| 
							 | 
						import inspect | 
					
					
						
						| 
							 | 
						import re | 
					
					
						
						| 
							 | 
						from typing import Callable, List, Optional, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import PIL.Image | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						from packaging import version | 
					
					
						
						| 
							 | 
						from transformers import CLIPImageProcessor, CLIPTokenizer | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import diffusers | 
					
					
						
						| 
							 | 
						from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, SchedulerMixin | 
					
					
						
						| 
							 | 
						from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | 
					
					
						
						| 
							 | 
						from diffusers.utils import logging | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						try: | 
					
					
						
						| 
							 | 
						    from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE | 
					
					
						
						| 
							 | 
						except ImportError: | 
					
					
						
						| 
							 | 
						    ORT_TO_NP_TYPE = { | 
					
					
						
						| 
							 | 
						        "tensor(bool)": np.bool_, | 
					
					
						
						| 
							 | 
						        "tensor(int8)": np.int8, | 
					
					
						
						| 
							 | 
						        "tensor(uint8)": np.uint8, | 
					
					
						
						| 
							 | 
						        "tensor(int16)": np.int16, | 
					
					
						
						| 
							 | 
						        "tensor(uint16)": np.uint16, | 
					
					
						
						| 
							 | 
						        "tensor(int32)": np.int32, | 
					
					
						
						| 
							 | 
						        "tensor(uint32)": np.uint32, | 
					
					
						
						| 
							 | 
						        "tensor(int64)": np.int64, | 
					
					
						
						| 
							 | 
						        "tensor(uint64)": np.uint64, | 
					
					
						
						| 
							 | 
						        "tensor(float16)": np.float16, | 
					
					
						
						| 
							 | 
						        "tensor(float)": np.float32, | 
					
					
						
						| 
							 | 
						        "tensor(double)": np.float64, | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						try: | 
					
					
						
						| 
							 | 
						    from diffusers.utils import PIL_INTERPOLATION | 
					
					
						
						| 
							 | 
						except ImportError: | 
					
					
						
						| 
							 | 
						    if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): | 
					
					
						
						| 
							 | 
						        PIL_INTERPOLATION = { | 
					
					
						
						| 
							 | 
						            "linear": PIL.Image.Resampling.BILINEAR, | 
					
					
						
						| 
							 | 
						            "bilinear": PIL.Image.Resampling.BILINEAR, | 
					
					
						
						| 
							 | 
						            "bicubic": PIL.Image.Resampling.BICUBIC, | 
					
					
						
						| 
							 | 
						            "lanczos": PIL.Image.Resampling.LANCZOS, | 
					
					
						
						| 
							 | 
						            "nearest": PIL.Image.Resampling.NEAREST, | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        PIL_INTERPOLATION = { | 
					
					
						
						| 
							 | 
						            "linear": PIL.Image.LINEAR, | 
					
					
						
						| 
							 | 
						            "bilinear": PIL.Image.BILINEAR, | 
					
					
						
						| 
							 | 
						            "bicubic": PIL.Image.BICUBIC, | 
					
					
						
						| 
							 | 
						            "lanczos": PIL.Image.LANCZOS, | 
					
					
						
						| 
							 | 
						            "nearest": PIL.Image.NEAREST, | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						re_attention = re.compile( | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						\\\(| | 
					
					
						
						| 
							 | 
						\\\)| | 
					
					
						
						| 
							 | 
						\\\[| | 
					
					
						
						| 
							 | 
						\\]| | 
					
					
						
						| 
							 | 
						\\\\| | 
					
					
						
						| 
							 | 
						\\| | 
					
					
						
						| 
							 | 
						\(| | 
					
					
						
						| 
							 | 
						\[| | 
					
					
						
						| 
							 | 
						:([+-]?[.\d]+)\)| | 
					
					
						
						| 
							 | 
						\)| | 
					
					
						
						| 
							 | 
						]| | 
					
					
						
						| 
							 | 
						[^\\()\[\]:]+| | 
					
					
						
						| 
							 | 
						: | 
					
					
						
						| 
							 | 
						""", | 
					
					
						
						| 
							 | 
						    re.X, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def parse_prompt_attention(text): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | 
					
					
						
						| 
							 | 
						    Accepted tokens are: | 
					
					
						
						| 
							 | 
						      (abc) - increases attention to abc by a multiplier of 1.1 | 
					
					
						
						| 
							 | 
						      (abc:3.12) - increases attention to abc by a multiplier of 3.12 | 
					
					
						
						| 
							 | 
						      [abc] - decreases attention to abc by a multiplier of 1.1 | 
					
					
						
						| 
							 | 
						      \\( - literal character '(' | 
					
					
						
						| 
							 | 
						      \\[ - literal character '[' | 
					
					
						
						| 
							 | 
						      \\) - literal character ')' | 
					
					
						
						| 
							 | 
						      \\] - literal character ']' | 
					
					
						
						| 
							 | 
						      \\ - literal character '\' | 
					
					
						
						| 
							 | 
						      anything else - just text | 
					
					
						
						| 
							 | 
						    >>> parse_prompt_attention('normal text') | 
					
					
						
						| 
							 | 
						    [['normal text', 1.0]] | 
					
					
						
						| 
							 | 
						    >>> parse_prompt_attention('an (important) word') | 
					
					
						
						| 
							 | 
						    [['an ', 1.0], ['important', 1.1], [' word', 1.0]] | 
					
					
						
						| 
							 | 
						    >>> parse_prompt_attention('(unbalanced') | 
					
					
						
						| 
							 | 
						    [['unbalanced', 1.1]] | 
					
					
						
						| 
							 | 
						    >>> parse_prompt_attention('\\(literal\\]') | 
					
					
						
						| 
							 | 
						    [['(literal]', 1.0]] | 
					
					
						
						| 
							 | 
						    >>> parse_prompt_attention('(unnecessary)(parens)') | 
					
					
						
						| 
							 | 
						    [['unnecessaryparens', 1.1]] | 
					
					
						
						| 
							 | 
						    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') | 
					
					
						
						| 
							 | 
						    [['a ', 1.0], | 
					
					
						
						| 
							 | 
						     ['house', 1.5730000000000004], | 
					
					
						
						| 
							 | 
						     [' ', 1.1], | 
					
					
						
						| 
							 | 
						     ['on', 1.0], | 
					
					
						
						| 
							 | 
						     [' a ', 1.1], | 
					
					
						
						| 
							 | 
						     ['hill', 0.55], | 
					
					
						
						| 
							 | 
						     [', sun, ', 1.1], | 
					
					
						
						| 
							 | 
						     ['sky', 1.4641000000000006], | 
					
					
						
						| 
							 | 
						     ['.', 1.1]] | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    res = [] | 
					
					
						
						| 
							 | 
						    round_brackets = [] | 
					
					
						
						| 
							 | 
						    square_brackets = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    round_bracket_multiplier = 1.1 | 
					
					
						
						| 
							 | 
						    square_bracket_multiplier = 1 / 1.1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def multiply_range(start_position, multiplier): | 
					
					
						
						| 
							 | 
						        for p in range(start_position, len(res)): | 
					
					
						
						| 
							 | 
						            res[p][1] *= multiplier | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for m in re_attention.finditer(text): | 
					
					
						
						| 
							 | 
						        text = m.group(0) | 
					
					
						
						| 
							 | 
						        weight = m.group(1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if text.startswith("\\"): | 
					
					
						
						| 
							 | 
						            res.append([text[1:], 1.0]) | 
					
					
						
						| 
							 | 
						        elif text == "(": | 
					
					
						
						| 
							 | 
						            round_brackets.append(len(res)) | 
					
					
						
						| 
							 | 
						        elif text == "[": | 
					
					
						
						| 
							 | 
						            square_brackets.append(len(res)) | 
					
					
						
						| 
							 | 
						        elif weight is not None and len(round_brackets) > 0: | 
					
					
						
						| 
							 | 
						            multiply_range(round_brackets.pop(), float(weight)) | 
					
					
						
						| 
							 | 
						        elif text == ")" and len(round_brackets) > 0: | 
					
					
						
						| 
							 | 
						            multiply_range(round_brackets.pop(), round_bracket_multiplier) | 
					
					
						
						| 
							 | 
						        elif text == "]" and len(square_brackets) > 0: | 
					
					
						
						| 
							 | 
						            multiply_range(square_brackets.pop(), square_bracket_multiplier) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            res.append([text, 1.0]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for pos in round_brackets: | 
					
					
						
						| 
							 | 
						        multiply_range(pos, round_bracket_multiplier) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for pos in square_brackets: | 
					
					
						
						| 
							 | 
						        multiply_range(pos, square_bracket_multiplier) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if len(res) == 0: | 
					
					
						
						| 
							 | 
						        res = [["", 1.0]] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    i = 0 | 
					
					
						
						| 
							 | 
						    while i + 1 < len(res): | 
					
					
						
						| 
							 | 
						        if res[i][1] == res[i + 1][1]: | 
					
					
						
						| 
							 | 
						            res[i][0] += res[i + 1][0] | 
					
					
						
						| 
							 | 
						            res.pop(i + 1) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            i += 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return res | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def get_prompts_with_weights(pipe, prompt: List[str], max_length: int): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Tokenize a list of prompts and return its tokens with weights of each token. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    No padding, starting or ending token is included. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    tokens = [] | 
					
					
						
						| 
							 | 
						    weights = [] | 
					
					
						
						| 
							 | 
						    truncated = False | 
					
					
						
						| 
							 | 
						    for text in prompt: | 
					
					
						
						| 
							 | 
						        texts_and_weights = parse_prompt_attention(text) | 
					
					
						
						| 
							 | 
						        text_token = [] | 
					
					
						
						| 
							 | 
						        text_weight = [] | 
					
					
						
						| 
							 | 
						        for word, weight in texts_and_weights: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            token = pipe.tokenizer(word, return_tensors="np").input_ids[0, 1:-1] | 
					
					
						
						| 
							 | 
						            text_token += list(token) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            text_weight += [weight] * len(token) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if len(text_token) > max_length: | 
					
					
						
						| 
							 | 
						                truncated = True | 
					
					
						
						| 
							 | 
						                break | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if len(text_token) > max_length: | 
					
					
						
						| 
							 | 
						            truncated = True | 
					
					
						
						| 
							 | 
						            text_token = text_token[:max_length] | 
					
					
						
						| 
							 | 
						            text_weight = text_weight[:max_length] | 
					
					
						
						| 
							 | 
						        tokens.append(text_token) | 
					
					
						
						| 
							 | 
						        weights.append(text_weight) | 
					
					
						
						| 
							 | 
						    if truncated: | 
					
					
						
						| 
							 | 
						        logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples") | 
					
					
						
						| 
							 | 
						    return tokens, weights | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    max_embeddings_multiples = (max_length - 2) // (chunk_length - 2) | 
					
					
						
						| 
							 | 
						    weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length | 
					
					
						
						| 
							 | 
						    for i in range(len(tokens)): | 
					
					
						
						| 
							 | 
						        tokens[i] = [bos] + tokens[i] + [pad] * (max_length - 1 - len(tokens[i]) - 1) + [eos] | 
					
					
						
						| 
							 | 
						        if no_boseos_middle: | 
					
					
						
						| 
							 | 
						            weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i])) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            w = [] | 
					
					
						
						| 
							 | 
						            if len(weights[i]) == 0: | 
					
					
						
						| 
							 | 
						                w = [1.0] * weights_length | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                for j in range(max_embeddings_multiples): | 
					
					
						
						| 
							 | 
						                    w.append(1.0)   | 
					
					
						
						| 
							 | 
						                    w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))] | 
					
					
						
						| 
							 | 
						                    w.append(1.0)   | 
					
					
						
						| 
							 | 
						                w += [1.0] * (weights_length - len(w)) | 
					
					
						
						| 
							 | 
						            weights[i] = w[:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return tokens, weights | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def get_unweighted_text_embeddings( | 
					
					
						
						| 
							 | 
						    pipe, | 
					
					
						
						| 
							 | 
						    text_input: np.array, | 
					
					
						
						| 
							 | 
						    chunk_length: int, | 
					
					
						
						| 
							 | 
						    no_boseos_middle: Optional[bool] = True, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    When the length of tokens is a multiple of the capacity of the text encoder, | 
					
					
						
						| 
							 | 
						    it should be split into chunks and sent to the text encoder individually. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2) | 
					
					
						
						| 
							 | 
						    if max_embeddings_multiples > 1: | 
					
					
						
						| 
							 | 
						        text_embeddings = [] | 
					
					
						
						| 
							 | 
						        for i in range(max_embeddings_multiples): | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].copy() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            text_input_chunk[:, 0] = text_input[0, 0] | 
					
					
						
						| 
							 | 
						            text_input_chunk[:, -1] = text_input[0, -1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            text_embedding = pipe.text_encoder(input_ids=text_input_chunk)[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if no_boseos_middle: | 
					
					
						
						| 
							 | 
						                if i == 0: | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    text_embedding = text_embedding[:, :-1] | 
					
					
						
						| 
							 | 
						                elif i == max_embeddings_multiples - 1: | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    text_embedding = text_embedding[:, 1:] | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    text_embedding = text_embedding[:, 1:-1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            text_embeddings.append(text_embedding) | 
					
					
						
						| 
							 | 
						        text_embeddings = np.concatenate(text_embeddings, axis=1) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        text_embeddings = pipe.text_encoder(input_ids=text_input)[0] | 
					
					
						
						| 
							 | 
						    return text_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def get_weighted_text_embeddings( | 
					
					
						
						| 
							 | 
						    pipe, | 
					
					
						
						| 
							 | 
						    prompt: Union[str, List[str]], | 
					
					
						
						| 
							 | 
						    uncond_prompt: Optional[Union[str, List[str]]] = None, | 
					
					
						
						| 
							 | 
						    max_embeddings_multiples: Optional[int] = 4, | 
					
					
						
						| 
							 | 
						    no_boseos_middle: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						    skip_parsing: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						    skip_weighting: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						    **kwargs, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Prompts can be assigned with local weights using brackets. For example, | 
					
					
						
						| 
							 | 
						    prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful', | 
					
					
						
						| 
							 | 
						    and the embedding tokens corresponding to the words get multiplied by a constant, 1.1. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        pipe (`OnnxStableDiffusionPipeline`): | 
					
					
						
						| 
							 | 
						            Pipe to provide access to the tokenizer and the text encoder. | 
					
					
						
						| 
							 | 
						        prompt (`str` or `List[str]`): | 
					
					
						
						| 
							 | 
						            The prompt or prompts to guide the image generation. | 
					
					
						
						| 
							 | 
						        uncond_prompt (`str` or `List[str]`): | 
					
					
						
						| 
							 | 
						            The unconditional prompt or prompts for guide the image generation. If unconditional prompt | 
					
					
						
						| 
							 | 
						            is provided, the embeddings of prompt and uncond_prompt are concatenated. | 
					
					
						
						| 
							 | 
						        max_embeddings_multiples (`int`, *optional*, defaults to `1`): | 
					
					
						
						| 
							 | 
						            The max multiple length of prompt embeddings compared to the max output length of text encoder. | 
					
					
						
						| 
							 | 
						        no_boseos_middle (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and | 
					
					
						
						| 
							 | 
						            ending token in each of the chunk in the middle. | 
					
					
						
						| 
							 | 
						        skip_parsing (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Skip the parsing of brackets. | 
					
					
						
						| 
							 | 
						        skip_weighting (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						            Skip the weighting. When the parsing is skipped, it is forced True. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 | 
					
					
						
						| 
							 | 
						    if isinstance(prompt, str): | 
					
					
						
						| 
							 | 
						        prompt = [prompt] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if not skip_parsing: | 
					
					
						
						| 
							 | 
						        prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2) | 
					
					
						
						| 
							 | 
						        if uncond_prompt is not None: | 
					
					
						
						| 
							 | 
						            if isinstance(uncond_prompt, str): | 
					
					
						
						| 
							 | 
						                uncond_prompt = [uncond_prompt] | 
					
					
						
						| 
							 | 
						            uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        prompt_tokens = [ | 
					
					
						
						| 
							 | 
						            token[1:-1] | 
					
					
						
						| 
							 | 
						            for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True, return_tensors="np").input_ids | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						        prompt_weights = [[1.0] * len(token) for token in prompt_tokens] | 
					
					
						
						| 
							 | 
						        if uncond_prompt is not None: | 
					
					
						
						| 
							 | 
						            if isinstance(uncond_prompt, str): | 
					
					
						
						| 
							 | 
						                uncond_prompt = [uncond_prompt] | 
					
					
						
						| 
							 | 
						            uncond_tokens = [ | 
					
					
						
						| 
							 | 
						                token[1:-1] | 
					
					
						
						| 
							 | 
						                for token in pipe.tokenizer( | 
					
					
						
						| 
							 | 
						                    uncond_prompt, | 
					
					
						
						| 
							 | 
						                    max_length=max_length, | 
					
					
						
						| 
							 | 
						                    truncation=True, | 
					
					
						
						| 
							 | 
						                    return_tensors="np", | 
					
					
						
						| 
							 | 
						                ).input_ids | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						            uncond_weights = [[1.0] * len(token) for token in uncond_tokens] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    max_length = max([len(token) for token in prompt_tokens]) | 
					
					
						
						| 
							 | 
						    if uncond_prompt is not None: | 
					
					
						
						| 
							 | 
						        max_length = max(max_length, max([len(token) for token in uncond_tokens])) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    max_embeddings_multiples = min( | 
					
					
						
						| 
							 | 
						        max_embeddings_multiples, | 
					
					
						
						| 
							 | 
						        (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    max_embeddings_multiples = max(1, max_embeddings_multiples) | 
					
					
						
						| 
							 | 
						    max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    bos = pipe.tokenizer.bos_token_id | 
					
					
						
						| 
							 | 
						    eos = pipe.tokenizer.eos_token_id | 
					
					
						
						| 
							 | 
						    pad = getattr(pipe.tokenizer, "pad_token_id", eos) | 
					
					
						
						| 
							 | 
						    prompt_tokens, prompt_weights = pad_tokens_and_weights( | 
					
					
						
						| 
							 | 
						        prompt_tokens, | 
					
					
						
						| 
							 | 
						        prompt_weights, | 
					
					
						
						| 
							 | 
						        max_length, | 
					
					
						
						| 
							 | 
						        bos, | 
					
					
						
						| 
							 | 
						        eos, | 
					
					
						
						| 
							 | 
						        pad, | 
					
					
						
						| 
							 | 
						        no_boseos_middle=no_boseos_middle, | 
					
					
						
						| 
							 | 
						        chunk_length=pipe.tokenizer.model_max_length, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    prompt_tokens = np.array(prompt_tokens, dtype=np.int32) | 
					
					
						
						| 
							 | 
						    if uncond_prompt is not None: | 
					
					
						
						| 
							 | 
						        uncond_tokens, uncond_weights = pad_tokens_and_weights( | 
					
					
						
						| 
							 | 
						            uncond_tokens, | 
					
					
						
						| 
							 | 
						            uncond_weights, | 
					
					
						
						| 
							 | 
						            max_length, | 
					
					
						
						| 
							 | 
						            bos, | 
					
					
						
						| 
							 | 
						            eos, | 
					
					
						
						| 
							 | 
						            pad, | 
					
					
						
						| 
							 | 
						            no_boseos_middle=no_boseos_middle, | 
					
					
						
						| 
							 | 
						            chunk_length=pipe.tokenizer.model_max_length, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        uncond_tokens = np.array(uncond_tokens, dtype=np.int32) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    text_embeddings = get_unweighted_text_embeddings( | 
					
					
						
						| 
							 | 
						        pipe, | 
					
					
						
						| 
							 | 
						        prompt_tokens, | 
					
					
						
						| 
							 | 
						        pipe.tokenizer.model_max_length, | 
					
					
						
						| 
							 | 
						        no_boseos_middle=no_boseos_middle, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    prompt_weights = np.array(prompt_weights, dtype=text_embeddings.dtype) | 
					
					
						
						| 
							 | 
						    if uncond_prompt is not None: | 
					
					
						
						| 
							 | 
						        uncond_embeddings = get_unweighted_text_embeddings( | 
					
					
						
						| 
							 | 
						            pipe, | 
					
					
						
						| 
							 | 
						            uncond_tokens, | 
					
					
						
						| 
							 | 
						            pipe.tokenizer.model_max_length, | 
					
					
						
						| 
							 | 
						            no_boseos_middle=no_boseos_middle, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        uncond_weights = np.array(uncond_weights, dtype=uncond_embeddings.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if (not skip_parsing) and (not skip_weighting): | 
					
					
						
						| 
							 | 
						        previous_mean = text_embeddings.mean(axis=(-2, -1)) | 
					
					
						
						| 
							 | 
						        text_embeddings *= prompt_weights[:, :, None] | 
					
					
						
						| 
							 | 
						        text_embeddings *= (previous_mean / text_embeddings.mean(axis=(-2, -1)))[:, None, None] | 
					
					
						
						| 
							 | 
						        if uncond_prompt is not None: | 
					
					
						
						| 
							 | 
						            previous_mean = uncond_embeddings.mean(axis=(-2, -1)) | 
					
					
						
						| 
							 | 
						            uncond_embeddings *= uncond_weights[:, :, None] | 
					
					
						
						| 
							 | 
						            uncond_embeddings *= (previous_mean / uncond_embeddings.mean(axis=(-2, -1)))[:, None, None] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if uncond_prompt is not None: | 
					
					
						
						| 
							 | 
						        return text_embeddings, uncond_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return text_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def preprocess_image(image): | 
					
					
						
						| 
							 | 
						    w, h = image.size | 
					
					
						
						| 
							 | 
						    w, h = (x - x % 32 for x in (w, h))   | 
					
					
						
						| 
							 | 
						    image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) | 
					
					
						
						| 
							 | 
						    image = np.array(image).astype(np.float32) / 255.0 | 
					
					
						
						| 
							 | 
						    image = image[None].transpose(0, 3, 1, 2) | 
					
					
						
						| 
							 | 
						    return 2.0 * image - 1.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def preprocess_mask(mask, scale_factor=8): | 
					
					
						
						| 
							 | 
						    mask = mask.convert("L") | 
					
					
						
						| 
							 | 
						    w, h = mask.size | 
					
					
						
						| 
							 | 
						    w, h = (x - x % 32 for x in (w, h))   | 
					
					
						
						| 
							 | 
						    mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"]) | 
					
					
						
						| 
							 | 
						    mask = np.array(mask).astype(np.float32) / 255.0 | 
					
					
						
						| 
							 | 
						    mask = np.tile(mask, (4, 1, 1)) | 
					
					
						
						| 
							 | 
						    mask = mask[None].transpose(0, 1, 2, 3)   | 
					
					
						
						| 
							 | 
						    mask = 1 - mask   | 
					
					
						
						| 
							 | 
						    return mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing | 
					
					
						
						| 
							 | 
						    weighting in prompt. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
					
						
						| 
							 | 
						    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if version.parse(version.parse(diffusers.__version__).base_version) >= version.parse("0.9.0"): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        def __init__( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            vae_encoder: OnnxRuntimeModel, | 
					
					
						
						| 
							 | 
						            vae_decoder: OnnxRuntimeModel, | 
					
					
						
						| 
							 | 
						            text_encoder: OnnxRuntimeModel, | 
					
					
						
						| 
							 | 
						            tokenizer: CLIPTokenizer, | 
					
					
						
						| 
							 | 
						            unet: OnnxRuntimeModel, | 
					
					
						
						| 
							 | 
						            scheduler: SchedulerMixin, | 
					
					
						
						| 
							 | 
						            safety_checker: OnnxRuntimeModel, | 
					
					
						
						| 
							 | 
						            feature_extractor: CLIPImageProcessor, | 
					
					
						
						| 
							 | 
						            requires_safety_checker: bool = True, | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            super().__init__( | 
					
					
						
						| 
							 | 
						                vae_encoder=vae_encoder, | 
					
					
						
						| 
							 | 
						                vae_decoder=vae_decoder, | 
					
					
						
						| 
							 | 
						                text_encoder=text_encoder, | 
					
					
						
						| 
							 | 
						                tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						                unet=unet, | 
					
					
						
						| 
							 | 
						                scheduler=scheduler, | 
					
					
						
						| 
							 | 
						                safety_checker=safety_checker, | 
					
					
						
						| 
							 | 
						                feature_extractor=feature_extractor, | 
					
					
						
						| 
							 | 
						                requires_safety_checker=requires_safety_checker, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            self.__init__additional__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        def __init__( | 
					
					
						
						| 
							 | 
						            self, | 
					
					
						
						| 
							 | 
						            vae_encoder: OnnxRuntimeModel, | 
					
					
						
						| 
							 | 
						            vae_decoder: OnnxRuntimeModel, | 
					
					
						
						| 
							 | 
						            text_encoder: OnnxRuntimeModel, | 
					
					
						
						| 
							 | 
						            tokenizer: CLIPTokenizer, | 
					
					
						
						| 
							 | 
						            unet: OnnxRuntimeModel, | 
					
					
						
						| 
							 | 
						            scheduler: SchedulerMixin, | 
					
					
						
						| 
							 | 
						            safety_checker: OnnxRuntimeModel, | 
					
					
						
						| 
							 | 
						            feature_extractor: CLIPImageProcessor, | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            super().__init__( | 
					
					
						
						| 
							 | 
						                vae_encoder=vae_encoder, | 
					
					
						
						| 
							 | 
						                vae_decoder=vae_decoder, | 
					
					
						
						| 
							 | 
						                text_encoder=text_encoder, | 
					
					
						
						| 
							 | 
						                tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						                unet=unet, | 
					
					
						
						| 
							 | 
						                scheduler=scheduler, | 
					
					
						
						| 
							 | 
						                safety_checker=safety_checker, | 
					
					
						
						| 
							 | 
						                feature_extractor=feature_extractor, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            self.__init__additional__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__additional__(self): | 
					
					
						
						| 
							 | 
						        self.unet.config.in_channels = 4 | 
					
					
						
						| 
							 | 
						        self.vae_scale_factor = 8 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _encode_prompt( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt, | 
					
					
						
						| 
							 | 
						        do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						        negative_prompt, | 
					
					
						
						| 
							 | 
						        max_embeddings_multiples, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Encodes the prompt into text encoder hidden states. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            prompt (`str` or `list(int)`): | 
					
					
						
						| 
							 | 
						                prompt to be encoded | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`): | 
					
					
						
						| 
							 | 
						                number of images that should be generated per prompt | 
					
					
						
						| 
							 | 
						            do_classifier_free_guidance (`bool`): | 
					
					
						
						| 
							 | 
						                whether to use classifier free guidance or not | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | 
					
					
						
						| 
							 | 
						                if `guidance_scale` is less than `1`). | 
					
					
						
						| 
							 | 
						            max_embeddings_multiples (`int`, *optional*, defaults to `3`): | 
					
					
						
						| 
							 | 
						                The max multiple length of prompt embeddings compared to the max output length of text encoder. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        batch_size = len(prompt) if isinstance(prompt, list) else 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if negative_prompt is None: | 
					
					
						
						| 
							 | 
						            negative_prompt = [""] * batch_size | 
					
					
						
						| 
							 | 
						        elif isinstance(negative_prompt, str): | 
					
					
						
						| 
							 | 
						            negative_prompt = [negative_prompt] * batch_size | 
					
					
						
						| 
							 | 
						        if batch_size != len(negative_prompt): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
					
						
						| 
							 | 
						                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
					
						
						| 
							 | 
						                " the batch size of `prompt`." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        text_embeddings, uncond_embeddings = get_weighted_text_embeddings( | 
					
					
						
						| 
							 | 
						            pipe=self, | 
					
					
						
						| 
							 | 
						            prompt=prompt, | 
					
					
						
						| 
							 | 
						            uncond_prompt=negative_prompt if do_classifier_free_guidance else None, | 
					
					
						
						| 
							 | 
						            max_embeddings_multiples=max_embeddings_multiples, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        text_embeddings = text_embeddings.repeat(num_images_per_prompt, 0) | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						            uncond_embeddings = uncond_embeddings.repeat(num_images_per_prompt, 0) | 
					
					
						
						| 
							 | 
						            text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return text_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def check_inputs(self, prompt, height, width, strength, callback_steps): | 
					
					
						
						| 
							 | 
						        if not isinstance(prompt, str) and not isinstance(prompt, list): | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if strength < 0 or strength > 1: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if height % 8 != 0 or width % 8 != 0: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (callback_steps is None) or ( | 
					
					
						
						| 
							 | 
						            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
					
						
						| 
							 | 
						                f" {type(callback_steps)}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_timesteps(self, num_inference_steps, strength, is_text2img): | 
					
					
						
						| 
							 | 
						        if is_text2img: | 
					
					
						
						| 
							 | 
						            return self.scheduler.timesteps, num_inference_steps | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            offset = self.scheduler.config.get("steps_offset", 0) | 
					
					
						
						| 
							 | 
						            init_timestep = int(num_inference_steps * strength) + offset | 
					
					
						
						| 
							 | 
						            init_timestep = min(init_timestep, num_inference_steps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            t_start = max(num_inference_steps - init_timestep + offset, 0) | 
					
					
						
						| 
							 | 
						            timesteps = self.scheduler.timesteps[t_start:] | 
					
					
						
						| 
							 | 
						            return timesteps, num_inference_steps - t_start | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def run_safety_checker(self, image): | 
					
					
						
						| 
							 | 
						        if self.safety_checker is not None: | 
					
					
						
						| 
							 | 
						            safety_checker_input = self.feature_extractor( | 
					
					
						
						| 
							 | 
						                self.numpy_to_pil(image), return_tensors="np" | 
					
					
						
						| 
							 | 
						            ).pixel_values.astype(image.dtype) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            images, has_nsfw_concept = [], [] | 
					
					
						
						| 
							 | 
						            for i in range(image.shape[0]): | 
					
					
						
						| 
							 | 
						                image_i, has_nsfw_concept_i = self.safety_checker( | 
					
					
						
						| 
							 | 
						                    clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                images.append(image_i) | 
					
					
						
						| 
							 | 
						                has_nsfw_concept.append(has_nsfw_concept_i[0]) | 
					
					
						
						| 
							 | 
						            image = np.concatenate(images) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            has_nsfw_concept = None | 
					
					
						
						| 
							 | 
						        return image, has_nsfw_concept | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def decode_latents(self, latents): | 
					
					
						
						| 
							 | 
						        latents = 1 / 0.18215 * latents | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        image = np.concatenate( | 
					
					
						
						| 
							 | 
						            [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        image = np.clip(image / 2 + 0.5, 0, 1) | 
					
					
						
						| 
							 | 
						        image = image.transpose((0, 2, 3, 1)) | 
					
					
						
						| 
							 | 
						        return image | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_extra_step_kwargs(self, generator, eta): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
					
						
						| 
							 | 
						        extra_step_kwargs = {} | 
					
					
						
						| 
							 | 
						        if accepts_eta: | 
					
					
						
						| 
							 | 
						            extra_step_kwargs["eta"] = eta | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
					
						
						| 
							 | 
						        if accepts_generator: | 
					
					
						
						| 
							 | 
						            extra_step_kwargs["generator"] = generator | 
					
					
						
						| 
							 | 
						        return extra_step_kwargs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_latents(self, image, timestep, batch_size, height, width, dtype, generator, latents=None): | 
					
					
						
						| 
							 | 
						        if image is None: | 
					
					
						
						| 
							 | 
						            shape = ( | 
					
					
						
						| 
							 | 
						                batch_size, | 
					
					
						
						| 
							 | 
						                self.unet.config.in_channels, | 
					
					
						
						| 
							 | 
						                height // self.vae_scale_factor, | 
					
					
						
						| 
							 | 
						                width // self.vae_scale_factor, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if latents is None: | 
					
					
						
						| 
							 | 
						                latents = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                if latents.shape != shape: | 
					
					
						
						| 
							 | 
						                    raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            latents = (torch.from_numpy(latents) * self.scheduler.init_noise_sigma).numpy() | 
					
					
						
						| 
							 | 
						            return latents, None, None | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            init_latents = self.vae_encoder(sample=image)[0] | 
					
					
						
						| 
							 | 
						            init_latents = 0.18215 * init_latents | 
					
					
						
						| 
							 | 
						            init_latents = np.concatenate([init_latents] * batch_size, axis=0) | 
					
					
						
						| 
							 | 
						            init_latents_orig = init_latents | 
					
					
						
						| 
							 | 
						            shape = init_latents.shape | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            noise = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype) | 
					
					
						
						| 
							 | 
						            latents = self.scheduler.add_noise( | 
					
					
						
						| 
							 | 
						                torch.from_numpy(init_latents), torch.from_numpy(noise), timestep | 
					
					
						
						| 
							 | 
						            ).numpy() | 
					
					
						
						| 
							 | 
						            return latents, init_latents_orig, noise | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    def __call__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt: Union[str, List[str]], | 
					
					
						
						| 
							 | 
						        negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
					
						
						| 
							 | 
						        image: Union[np.ndarray, PIL.Image.Image] = None, | 
					
					
						
						| 
							 | 
						        mask_image: Union[np.ndarray, PIL.Image.Image] = None, | 
					
					
						
						| 
							 | 
						        height: int = 512, | 
					
					
						
						| 
							 | 
						        width: int = 512, | 
					
					
						
						| 
							 | 
						        num_inference_steps: int = 50, | 
					
					
						
						| 
							 | 
						        guidance_scale: float = 7.5, | 
					
					
						
						| 
							 | 
						        strength: float = 0.8, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt: Optional[int] = 1, | 
					
					
						
						| 
							 | 
						        eta: float = 0.0, | 
					
					
						
						| 
							 | 
						        generator: Optional[torch.Generator] = None, | 
					
					
						
						| 
							 | 
						        latents: Optional[np.ndarray] = None, | 
					
					
						
						| 
							 | 
						        max_embeddings_multiples: Optional[int] = 3, | 
					
					
						
						| 
							 | 
						        output_type: Optional[str] = "pil", | 
					
					
						
						| 
							 | 
						        return_dict: bool = True, | 
					
					
						
						| 
							 | 
						        callback: Optional[Callable[[int, int, np.ndarray], None]] = None, | 
					
					
						
						| 
							 | 
						        is_cancelled_callback: Optional[Callable[[], bool]] = None, | 
					
					
						
						| 
							 | 
						        callback_steps: int = 1, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Function invoked when calling the pipeline for generation. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to guide the image generation. | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | 
					
					
						
						| 
							 | 
						                if `guidance_scale` is less than `1`). | 
					
					
						
						| 
							 | 
						            image (`np.ndarray` or `PIL.Image.Image`): | 
					
					
						
						| 
							 | 
						                `Image`, or tensor representing an image batch, that will be used as the starting point for the | 
					
					
						
						| 
							 | 
						                process. | 
					
					
						
						| 
							 | 
						            mask_image (`np.ndarray` or `PIL.Image.Image`): | 
					
					
						
						| 
							 | 
						                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be | 
					
					
						
						| 
							 | 
						                replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a | 
					
					
						
						| 
							 | 
						                PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should | 
					
					
						
						| 
							 | 
						                contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. | 
					
					
						
						| 
							 | 
						            height (`int`, *optional*, defaults to 512): | 
					
					
						
						| 
							 | 
						                The height in pixels of the generated image. | 
					
					
						
						| 
							 | 
						            width (`int`, *optional*, defaults to 512): | 
					
					
						
						| 
							 | 
						                The width in pixels of the generated image. | 
					
					
						
						| 
							 | 
						            num_inference_steps (`int`, *optional*, defaults to 50): | 
					
					
						
						| 
							 | 
						                The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
					
						
						| 
							 | 
						                expense of slower inference. | 
					
					
						
						| 
							 | 
						            guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
					
						
						| 
							 | 
						                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
					
						
						| 
							 | 
						                `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
					
						
						| 
							 | 
						                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
					
						
						| 
							 | 
						                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
					
						
						| 
							 | 
						                usually at the expense of lower image quality. | 
					
					
						
						| 
							 | 
						            strength (`float`, *optional*, defaults to 0.8): | 
					
					
						
						| 
							 | 
						                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. | 
					
					
						
						| 
							 | 
						                `image` will be used as a starting point, adding more noise to it the larger the `strength`. The | 
					
					
						
						| 
							 | 
						                number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added | 
					
					
						
						| 
							 | 
						                noise will be maximum and the denoising process will run for the full number of iterations specified in | 
					
					
						
						| 
							 | 
						                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The number of images to generate per prompt. | 
					
					
						
						| 
							 | 
						            eta (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
					
						
						| 
							 | 
						                [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
					
						
						| 
							 | 
						            generator (`torch.Generator`, *optional*): | 
					
					
						
						| 
							 | 
						                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | 
					
					
						
						| 
							 | 
						                deterministic. | 
					
					
						
						| 
							 | 
						            latents (`np.ndarray`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
					
						
						| 
							 | 
						                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
					
						
						| 
							 | 
						                tensor will ge generated by sampling using the supplied random `generator`. | 
					
					
						
						| 
							 | 
						            max_embeddings_multiples (`int`, *optional*, defaults to `3`): | 
					
					
						
						| 
							 | 
						                The max multiple length of prompt embeddings compared to the max output length of text encoder. | 
					
					
						
						| 
							 | 
						            output_type (`str`, *optional*, defaults to `"pil"`): | 
					
					
						
						| 
							 | 
						                The output format of the generate image. Choose between | 
					
					
						
						| 
							 | 
						                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
					
						
						| 
							 | 
						            return_dict (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
					
						
						| 
							 | 
						                plain tuple. | 
					
					
						
						| 
							 | 
						            callback (`Callable`, *optional*): | 
					
					
						
						| 
							 | 
						                A function that will be called every `callback_steps` steps during inference. The function will be | 
					
					
						
						| 
							 | 
						                called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. | 
					
					
						
						| 
							 | 
						            is_cancelled_callback (`Callable`, *optional*): | 
					
					
						
						| 
							 | 
						                A function that will be called every `callback_steps` steps during inference. If the function returns | 
					
					
						
						| 
							 | 
						                `True`, the inference will be cancelled. | 
					
					
						
						| 
							 | 
						            callback_steps (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
					
						
						| 
							 | 
						                called at every step. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `None` if cancelled by `is_cancelled_callback`, | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | 
					
					
						
						| 
							 | 
						            When returning a tuple, the first element is a list with the generated images, and the second element is a | 
					
					
						
						| 
							 | 
						            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | 
					
					
						
						| 
							 | 
						            (nsfw) content, according to the `safety_checker`. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        height = height or self.unet.config.sample_size * self.vae_scale_factor | 
					
					
						
						| 
							 | 
						        width = width or self.unet.config.sample_size * self.vae_scale_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.check_inputs(prompt, height, width, strength, callback_steps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        batch_size = 1 if isinstance(prompt, str) else len(prompt) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        do_classifier_free_guidance = guidance_scale > 1.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        text_embeddings = self._encode_prompt( | 
					
					
						
						| 
							 | 
						            prompt, | 
					
					
						
						| 
							 | 
						            num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						            negative_prompt, | 
					
					
						
						| 
							 | 
						            max_embeddings_multiples, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        dtype = text_embeddings.dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if isinstance(image, PIL.Image.Image): | 
					
					
						
						| 
							 | 
						            image = preprocess_image(image) | 
					
					
						
						| 
							 | 
						        if image is not None: | 
					
					
						
						| 
							 | 
						            image = image.astype(dtype) | 
					
					
						
						| 
							 | 
						        if isinstance(mask_image, PIL.Image.Image): | 
					
					
						
						| 
							 | 
						            mask_image = preprocess_mask(mask_image, self.vae_scale_factor) | 
					
					
						
						| 
							 | 
						        if mask_image is not None: | 
					
					
						
						| 
							 | 
						            mask = mask_image.astype(dtype) | 
					
					
						
						| 
							 | 
						            mask = np.concatenate([mask] * batch_size * num_images_per_prompt) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            mask = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.scheduler.set_timesteps(num_inference_steps) | 
					
					
						
						| 
							 | 
						        timestep_dtype = next( | 
					
					
						
						| 
							 | 
						            (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] | 
					
					
						
						| 
							 | 
						        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, image is None) | 
					
					
						
						| 
							 | 
						        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        latents, init_latents_orig, noise = self.prepare_latents( | 
					
					
						
						| 
							 | 
						            image, | 
					
					
						
						| 
							 | 
						            latent_timestep, | 
					
					
						
						| 
							 | 
						            batch_size * num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            height, | 
					
					
						
						| 
							 | 
						            width, | 
					
					
						
						| 
							 | 
						            dtype, | 
					
					
						
						| 
							 | 
						            generator, | 
					
					
						
						| 
							 | 
						            latents, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        for i, t in enumerate(self.progress_bar(timesteps)): | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents | 
					
					
						
						| 
							 | 
						            latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) | 
					
					
						
						| 
							 | 
						            latent_model_input = latent_model_input.numpy() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            noise_pred = self.unet( | 
					
					
						
						| 
							 | 
						                sample=latent_model_input, | 
					
					
						
						| 
							 | 
						                timestep=np.array([t], dtype=timestep_dtype), | 
					
					
						
						| 
							 | 
						                encoder_hidden_states=text_embeddings, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            noise_pred = noise_pred[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						                noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) | 
					
					
						
						| 
							 | 
						                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            scheduler_output = self.scheduler.step( | 
					
					
						
						| 
							 | 
						                torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            latents = scheduler_output.prev_sample.numpy() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if mask is not None: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                init_latents_proper = self.scheduler.add_noise( | 
					
					
						
						| 
							 | 
						                    torch.from_numpy(init_latents_orig), | 
					
					
						
						| 
							 | 
						                    torch.from_numpy(noise), | 
					
					
						
						| 
							 | 
						                    t, | 
					
					
						
						| 
							 | 
						                ).numpy() | 
					
					
						
						| 
							 | 
						                latents = (init_latents_proper * mask) + (latents * (1 - mask)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if i % callback_steps == 0: | 
					
					
						
						| 
							 | 
						                if callback is not None: | 
					
					
						
						| 
							 | 
						                    step_idx = i // getattr(self.scheduler, "order", 1) | 
					
					
						
						| 
							 | 
						                    callback(step_idx, t, latents) | 
					
					
						
						| 
							 | 
						                if is_cancelled_callback is not None and is_cancelled_callback(): | 
					
					
						
						| 
							 | 
						                    return None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        image = self.decode_latents(latents) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        image, has_nsfw_concept = self.run_safety_checker(image) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if output_type == "pil": | 
					
					
						
						| 
							 | 
						            image = self.numpy_to_pil(image) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return image, has_nsfw_concept | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def text2img( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt: Union[str, List[str]], | 
					
					
						
						| 
							 | 
						        negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
					
						
						| 
							 | 
						        height: int = 512, | 
					
					
						
						| 
							 | 
						        width: int = 512, | 
					
					
						
						| 
							 | 
						        num_inference_steps: int = 50, | 
					
					
						
						| 
							 | 
						        guidance_scale: float = 7.5, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt: Optional[int] = 1, | 
					
					
						
						| 
							 | 
						        eta: float = 0.0, | 
					
					
						
						| 
							 | 
						        generator: Optional[torch.Generator] = None, | 
					
					
						
						| 
							 | 
						        latents: Optional[np.ndarray] = None, | 
					
					
						
						| 
							 | 
						        max_embeddings_multiples: Optional[int] = 3, | 
					
					
						
						| 
							 | 
						        output_type: Optional[str] = "pil", | 
					
					
						
						| 
							 | 
						        return_dict: bool = True, | 
					
					
						
						| 
							 | 
						        callback: Optional[Callable[[int, int, np.ndarray], None]] = None, | 
					
					
						
						| 
							 | 
						        callback_steps: int = 1, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Function for text-to-image generation. | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to guide the image generation. | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | 
					
					
						
						| 
							 | 
						                if `guidance_scale` is less than `1`). | 
					
					
						
						| 
							 | 
						            height (`int`, *optional*, defaults to 512): | 
					
					
						
						| 
							 | 
						                The height in pixels of the generated image. | 
					
					
						
						| 
							 | 
						            width (`int`, *optional*, defaults to 512): | 
					
					
						
						| 
							 | 
						                The width in pixels of the generated image. | 
					
					
						
						| 
							 | 
						            num_inference_steps (`int`, *optional*, defaults to 50): | 
					
					
						
						| 
							 | 
						                The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
					
						
						| 
							 | 
						                expense of slower inference. | 
					
					
						
						| 
							 | 
						            guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
					
						
						| 
							 | 
						                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
					
						
						| 
							 | 
						                `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
					
						
						| 
							 | 
						                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
					
						
						| 
							 | 
						                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
					
						
						| 
							 | 
						                usually at the expense of lower image quality. | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The number of images to generate per prompt. | 
					
					
						
						| 
							 | 
						            eta (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
					
						
						| 
							 | 
						                [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
					
						
						| 
							 | 
						            generator (`torch.Generator`, *optional*): | 
					
					
						
						| 
							 | 
						                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | 
					
					
						
						| 
							 | 
						                deterministic. | 
					
					
						
						| 
							 | 
						            latents (`np.ndarray`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
					
						
						| 
							 | 
						                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
					
						
						| 
							 | 
						                tensor will ge generated by sampling using the supplied random `generator`. | 
					
					
						
						| 
							 | 
						            max_embeddings_multiples (`int`, *optional*, defaults to `3`): | 
					
					
						
						| 
							 | 
						                The max multiple length of prompt embeddings compared to the max output length of text encoder. | 
					
					
						
						| 
							 | 
						            output_type (`str`, *optional*, defaults to `"pil"`): | 
					
					
						
						| 
							 | 
						                The output format of the generate image. Choose between | 
					
					
						
						| 
							 | 
						                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
					
						
						| 
							 | 
						            return_dict (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
					
						
						| 
							 | 
						                plain tuple. | 
					
					
						
						| 
							 | 
						            callback (`Callable`, *optional*): | 
					
					
						
						| 
							 | 
						                A function that will be called every `callback_steps` steps during inference. The function will be | 
					
					
						
						| 
							 | 
						                called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. | 
					
					
						
						| 
							 | 
						            callback_steps (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
					
						
						| 
							 | 
						                called at every step. | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | 
					
					
						
						| 
							 | 
						            When returning a tuple, the first element is a list with the generated images, and the second element is a | 
					
					
						
						| 
							 | 
						            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | 
					
					
						
						| 
							 | 
						            (nsfw) content, according to the `safety_checker`. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return self.__call__( | 
					
					
						
						| 
							 | 
						            prompt=prompt, | 
					
					
						
						| 
							 | 
						            negative_prompt=negative_prompt, | 
					
					
						
						| 
							 | 
						            height=height, | 
					
					
						
						| 
							 | 
						            width=width, | 
					
					
						
						| 
							 | 
						            num_inference_steps=num_inference_steps, | 
					
					
						
						| 
							 | 
						            guidance_scale=guidance_scale, | 
					
					
						
						| 
							 | 
						            num_images_per_prompt=num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            eta=eta, | 
					
					
						
						| 
							 | 
						            generator=generator, | 
					
					
						
						| 
							 | 
						            latents=latents, | 
					
					
						
						| 
							 | 
						            max_embeddings_multiples=max_embeddings_multiples, | 
					
					
						
						| 
							 | 
						            output_type=output_type, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						            callback=callback, | 
					
					
						
						| 
							 | 
						            callback_steps=callback_steps, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def img2img( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        image: Union[np.ndarray, PIL.Image.Image], | 
					
					
						
						| 
							 | 
						        prompt: Union[str, List[str]], | 
					
					
						
						| 
							 | 
						        negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
					
						
						| 
							 | 
						        strength: float = 0.8, | 
					
					
						
						| 
							 | 
						        num_inference_steps: Optional[int] = 50, | 
					
					
						
						| 
							 | 
						        guidance_scale: Optional[float] = 7.5, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt: Optional[int] = 1, | 
					
					
						
						| 
							 | 
						        eta: Optional[float] = 0.0, | 
					
					
						
						| 
							 | 
						        generator: Optional[torch.Generator] = None, | 
					
					
						
						| 
							 | 
						        max_embeddings_multiples: Optional[int] = 3, | 
					
					
						
						| 
							 | 
						        output_type: Optional[str] = "pil", | 
					
					
						
						| 
							 | 
						        return_dict: bool = True, | 
					
					
						
						| 
							 | 
						        callback: Optional[Callable[[int, int, np.ndarray], None]] = None, | 
					
					
						
						| 
							 | 
						        callback_steps: int = 1, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Function for image-to-image generation. | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            image (`np.ndarray` or `PIL.Image.Image`): | 
					
					
						
						| 
							 | 
						                `Image`, or ndarray representing an image batch, that will be used as the starting point for the | 
					
					
						
						| 
							 | 
						                process. | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to guide the image generation. | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | 
					
					
						
						| 
							 | 
						                if `guidance_scale` is less than `1`). | 
					
					
						
						| 
							 | 
						            strength (`float`, *optional*, defaults to 0.8): | 
					
					
						
						| 
							 | 
						                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. | 
					
					
						
						| 
							 | 
						                `image` will be used as a starting point, adding more noise to it the larger the `strength`. The | 
					
					
						
						| 
							 | 
						                number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added | 
					
					
						
						| 
							 | 
						                noise will be maximum and the denoising process will run for the full number of iterations specified in | 
					
					
						
						| 
							 | 
						                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. | 
					
					
						
						| 
							 | 
						            num_inference_steps (`int`, *optional*, defaults to 50): | 
					
					
						
						| 
							 | 
						                The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
					
						
						| 
							 | 
						                expense of slower inference. This parameter will be modulated by `strength`. | 
					
					
						
						| 
							 | 
						            guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
					
						
						| 
							 | 
						                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
					
						
						| 
							 | 
						                `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
					
						
						| 
							 | 
						                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
					
						
						| 
							 | 
						                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
					
						
						| 
							 | 
						                usually at the expense of lower image quality. | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The number of images to generate per prompt. | 
					
					
						
						| 
							 | 
						            eta (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
					
						
						| 
							 | 
						                [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
					
						
						| 
							 | 
						            generator (`torch.Generator`, *optional*): | 
					
					
						
						| 
							 | 
						                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | 
					
					
						
						| 
							 | 
						                deterministic. | 
					
					
						
						| 
							 | 
						            max_embeddings_multiples (`int`, *optional*, defaults to `3`): | 
					
					
						
						| 
							 | 
						                The max multiple length of prompt embeddings compared to the max output length of text encoder. | 
					
					
						
						| 
							 | 
						            output_type (`str`, *optional*, defaults to `"pil"`): | 
					
					
						
						| 
							 | 
						                The output format of the generate image. Choose between | 
					
					
						
						| 
							 | 
						                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
					
						
						| 
							 | 
						            return_dict (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
					
						
						| 
							 | 
						                plain tuple. | 
					
					
						
						| 
							 | 
						            callback (`Callable`, *optional*): | 
					
					
						
						| 
							 | 
						                A function that will be called every `callback_steps` steps during inference. The function will be | 
					
					
						
						| 
							 | 
						                called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. | 
					
					
						
						| 
							 | 
						            callback_steps (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
					
						
						| 
							 | 
						                called at every step. | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | 
					
					
						
						| 
							 | 
						            When returning a tuple, the first element is a list with the generated images, and the second element is a | 
					
					
						
						| 
							 | 
						            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | 
					
					
						
						| 
							 | 
						            (nsfw) content, according to the `safety_checker`. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return self.__call__( | 
					
					
						
						| 
							 | 
						            prompt=prompt, | 
					
					
						
						| 
							 | 
						            negative_prompt=negative_prompt, | 
					
					
						
						| 
							 | 
						            image=image, | 
					
					
						
						| 
							 | 
						            num_inference_steps=num_inference_steps, | 
					
					
						
						| 
							 | 
						            guidance_scale=guidance_scale, | 
					
					
						
						| 
							 | 
						            strength=strength, | 
					
					
						
						| 
							 | 
						            num_images_per_prompt=num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            eta=eta, | 
					
					
						
						| 
							 | 
						            generator=generator, | 
					
					
						
						| 
							 | 
						            max_embeddings_multiples=max_embeddings_multiples, | 
					
					
						
						| 
							 | 
						            output_type=output_type, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						            callback=callback, | 
					
					
						
						| 
							 | 
						            callback_steps=callback_steps, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def inpaint( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        image: Union[np.ndarray, PIL.Image.Image], | 
					
					
						
						| 
							 | 
						        mask_image: Union[np.ndarray, PIL.Image.Image], | 
					
					
						
						| 
							 | 
						        prompt: Union[str, List[str]], | 
					
					
						
						| 
							 | 
						        negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
					
						
						| 
							 | 
						        strength: float = 0.8, | 
					
					
						
						| 
							 | 
						        num_inference_steps: Optional[int] = 50, | 
					
					
						
						| 
							 | 
						        guidance_scale: Optional[float] = 7.5, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt: Optional[int] = 1, | 
					
					
						
						| 
							 | 
						        eta: Optional[float] = 0.0, | 
					
					
						
						| 
							 | 
						        generator: Optional[torch.Generator] = None, | 
					
					
						
						| 
							 | 
						        max_embeddings_multiples: Optional[int] = 3, | 
					
					
						
						| 
							 | 
						        output_type: Optional[str] = "pil", | 
					
					
						
						| 
							 | 
						        return_dict: bool = True, | 
					
					
						
						| 
							 | 
						        callback: Optional[Callable[[int, int, np.ndarray], None]] = None, | 
					
					
						
						| 
							 | 
						        callback_steps: int = 1, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Function for inpaint. | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            image (`np.ndarray` or `PIL.Image.Image`): | 
					
					
						
						| 
							 | 
						                `Image`, or tensor representing an image batch, that will be used as the starting point for the | 
					
					
						
						| 
							 | 
						                process. This is the image whose masked region will be inpainted. | 
					
					
						
						| 
							 | 
						            mask_image (`np.ndarray` or `PIL.Image.Image`): | 
					
					
						
						| 
							 | 
						                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be | 
					
					
						
						| 
							 | 
						                replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a | 
					
					
						
						| 
							 | 
						                PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should | 
					
					
						
						| 
							 | 
						                contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to guide the image generation. | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | 
					
					
						
						| 
							 | 
						                if `guidance_scale` is less than `1`). | 
					
					
						
						| 
							 | 
						            strength (`float`, *optional*, defaults to 0.8): | 
					
					
						
						| 
							 | 
						                Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength` | 
					
					
						
						| 
							 | 
						                is 1, the denoising process will be run on the masked area for the full number of iterations specified | 
					
					
						
						| 
							 | 
						                in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more | 
					
					
						
						| 
							 | 
						                noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur. | 
					
					
						
						| 
							 | 
						            num_inference_steps (`int`, *optional*, defaults to 50): | 
					
					
						
						| 
							 | 
						                The reference number of denoising steps. More denoising steps usually lead to a higher quality image at | 
					
					
						
						| 
							 | 
						                the expense of slower inference. This parameter will be modulated by `strength`, as explained above. | 
					
					
						
						| 
							 | 
						            guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
					
						
						| 
							 | 
						                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
					
						
						| 
							 | 
						                `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
					
						
						| 
							 | 
						                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
					
						
						| 
							 | 
						                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
					
						
						| 
							 | 
						                usually at the expense of lower image quality. | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The number of images to generate per prompt. | 
					
					
						
						| 
							 | 
						            eta (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
					
						
						| 
							 | 
						                [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
					
						
						| 
							 | 
						            generator (`torch.Generator`, *optional*): | 
					
					
						
						| 
							 | 
						                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | 
					
					
						
						| 
							 | 
						                deterministic. | 
					
					
						
						| 
							 | 
						            max_embeddings_multiples (`int`, *optional*, defaults to `3`): | 
					
					
						
						| 
							 | 
						                The max multiple length of prompt embeddings compared to the max output length of text encoder. | 
					
					
						
						| 
							 | 
						            output_type (`str`, *optional*, defaults to `"pil"`): | 
					
					
						
						| 
							 | 
						                The output format of the generate image. Choose between | 
					
					
						
						| 
							 | 
						                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
					
						
						| 
							 | 
						            return_dict (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | 
					
					
						
						| 
							 | 
						                plain tuple. | 
					
					
						
						| 
							 | 
						            callback (`Callable`, *optional*): | 
					
					
						
						| 
							 | 
						                A function that will be called every `callback_steps` steps during inference. The function will be | 
					
					
						
						| 
							 | 
						                called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. | 
					
					
						
						| 
							 | 
						            callback_steps (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
					
						
						| 
							 | 
						                called at every step. | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | 
					
					
						
						| 
							 | 
						            When returning a tuple, the first element is a list with the generated images, and the second element is a | 
					
					
						
						| 
							 | 
						            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | 
					
					
						
						| 
							 | 
						            (nsfw) content, according to the `safety_checker`. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return self.__call__( | 
					
					
						
						| 
							 | 
						            prompt=prompt, | 
					
					
						
						| 
							 | 
						            negative_prompt=negative_prompt, | 
					
					
						
						| 
							 | 
						            image=image, | 
					
					
						
						| 
							 | 
						            mask_image=mask_image, | 
					
					
						
						| 
							 | 
						            num_inference_steps=num_inference_steps, | 
					
					
						
						| 
							 | 
						            guidance_scale=guidance_scale, | 
					
					
						
						| 
							 | 
						            strength=strength, | 
					
					
						
						| 
							 | 
						            num_images_per_prompt=num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            eta=eta, | 
					
					
						
						| 
							 | 
						            generator=generator, | 
					
					
						
						| 
							 | 
						            max_embeddings_multiples=max_embeddings_multiples, | 
					
					
						
						| 
							 | 
						            output_type=output_type, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						            callback=callback, | 
					
					
						
						| 
							 | 
						            callback_steps=callback_steps, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 |