self.vae_scale_factor, | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        mask = mask.to(device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if mask.shape[0] < batch_size: | 
					
					
						
						| 
							 | 
						            if not batch_size % mask.shape[0] == 0: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" | 
					
					
						
						| 
							 | 
						                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" | 
					
					
						
						| 
							 | 
						                    " of masks that you pass is divisible by the total requested batch size." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        masked_image_latents = None | 
					
					
						
						| 
							 | 
						        if masked_image is not None: | 
					
					
						
						| 
							 | 
						            masked_image = masked_image.to(device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						            masked_image_latents = self._encode_vae_image(masked_image, generator=generator) | 
					
					
						
						| 
							 | 
						            if masked_image_latents.shape[0] < batch_size: | 
					
					
						
						| 
							 | 
						                if not batch_size % masked_image_latents.shape[0] == 0: | 
					
					
						
						| 
							 | 
						                    raise ValueError( | 
					
					
						
						| 
							 | 
						                        "The passed images and the required batch size don't match. Images are supposed to be duplicated" | 
					
					
						
						| 
							 | 
						                        f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." | 
					
					
						
						| 
							 | 
						                        " Make sure the number of images that you pass is divisible by the total requested batch size." | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                masked_image_latents = masked_image_latents.repeat( | 
					
					
						
						| 
							 | 
						                    batch_size // masked_image_latents.shape[0], 1, 1, 1 | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            masked_image_latents = ( | 
					
					
						
						| 
							 | 
						                torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return mask, masked_image_latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if denoising_start is None: | 
					
					
						
						| 
							 | 
						            init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | 
					
					
						
						| 
							 | 
						            t_start = max(num_inference_steps - init_timestep, 0) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            t_start = 0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if denoising_start is not None: | 
					
					
						
						| 
							 | 
						            discrete_timestep_cutoff = int( | 
					
					
						
						| 
							 | 
						                round( | 
					
					
						
						| 
							 | 
						                    self.scheduler.config.num_train_timesteps | 
					
					
						
						| 
							 | 
						                    - (denoising_start * self.scheduler.config.num_train_timesteps) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() | 
					
					
						
						| 
							 | 
						            if self.scheduler.order == 2 and num_inference_steps % 2 == 0: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                num_inference_steps = num_inference_steps + 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            timesteps = timesteps[-num_inference_steps:] | 
					
					
						
						| 
							 | 
						            return timesteps, num_inference_steps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return timesteps, num_inference_steps - t_start | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _get_add_time_ids( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        original_size, | 
					
					
						
						| 
							 | 
						        crops_coords_top_left, | 
					
					
						
						| 
							 | 
						        target_size, | 
					
					
						
						| 
							 | 
						        aesthetic_score, | 
					
					
						
						| 
							 | 
						        negative_aesthetic_score, | 
					
					
						
						| 
							 | 
						        dtype, | 
					
					
						
						| 
							 | 
						        text_encoder_projection_dim=None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if self.config.requires_aesthetics_score: | 
					
					
						
						| 
							 | 
						            add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) | 
					
					
						
						| 
							 | 
						            add_neg_time_ids = list(original_size + crops_coords_top_left + (negative_aesthetic_score,)) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            add_time_ids = list(original_size + crops_coords_top_left + target_size) | 
					
					
						
						| 
							 | 
						            add_neg_time_ids = list(original_size + crops_coords_top_left + target_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        passed_add_embed_dim = ( | 
					
					
						
						| 
							 | 
						            self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            expected_add_embed_dim > passed_add_embed_dim | 
					
					
						
						| 
							 | 
						            and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif ( | 
					
					
						
						| 
							 | 
						            expected_add_embed_dim < passed_add_embed_dim | 
					
					
						
						| 
							 | 
						            and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif expected_add_embed_dim != passed_add_embed_dim: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | 
					
					
						
						| 
							 | 
						        add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return add_time_ids, add_neg_time_ids | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def upcast_vae(self): | 
					
					
						
						| 
							 | 
						        dtype = self.vae.dtype | 
					
					
						
						| 
							 | 
						        self.vae.to(dtype=torch.float32) | 
					
					
						
						| 
							 | 
						        use_torch_2_0_or_xformers = isinstance( | 
					
					
						
						| 
							 | 
						            self.vae.decoder.mid_block.attentions[0].processor, | 
					
					
						
						| 
							 | 
						            ( | 
					
					
						
						| 
							 | 
						                AttnProcessor2_0, | 
					
					
						
						| 
							 | 
						                XFormersAttnProcessor, | 
					
					
						
						| 
							 | 
						                LoRAXFormersAttnProcessor, | 
					
					
						
						| 
							 | 
						                LoRAAttnProcessor2_0, | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if use_torch_2_0_or_xformers: | 
					
					
						
						| 
							 | 
						            self.vae.post_quant_conv.to(dtype) | 
					
					
						
						| 
							 | 
						            self.vae.decoder.conv_in.to(dtype) | 
					
					
						
						| 
							 | 
						            self.vae.decoder.mid_block.to(dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def _default_height_width(self, height, width, image): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        while isinstance(image, list): | 
					
					
						
						| 
							 | 
						            image = image[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if height is None: | 
					
					
						
						| 
							 | 
						            if isinstance(image, PIL.Image.Image): | 
					
					
						
						| 
							 | 
						                height = image.height | 
					
					
						
						| 
							 | 
						            elif isinstance(image, torch.Tensor): | 
					
					
						
						| 
							 | 
						                height = image.shape[-2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            height = (height // self.adapter.downscale_factor) * self.adapter.downscale_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if width is None: | 
					
					
						
						| 
							 | 
						            if isinstance(image, PIL.Image.Image): | 
					
					
						
						| 
							 | 
						                width = image.width | 
					
					
						
						| 
							 | 
						            elif isinstance(image, torch.Tensor): | 
					
					
						
						| 
							 | 
						                width = image.shape[-1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            width = (width // self.adapter.downscale_factor) * self.adapter.downscale_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return height, width | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): | 
					
					
						
						| 
							 | 
						        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        The suffixes after the scaling factors represent the stages where they are being applied. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values | 
					
					
						
						| 
							 | 
						        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            s1 (`float`): | 
					
					
						
						| 
							 | 
						                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to | 
					
					
						
						| 
							 | 
						                mitigate "oversmoothing effect" in the enhanced denoising process. | 
					
					
						
						| 
							 | 
						            s2 (`float`): | 
					
					
						
						| 
							 | 
						                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to | 
					
					
						
						| 
							 | 
						                mitigate "oversmoothing effect" in the enhanced denoising process. | 
					
					
						
						| 
							 | 
						            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. | 
					
					
						
						| 
							 | 
						            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if not hasattr(self, "unet"): | 
					
					
						
						| 
							 | 
						            raise ValueError("The pipeline must have `unet` for using FreeU.") | 
					
					
						
						| 
							 | 
						        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def disable_freeu(self): | 
					
					
						
						| 
							 | 
						        """Disables the FreeU mechanism if enabled.""" | 
					
					
						
						| 
							 | 
						        self.unet.disable_freeu() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_control_image( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        image, | 
					
					
						
						| 
							 | 
						        width, | 
					
					
						
						| 
							 | 
						        height, | 
					
					
						
						| 
							 | 
						        batch_size, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt, | 
					
					
						
						| 
							 | 
						        device, | 
					
					
						
						| 
							 | 
						        dtype, | 
					
					
						
						| 
							 | 
						        do_classifier_free_guidance=False, | 
					
					
						
						| 
							 | 
						        guess_mode=False, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | 
					
					
						
						| 
							 | 
						        image_batch_size = image.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if image_batch_size == 1: | 
					
					
						
						| 
							 | 
						            repeat_by = batch_size | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            repeat_by = num_images_per_prompt | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image = image.repeat_interleave(repeat_by, dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image = image.to(device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance and not guess_mode: | 
					
					
						
						| 
							 | 
						            image = torch.cat([image] * 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return image | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
					
						
						| 
							 | 
						    def __call__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt: Optional[Union[str, list[str]]] = None, | 
					
					
						
						| 
							 | 
						        prompt_2: Optional[Union[str, list[str]]] = None, | 
					
					
						
						| 
							 | 
						        image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None, | 
					
					
						
						| 
							 | 
						        mask_image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None, | 
					
					
						
						| 
							 | 
						        adapter_image: PipelineImageInput = None, | 
					
					
						
						| 
							 | 
						        control_image: PipelineImageInput = None, | 
					
					
						
						| 
							 | 
						        height: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        width: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        strength: float = 0.9999, | 
					
					
						
						| 
							 | 
						        num_inference_steps: int = 50, | 
					
					
						
						| 
							 | 
						        denoising_start: Optional[float] = None, | 
					
					
						
						| 
							 | 
						        denoising_end: Optional[float] = None, | 
					
					
						
						| 
							 | 
						        guidance_scale: float = 5.0, | 
					
					
						
						| 
							 | 
						        negative_prompt: Optional[Union[str, list[str]]] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_2: Optional[Union[str, list[str]]] = None, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt: Optional[int] = 1, | 
					
					
						
						| 
							 | 
						        eta: float = 0.0, | 
					
					
						
						| 
							 | 
						        generator: Optional[Union[torch.Generator, list[torch.Generator]]] = None, | 
					
					
						
						| 
							 | 
						        latents: Optional[Union[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        output_type: Optional[str] = "pil", | 
					
					
						
						| 
							 | 
						        return_dict: bool = True, | 
					
					
						
						| 
							 | 
						        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | 
					
					
						
						| 
							 | 
						        callback_steps: int = 1, | 
					
					
						
						| 
							 | 
						        cross_attention_kwargs: Optional[dict[str, Any]] = None, | 
					
					
						
						| 
							 | 
						        guidance_rescale: float = 0.0, | 
					
					
						
						| 
							 | 
						        original_size: Optional[tuple[int, int]] = None, | 
					
					
						
						| 
							 | 
						        crops_coords_top_left: Optional[tuple[int, int]] = (0, 0), | 
					
					
						
						| 
							 | 
						        target_size: Optional[tuple[int, int]] = None, | 
					
					
						
						| 
							 | 
						        adapter_conditioning_scale: Optional[Union[float, list[float]]] = 1.0, | 
					
					
						
						| 
							 | 
						        cond_tau: float = 1.0, | 
					
					
						
						| 
							 | 
						        aesthetic_score: float = 6.0, | 
					
					
						
						| 
							 | 
						        negative_aesthetic_score: float = 2.5, | 
					
					
						
						| 
							 | 
						        controlnet_conditioning_scale=1.0, | 
					
					
						
						| 
							 | 
						        guess_mode: bool = False, | 
					
					
						
						| 
							 | 
						        control_guidance_start=0.0, | 
					
					
						
						| 
							 | 
						        control_guidance_end=1.0, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Function invoked when calling the pipeline for generation. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | 
					
					
						
						| 
							 | 
						                instead. | 
					
					
						
						| 
							 | 
						            prompt_2 (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
					
						
						| 
							 | 
						                used in both text-encoders | 
					
					
						
						| 
							 | 
						            image (`PIL.Image.Image`): | 
					
					
						
						| 
							 | 
						                `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will | 
					
					
						
						| 
							 | 
						                be masked out with `mask_image` and repainted according to `prompt`. | 
					
					
						
						| 
							 | 
						            mask_image (`PIL.Image.Image`): | 
					
					
						
						| 
							 | 
						                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be | 
					
					
						
						| 
							 | 
						                repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted | 
					
					
						
						| 
							 | 
						                to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) | 
					
					
						
						| 
							 | 
						                instead of 3, so the expected shape would be `(B, H, W, 1)`. | 
					
					
						
						| 
							 | 
						            adapter_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`): | 
					
					
						
						| 
							 | 
						                The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the | 
					
					
						
						| 
							 | 
						                type is specified as `Torch.FloatTensor`, it is passed to Adapter as is. PIL.Image.Image` can also be | 
					
					
						
						| 
							 | 
						                accepted as an image. The control image is automatically resized to fit the output image. | 
					
					
						
						| 
							 | 
						            control_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | 
					
					
						
						| 
							 | 
						                    `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | 
					
					
						
						| 
							 | 
						                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | 
					
					
						
						| 
							 | 
						                specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be | 
					
					
						
						| 
							 | 
						                accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height | 
					
					
						
						| 
							 | 
						                and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in | 
					
					
						
						| 
							 | 
						                `init`, images must be passed as a list such that each element of the list can be correctly batched for | 
					
					
						
						| 
							 | 
						                input to a single ControlNet. | 
					
					
						
						| 
							 | 
						            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
					
						
						| 
							 | 
						                The height in pixels of the generated image. | 
					
					
						
						| 
							 | 
						            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | 
					
					
						
						| 
							 | 
						                The width in pixels of the generated image. | 
					
					
						
						| 
							 | 
						            strength (`float`, *optional*, defaults to 1.0): | 
					
					
						
						| 
							 | 
						                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | 
					
					
						
						| 
							 | 
						                starting point and more noise is added the higher the `strength`. The number of denoising steps depends | 
					
					
						
						| 
							 | 
						                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | 
					
					
						
						| 
							 | 
						                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | 
					
					
						
						| 
							 | 
						                essentially ignores `image`. | 
					
					
						
						| 
							 | 
						            num_inference_steps (`int`, *optional*, defaults to 50): | 
					
					
						
						| 
							 | 
						                The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
					
						
						| 
							 | 
						                expense of slower inference. | 
					
					
						
						| 
							 | 
						            denoising_start (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be | 
					
					
						
						| 
							 | 
						                bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and | 
					
					
						
						| 
							 | 
						                it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, | 
					
					
						
						| 
							 | 
						                strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline | 
					
					
						
						| 
							 | 
						                is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image | 
					
					
						
						| 
							 | 
						                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output). | 
					
					
						
						| 
							 | 
						            denoising_end (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | 
					
					
						
						| 
							 | 
						                completed before it is intentionally prematurely terminated. As a result, the returned sample will | 
					
					
						
						| 
							 | 
						                still retain a substantial amount of noise as determined by the discrete timesteps selected by the | 
					
					
						
						| 
							 | 
						                scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | 
					
					
						
						| 
							 | 
						                "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | 
					
					
						
						| 
							 | 
						                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | 
					
					
						
						| 
							 | 
						            guidance_scale (`float`, *optional*, defaults to 5.0): | 
					
					
						
						| 
							 | 
						                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
					
						
						| 
							 | 
						                `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
					
						
						| 
							 | 
						                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
					
						
						| 
							 | 
						                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
					
						
						| 
							 | 
						                usually at the expense of lower image quality. | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
					
						
						| 
							 | 
						                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
					
						
						| 
							 | 
						                less than `1`). | 
					
					
						
						| 
							 | 
						            negative_prompt_2 (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | 
					
					
						
						| 
							 | 
						                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The number of images to generate per prompt. | 
					
					
						
						| 
							 | 
						            eta (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
					
						
						| 
							 | 
						                [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
					
						
						| 
							 | 
						            generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
					
						
						| 
							 | 
						                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | 
					
					
						
						| 
							 | 
						                to make generation deterministic. | 
					
					
						
						| 
							 | 
						            latents (`torch.FloatTensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
					
						
						| 
							 | 
						                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
					
						
						| 
							 | 
						                tensor will ge generated by sampling using the supplied random `generator`. | 
					
					
						
						| 
							 | 
						            prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
					
						
						| 
							 | 
						                provided, text embeddings will be generated from `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
					
						
						| 
							 | 
						                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
					
						
						| 
							 | 
						                argument. | 
					
					
						
						| 
							 | 
						            pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
					
						
						| 
							 | 
						                If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
					
						
						| 
							 | 
						                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | 
					
					
						
						| 
							 | 
						                input argument. | 
					
					
						
						| 
							 | 
						            output_type (`str`, *optional*, defaults to `"pil"`): | 
					
					
						
						| 
							 | 
						                The output format of the generate image. Choose between | 
					
					
						
						| 
							 | 
						                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
					
						
						| 
							 | 
						            return_dict (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionAdapterPipelineOutput`] | 
					
					
						
						| 
							 | 
						                instead of a plain tuple. | 
					
					
						
						| 
							 | 
						            callback (`Callable`, *optional*): | 
					
					
						
						| 
							 | 
						                A function that will be called every `callback_steps` steps during inference. The function will be | 
					
					
						
						| 
							 | 
						                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | 
					
					
						
						| 
							 | 
						            callback_steps (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
					
						
						| 
							 | 
						                called at every step. | 
					
					
						
						| 
							 | 
						            cross_attention_kwargs (`dict`, *optional*): | 
					
					
						
						| 
							 | 
						                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | 
					
					
						
						| 
							 | 
						                `self.processor` in | 
					
					
						
						| 
							 | 
						                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
					
						
						| 
							 | 
						            guidance_rescale (`float`, *optional*, defaults to 0.7): | 
					
					
						
						| 
							 | 
						                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | 
					
					
						
						| 
							 | 
						                Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | 
					
					
						
						| 
							 | 
						                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | 
					
					
						
						| 
							 | 
						                Guidance rescale factor should fix overexposure when using zero terminal SNR. | 
					
					
						
						| 
							 | 
						            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
					
						
						| 
							 | 
						                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | 
					
					
						
						| 
							 | 
						                `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as | 
					
					
						
						| 
							 | 
						                explained in section 2.2 of | 
					
					
						
						| 
							 | 
						                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
					
						
						| 
							 | 
						            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | 
					
					
						
						| 
							 | 
						                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | 
					
					
						
						| 
							 | 
						                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | 
					
					
						
						| 
							 | 
						                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | 
					
					
						
						| 
							 | 
						                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
					
						
						| 
							 | 
						            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
					
						
						| 
							 | 
						                For most cases, `target_size` should be set to the desired height and width of the generated image. If | 
					
					
						
						| 
							 | 
						                not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in | 
					
					
						
						| 
							 | 
						                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
					
						
						| 
							 | 
						            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | 
					
					
						
						| 
							 | 
						                The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added to the | 
					
					
						
						| 
							 | 
						                residual in the original unet. If multiple adapters are specified in init, you can set the | 
					
					
						
						| 
							 | 
						                corresponding scale as a list. | 
					
					
						
						| 
							 | 
						            adapter_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | 
					
					
						
						| 
							 | 
						                The outputs of the adapter are multiplied by `adapter_conditioning_scale` before they are added to the | 
					
					
						
						| 
							 | 
						                residual in the original unet. If multiple adapters are specified in init, you can set the | 
					
					
						
						| 
							 | 
						                corresponding scale as a list. | 
					
					
						
						| 
							 | 
						            aesthetic_score (`float`, *optional*, defaults to 6.0): | 
					
					
						
						| 
							 | 
						                Used to simulate an aesthetic score of the generated image by influencing the positive text condition. | 
					
					
						
						| 
							 | 
						                Part of SDXL's micro-conditioning as explained in section 2.2 of | 
					
					
						
						| 
							 | 
						                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
					
						
						| 
							 | 
						            negative_aesthetic_score (`float`, *optional*, defaults to 2.5): | 
					
					
						
						| 
							 | 
						                Part of SDXL's micro-conditioning as explained in section 2.2 of | 
					
					
						
						| 
							 | 
						                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to | 
					
					
						
						| 
							 | 
						                simulate an aesthetic score of the generated image by influencing the negative text condition. | 
					
					
						
						| 
							 | 
						        Examples: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] or `tuple`: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] if `return_dict` is True, otherwise a | 
					
					
						
						| 
							 | 
						            `tuple`. When returning a tuple, the first element is a list with the generated images. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | 
					
					
						
						| 
							 | 
						        adapter = self.adapter._orig_mod if is_compiled_module(self.adapter) else self.adapter | 
					
					
						
						| 
							 | 
						        height, width = self._default_height_width(height, width, adapter_image) | 
					
					
						
						| 
							 | 
						        device = self._execution_device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if isinstance(adapter, MultiAdapter): | 
					
					
						
						| 
							 | 
						            adapter_input = [] | 
					
					
						
						| 
							 | 
						            for one_image in adapter_image: | 
					
					
						
						| 
							 | 
						                one_image = _preprocess_adapter_image(one_image, height, width) | 
					
					
						
						| 
							 | 
						                one_image = one_image.to(device=device, dtype=adapter.dtype) | 
					
					
						
						| 
							 | 
						                adapter_input.append(one_image) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            adapter_input = _preprocess_adapter_image(adapter_image, height, width) | 
					
					
						
						| 
							 | 
						            adapter_input = adapter_input.to(device=device, dtype=adapter.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        original_size = original_size or (height, width) | 
					
					
						
						| 
							 | 
						        target_size = target_size or (height, width) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | 
					
					
						
						| 
							 | 
						            control_guidance_start = len(control_guidance_end) * [control_guidance_start] | 
					
					
						
						| 
							 | 
						        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | 
					
					
						
						| 
							 | 
						            control_guidance_end = len(control_guidance_start) * [control_guidance_end] | 
					
					
						
						| 
							 | 
						        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | 
					
					
						
						| 
							 | 
						            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 | 
					
					
						
						| 
							 | 
						            control_guidance_start, control_guidance_end = ( | 
					
					
						
						| 
							 | 
						                mult * [control_guidance_start], | 
					
					
						
						| 
							 | 
						                mult * [control_guidance_end], | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | 
					
					
						
						| 
							 | 
						            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) | 
					
					
						
						| 
							 | 
						        if isinstance(adapter, MultiAdapter) and isinstance(adapter_conditioning_scale, float): | 
					
					
						
						| 
							 | 
						            adapter_conditioning_scale = [adapter_conditioning_scale] * len(adapter.nets) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.check_inputs( | 
					
					
						
						| 
							 | 
						            prompt, | 
					
					
						
						| 
							 | 
						            prompt_2, | 
					
					
						
						| 
							 | 
						            height, | 
					
					
						
						| 
							 | 
						            width, | 
					
					
						
						| 
							 | 
						            callback_steps, | 
					
					
						
						| 
							 | 
						            negative_prompt=negative_prompt, | 
					
					
						
						| 
							 | 
						            negative_prompt_2=negative_prompt_2, | 
					
					
						
						| 
							 | 
						            prompt_embeds=prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds=negative_prompt_embeds, | 
					
					
						
						| 
							 | 
						            pooled_prompt_embeds=pooled_prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.check_conditions( | 
					
					
						
						| 
							 | 
						            prompt, | 
					
					
						
						| 
							 | 
						            prompt_embeds, | 
					
					
						
						| 
							 | 
						            adapter_image, | 
					
					
						
						| 
							 | 
						            control_image, | 
					
					
						
						| 
							 | 
						            adapter_conditioning_scale, | 
					
					
						
						| 
							 | 
						            controlnet_conditioning_scale, | 
					
					
						
						| 
							 | 
						            control_guidance_start, | 
					
					
						
						| 
							 | 
						            control_guidance_end, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if prompt is not None and isinstance(prompt, str): | 
					
					
						
						| 
							 | 
						            batch_size = 1 | 
					
					
						
						| 
							 | 
						        elif prompt is not None and isinstance(prompt, list): | 
					
					
						
						| 
							 | 
						            batch_size = len(prompt) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = prompt_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        device = self._execution_device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        do_classifier_free_guidance = guidance_scale > 1.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        ( | 
					
					
						
						| 
							 | 
						            prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds, | 
					
					
						
						| 
							 | 
						            pooled_prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds, | 
					
					
						
						| 
							 | 
						        ) = self.encode_prompt( | 
					
					
						
						| 
							 | 
						            prompt=prompt, | 
					
					
						
						| 
							 | 
						            prompt_2=prompt_2, | 
					
					
						
						| 
							 | 
						            device=device, | 
					
					
						
						| 
							 | 
						            num_images_per_prompt=num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            do_classifier_free_guidance=do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						            negative_prompt=negative_prompt, | 
					
					
						
						| 
							 | 
						            negative_prompt_2=negative_prompt_2, | 
					
					
						
						| 
							 | 
						            prompt_embeds=prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds=negative_prompt_embeds, | 
					
					
						
						| 
							 | 
						            pooled_prompt_embeds=pooled_prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        def denoising_value_valid(dnv): | 
					
					
						
						| 
							 | 
						            return isinstance(denoising_end, float) and 0 < dnv < 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.scheduler.set_timesteps(num_inference_steps, device=device) | 
					
					
						
						| 
							 | 
						        timesteps, num_inference_steps = self.get_timesteps( | 
					
					
						
						| 
							 | 
						            num_inference_steps, | 
					
					
						
						| 
							 | 
						            strength, | 
					
					
						
						| 
							 | 
						            device, | 
					
					
						
						| 
							 | 
						            denoising_start=denoising_start if denoising_value_valid else None, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if num_inference_steps < 1: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" | 
					
					
						
						| 
							 | 
						                f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        is_strength_max = strength == 1.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        mask, masked_image, init_image = prepare_mask_and_masked_image( | 
					
					
						
						| 
							 | 
						            image, mask_image, height, width, return_image=True | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        num_channels_latents = self.vae.config.latent_channels | 
					
					
						
						| 
							 | 
						        num_channels_unet = self.unet.config.in_channels | 
					
					
						
						| 
							 | 
						        return_image_latents = num_channels_unet == 4 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        add_noise = denoising_start is None | 
					
					
						
						| 
							 | 
						        latents_outputs = self.prepare_latents( | 
					
					
						
						| 
							 | 
						            batch_size * num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            num_channels_latents, | 
					
					
						
						| 
							 | 
						            height, | 
					
					
						
						| 
							 | 
						            width, | 
					
					
						
						| 
							 | 
						            prompt_embeds.dtype, | 
					
					
						
						| 
							 | 
						            device, | 
					
					
						
						| 
							 | 
						            generator, | 
					
					
						
						| 
							 | 
						            latents, | 
					
					
						
						| 
							 | 
						            image=init_image, | 
					
					
						
						| 
							 | 
						            timestep=latent_timestep, | 
					
					
						
						| 
							 | 
						            is_strength_max=is_strength_max, | 
					
					
						
						| 
							 | 
						            add_noise=add_noise, | 
					
					
						
						| 
							 | 
						            return_noise=True, | 
					
					
						
						| 
							 | 
						            return_image_latents=return_image_latents, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if return_image_latents: | 
					
					
						
						| 
							 | 
						            latents, noise, image_latents = latents_outputs | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            latents, noise = latents_outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        mask, masked_image_latents = self.prepare_mask_latents( | 
					
					
						
						| 
							 | 
						            mask, | 
					
					
						
						| 
							 | 
						            masked_image, | 
					
					
						
						| 
							 | 
						            batch_size * num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            height, | 
					
					
						
						| 
							 | 
						            width, | 
					
					
						
						| 
							 | 
						            prompt_embeds.dtype, | 
					
					
						
						| 
							 | 
						            device, | 
					
					
						
						| 
							 | 
						            generator, | 
					
					
						
						| 
							 | 
						            do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if num_channels_unet == 9: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            num_channels_mask = mask.shape[1] | 
					
					
						
						| 
							 | 
						            num_channels_masked_image = masked_image_latents.shape[1] | 
					
					
						
						| 
							 | 
						            if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" | 
					
					
						
						| 
							 | 
						                    f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | 
					
					
						
						| 
							 | 
						                    f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" | 
					
					
						
						| 
							 | 
						                    f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" | 
					
					
						
						| 
							 | 
						                    " `pipeline.unet` or your `mask_image` or `image` input." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						        elif num_channels_unet != 4: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if isinstance(adapter, MultiAdapter): | 
					
					
						
						| 
							 | 
						            adapter_state = adapter(adapter_input, adapter_conditioning_scale) | 
					
					
						
						| 
							 | 
						            for k, v in enumerate(adapter_state): | 
					
					
						
						| 
							 | 
						                adapter_state[k] = v | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            adapter_state = adapter(adapter_input) | 
					
					
						
						| 
							 | 
						            for k, v in enumerate(adapter_state): | 
					
					
						
						| 
							 | 
						                adapter_state[k] = v * adapter_conditioning_scale | 
					
					
						
						| 
							 | 
						        if num_images_per_prompt > 1: | 
					
					
						
						| 
							 | 
						            for k, v in enumerate(adapter_state): | 
					
					
						
						| 
							 | 
						                adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1) | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						            for k, v in enumerate(adapter_state): | 
					
					
						
						| 
							 | 
						                adapter_state[k] = torch.cat([v] * 2, dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if isinstance(controlnet, ControlNetModel): | 
					
					
						
						| 
							 | 
						            control_image = self.prepare_control_image( | 
					
					
						
						| 
							 | 
						                image=control_image, | 
					
					
						
						| 
							 | 
						                width=width, | 
					
					
						
						| 
							 | 
						                height=height, | 
					
					
						
						| 
							 | 
						                batch_size=batch_size * num_images_per_prompt, | 
					
					
						
						| 
							 | 
						                num_images_per_prompt=num_images_per_prompt, | 
					
					
						
						| 
							 | 
						                device=device, | 
					
					
						
						| 
							 | 
						                dtype=controlnet.dtype, | 
					
					
						
						| 
							 | 
						                do_classifier_free_guidance=do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						                guess_mode=guess_mode, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif isinstance(controlnet, MultiControlNetModel): | 
					
					
						
						| 
							 | 
						            control_images = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            for control_image_ in control_image: | 
					
					
						
						| 
							 | 
						                control_image_ = self.prepare_control_image( | 
					
					
						
						| 
							 | 
						                    image=control_image_, | 
					
					
						
						| 
							 | 
						                    width=width, | 
					
					
						
						| 
							 | 
						                    height=height, | 
					
					
						
						| 
							 | 
						                    batch_size=batch_size * num_images_per_prompt, | 
					
					
						
						| 
							 | 
						                    num_images_per_prompt=num_images_per_prompt, | 
					
					
						
						| 
							 | 
						                    device=device, | 
					
					
						
						| 
							 | 
						                    dtype=controlnet.dtype, | 
					
					
						
						| 
							 | 
						                    do_classifier_free_guidance=do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						                    guess_mode=guess_mode, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                control_images.append(control_image_) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            control_image = control_images | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"{controlnet.__class__} is not supported.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        controlnet_keep = [] | 
					
					
						
						| 
							 | 
						        for i in range(len(timesteps)): | 
					
					
						
						| 
							 | 
						            keeps = [ | 
					
					
						
						| 
							 | 
						                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | 
					
					
						
						| 
							 | 
						                for s, e in zip(control_guidance_start, control_guidance_end) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						            if isinstance(self.controlnet, MultiControlNetModel): | 
					
					
						
						| 
							 | 
						                controlnet_keep.append(keeps) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                controlnet_keep.append(keeps[0]) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        add_text_embeds = pooled_prompt_embeds | 
					
					
						
						| 
							 | 
						        if self.text_encoder_2 is None: | 
					
					
						
						| 
							 | 
						            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        add_time_ids, add_neg_time_ids = self._get_add_time_ids( | 
					
					
						
						| 
							 | 
						            original_size, | 
					
					
						
						| 
							 | 
						            crops_coords_top_left, | 
					
					
						
						| 
							 | 
						            target_size, | 
					
					
						
						| 
							 | 
						            aesthetic_score, | 
					
					
						
						| 
							 | 
						            negative_aesthetic_score, | 
					
					
						
						| 
							 | 
						            dtype=prompt_embeds.dtype, | 
					
					
						
						| 
							 | 
						            text_encoder_projection_dim=text_encoder_projection_dim, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | 
					
					
						
						| 
							 | 
						            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | 
					
					
						
						| 
							 | 
						            add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						            add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.to(device) | 
					
					
						
						| 
							 | 
						        add_text_embeds = add_text_embeds.to(device) | 
					
					
						
						| 
							 | 
						        add_time_ids = add_time_ids.to(device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            denoising_end is not None | 
					
					
						
						| 
							 | 
						            and denoising_start is not None | 
					
					
						
						| 
							 | 
						            and denoising_value_valid(denoising_end) | 
					
					
						
						| 
							 | 
						            and denoising_value_valid(denoising_start) | 
					
					
						
						| 
							 | 
						            and denoising_start >= denoising_end | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: " | 
					
					
						
						| 
							 | 
						                + f" {denoising_end} when using type float." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif denoising_end is not None and denoising_value_valid(denoising_end): | 
					
					
						
						| 
							 | 
						            discrete_timestep_cutoff = int( | 
					
					
						
						| 
							 | 
						                round( | 
					
					
						
						| 
							 | 
						                    self.scheduler.config.num_train_timesteps | 
					
					
						
						| 
							 | 
						                    - (denoising_end * self.scheduler.config.num_train_timesteps) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | 
					
					
						
						| 
							 | 
						            timesteps = timesteps[:num_inference_steps] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
					
						
						| 
							 | 
						            for i, t in enumerate(timesteps): | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if num_channels_unet == 9: | 
					
					
						
						| 
							 | 
						                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                added_cond_kwargs = { | 
					
					
						
						| 
							 | 
						                    "text_embeds": add_text_embeds, | 
					
					
						
						| 
							 | 
						                    "time_ids": add_time_ids, | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if i < int(num_inference_steps * cond_tau): | 
					
					
						
						| 
							 | 
						                    down_block_additional_residuals = [state.clone() for state in adapter_state] | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    down_block_additional_residuals = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                latent_model_input_controlnet = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                latent_model_input_controlnet = self.scheduler.scale_model_input(latent_model_input_controlnet, t) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if guess_mode and do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    control_model_input = latents | 
					
					
						
						| 
							 | 
						                    control_model_input = self.scheduler.scale_model_input(control_model_input, t) | 
					
					
						
						| 
							 | 
						                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | 
					
					
						
						| 
							 | 
						                    controlnet_added_cond_kwargs = { | 
					
					
						
						| 
							 | 
						                        "text_embeds": add_text_embeds.chunk(2)[1], | 
					
					
						
						| 
							 | 
						                        "time_ids": add_time_ids.chunk(2)[1], | 
					
					
						
						| 
							 | 
						                    } | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    control_model_input = latent_model_input_controlnet | 
					
					
						
						| 
							 | 
						                    controlnet_prompt_embeds = prompt_embeds | 
					
					
						
						| 
							 | 
						                    controlnet_added_cond_kwargs = added_cond_kwargs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if isinstance(controlnet_keep[i], list): | 
					
					
						
						| 
							 | 
						                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    controlnet_cond_scale = controlnet_conditioning_scale | 
					
					
						
						| 
							 | 
						                    if isinstance(controlnet_cond_scale, list): | 
					
					
						
						| 
							 | 
						                        controlnet_cond_scale = controlnet_cond_scale[0] | 
					
					
						
						| 
							 | 
						                    cond_scale = controlnet_cond_scale * controlnet_keep[i] | 
					
					
						
						| 
							 | 
						                down_block_res_samples, mid_block_res_sample = self.controlnet( | 
					
					
						
						| 
							 | 
						                    control_model_input, | 
					
					
						
						| 
							 | 
						                    t, | 
					
					
						
						| 
							 | 
						                    encoder_hidden_states=controlnet_prompt_embeds, | 
					
					
						
						| 
							 | 
						                    controlnet_cond=control_image, | 
					
					
						
						| 
							 | 
						                    conditioning_scale=cond_scale, | 
					
					
						
						| 
							 | 
						                    guess_mode=guess_mode, | 
					
					
						
						| 
							 | 
						                    added_cond_kwargs=controlnet_added_cond_kwargs, | 
					
					
						
						| 
							 | 
						                    return_dict=False, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                noise_pred = self.unet( | 
					
					
						
						| 
							 | 
						                    latent_model_input, | 
					
					
						
						| 
							 | 
						                    t, | 
					
					
						
						| 
							 | 
						                    encoder_hidden_states=prompt_embeds, | 
					
					
						
						| 
							 | 
						                    cross_attention_kwargs=cross_attention_kwargs, | 
					
					
						
						| 
							 | 
						                    added_cond_kwargs=added_cond_kwargs, | 
					
					
						
						| 
							 | 
						                    return_dict=False, | 
					
					
						
						| 
							 | 
						                    down_intrablock_additional_residuals=down_block_additional_residuals,   | 
					
					
						
						| 
							 | 
						                    down_block_additional_residuals=down_block_res_samples,   | 
					
					
						
						| 
							 | 
						                    mid_block_additional_residual=mid_block_res_sample,   | 
					
					
						
						| 
							 | 
						                )[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
					
						
						| 
							 | 
						                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if do_classifier_free_guidance and guidance_rescale > 0.0: | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    noise_pred = rescale_noise_cfg( | 
					
					
						
						| 
							 | 
						                        noise_pred, | 
					
					
						
						| 
							 | 
						                        noise_pred_text, | 
					
					
						
						| 
							 | 
						                        guidance_rescale=guidance_rescale, | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                latents = self.scheduler.step( | 
					
					
						
						| 
							 | 
						                    noise_pred, | 
					
					
						
						| 
							 | 
						                    t, | 
					
					
						
						| 
							 | 
						                    latents, | 
					
					
						
						| 
							 | 
						                    **extra_step_kwargs, | 
					
					
						
						| 
							 | 
						                    return_dict=False, | 
					
					
						
						| 
							 | 
						                )[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if num_channels_unet == 4: | 
					
					
						
						| 
							 | 
						                    init_latents_proper = image_latents | 
					
					
						
						| 
							 | 
						                    if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						                        init_mask, _ = mask.chunk(2) | 
					
					
						
						| 
							 | 
						                    else: | 
					
					
						
						| 
							 | 
						                        init_mask = mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    if i < len(timesteps) - 1: | 
					
					
						
						| 
							 | 
						                        noise_timestep = timesteps[i + 1] | 
					
					
						
						| 
							 | 
						                        init_latents_proper = self.scheduler.add_noise( | 
					
					
						
						| 
							 | 
						                            init_latents_proper, | 
					
					
						
						| 
							 | 
						                            noise, | 
					
					
						
						| 
							 | 
						                            torch.tensor([noise_timestep]), | 
					
					
						
						| 
							 | 
						                        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
					
						
						| 
							 | 
						                    progress_bar.update() | 
					
					
						
						| 
							 | 
						                    if callback is not None and i % callback_steps == 0: | 
					
					
						
						| 
							 | 
						                        callback(i, t, latents) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: | 
					
					
						
						| 
							 | 
						            self.upcast_vae() | 
					
					
						
						| 
							 | 
						            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_type != "latent": | 
					
					
						
						| 
							 | 
						            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            image = latents | 
					
					
						
						| 
							 | 
						            return StableDiffusionXLPipelineOutput(images=image) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image = self.image_processor.postprocess(image, output_type=output_type) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | 
					
					
						
						| 
							 | 
						            self.final_offload_hook.offload() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return (image,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return StableDiffusionXLPipelineOutput(images=image) | 
					
					
						
						| 
							 | 
						
 |