| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import inspect | 
					
					
						
						| 
							 | 
						from types import FunctionType | 
					
					
						
						| 
							 | 
						from typing import Any, Callable, Dict, List, Optional, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | 
					
					
						
						| 
							 | 
						from diffusers.loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin | 
					
					
						
						| 
							 | 
						from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel | 
					
					
						
						| 
							 | 
						from diffusers.models.lora import adjust_lora_scale_text_encoder | 
					
					
						
						| 
							 | 
						from diffusers.models.unet_motion_model import MotionAdapter | 
					
					
						
						| 
							 | 
						from diffusers.pipelines.animatediff.pipeline_output import AnimateDiffPipelineOutput | 
					
					
						
						| 
							 | 
						from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | 
					
					
						
						| 
							 | 
						from diffusers.schedulers import ( | 
					
					
						
						| 
							 | 
						    DDIMScheduler, | 
					
					
						
						| 
							 | 
						    DPMSolverMultistepScheduler, | 
					
					
						
						| 
							 | 
						    EulerAncestralDiscreteScheduler, | 
					
					
						
						| 
							 | 
						    EulerDiscreteScheduler, | 
					
					
						
						| 
							 | 
						    LMSDiscreteScheduler, | 
					
					
						
						| 
							 | 
						    PNDMScheduler, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | 
					
					
						
						| 
							 | 
						from diffusers.utils.torch_utils import randn_tensor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						EXAMPLE_DOC_STRING = """ | 
					
					
						
						| 
							 | 
						    Examples: | 
					
					
						
						| 
							 | 
						        ```py | 
					
					
						
						| 
							 | 
						        >>> import torch | 
					
					
						
						| 
							 | 
						        >>> from diffusers import MotionAdapter, DiffusionPipeline, DDIMScheduler | 
					
					
						
						| 
							 | 
						        >>> from diffusers.utils import export_to_gif, load_image | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE" | 
					
					
						
						| 
							 | 
						        >>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2") | 
					
					
						
						| 
							 | 
						        >>> pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", motion_adapter=adapter, custom_pipeline="pipeline_animatediff_img2video").to("cuda") | 
					
					
						
						| 
							 | 
						        >>> pipe.scheduler = pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> image = load_image("snail.png") | 
					
					
						
						| 
							 | 
						        >>> output = pipe(image=image, prompt="A snail moving on the ground", strength=0.8, latent_interpolation_method="slerp") | 
					
					
						
						| 
							 | 
						        >>> frames = output.frames[0] | 
					
					
						
						| 
							 | 
						        >>> export_to_gif(frames, "animation.gif") | 
					
					
						
						| 
							 | 
						        ``` | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def lerp( | 
					
					
						
						| 
							 | 
						    v0: torch.Tensor, | 
					
					
						
						| 
							 | 
						    v1: torch.Tensor, | 
					
					
						
						| 
							 | 
						    t: Union[float, torch.Tensor], | 
					
					
						
						| 
							 | 
						) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Linear Interpolation between two tensors. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        v0 (`torch.Tensor`): First tensor. | 
					
					
						
						| 
							 | 
						        v1 (`torch.Tensor`): Second tensor. | 
					
					
						
						| 
							 | 
						        t: (`float` or `torch.Tensor`): Interpolation factor. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    t_is_float = False | 
					
					
						
						| 
							 | 
						    input_device = v0.device | 
					
					
						
						| 
							 | 
						    v0 = v0.cpu().numpy() | 
					
					
						
						| 
							 | 
						    v1 = v1.cpu().numpy() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if isinstance(t, torch.Tensor): | 
					
					
						
						| 
							 | 
						        t = t.cpu().numpy() | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        t_is_float = True | 
					
					
						
						| 
							 | 
						        t = np.array([t], dtype=v0.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    t = t[..., None] | 
					
					
						
						| 
							 | 
						    v0 = v0[None, ...] | 
					
					
						
						| 
							 | 
						    v1 = v1[None, ...] | 
					
					
						
						| 
							 | 
						    v2 = (1 - t) * v0 + t * v1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if t_is_float and v0.ndim > 1: | 
					
					
						
						| 
							 | 
						        assert v2.shape[0] == 1 | 
					
					
						
						| 
							 | 
						        v2 = np.squeeze(v2, axis=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    v2 = torch.from_numpy(v2).to(input_device) | 
					
					
						
						| 
							 | 
						    return v2 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def slerp( | 
					
					
						
						| 
							 | 
						    v0: torch.Tensor, | 
					
					
						
						| 
							 | 
						    v1: torch.Tensor, | 
					
					
						
						| 
							 | 
						    t: Union[float, torch.Tensor], | 
					
					
						
						| 
							 | 
						    DOT_THRESHOLD: float = 0.9995, | 
					
					
						
						| 
							 | 
						) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Spherical Linear Interpolation between two tensors. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        v0 (`torch.Tensor`): First tensor. | 
					
					
						
						| 
							 | 
						        v1 (`torch.Tensor`): Second tensor. | 
					
					
						
						| 
							 | 
						        t: (`float` or `torch.Tensor`): Interpolation factor. | 
					
					
						
						| 
							 | 
						        DOT_THRESHOLD (`float`): | 
					
					
						
						| 
							 | 
						            Dot product threshold exceeding which linear interpolation will be used | 
					
					
						
						| 
							 | 
						            because input tensors are close to parallel. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    t_is_float = False | 
					
					
						
						| 
							 | 
						    input_device = v0.device | 
					
					
						
						| 
							 | 
						    v0 = v0.cpu().numpy() | 
					
					
						
						| 
							 | 
						    v1 = v1.cpu().numpy() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if isinstance(t, torch.Tensor): | 
					
					
						
						| 
							 | 
						        t = t.cpu().numpy() | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        t_is_float = True | 
					
					
						
						| 
							 | 
						        t = np.array([t], dtype=v0.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if np.abs(dot) > DOT_THRESHOLD: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        v2 = lerp(v0, v1, t) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        theta_0 = np.arccos(dot) | 
					
					
						
						| 
							 | 
						        sin_theta_0 = np.sin(theta_0) | 
					
					
						
						| 
							 | 
						        theta_t = theta_0 * t | 
					
					
						
						| 
							 | 
						        sin_theta_t = np.sin(theta_t) | 
					
					
						
						| 
							 | 
						        s0 = np.sin(theta_0 - theta_t) / sin_theta_0 | 
					
					
						
						| 
							 | 
						        s1 = sin_theta_t / sin_theta_0 | 
					
					
						
						| 
							 | 
						        s0 = s0[..., None] | 
					
					
						
						| 
							 | 
						        s1 = s1[..., None] | 
					
					
						
						| 
							 | 
						        v0 = v0[None, ...] | 
					
					
						
						| 
							 | 
						        v1 = v1[None, ...] | 
					
					
						
						| 
							 | 
						        v2 = s0 * v0 + s1 * v1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if t_is_float and v0.ndim > 1: | 
					
					
						
						| 
							 | 
						        assert v2.shape[0] == 1 | 
					
					
						
						| 
							 | 
						        v2 = np.squeeze(v2, axis=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    v2 = torch.from_numpy(v2).to(input_device) | 
					
					
						
						| 
							 | 
						    return v2 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def tensor2vid(video: torch.Tensor, processor, output_type="np"): | 
					
					
						
						| 
							 | 
						    batch_size, channels, num_frames, height, width = video.shape | 
					
					
						
						| 
							 | 
						    outputs = [] | 
					
					
						
						| 
							 | 
						    for batch_idx in range(batch_size): | 
					
					
						
						| 
							 | 
						        batch_vid = video[batch_idx].permute(1, 0, 2, 3) | 
					
					
						
						| 
							 | 
						        batch_output = processor.postprocess(batch_vid, output_type) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs.append(batch_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if output_type == "np": | 
					
					
						
						| 
							 | 
						        outputs = np.stack(outputs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    elif output_type == "pt": | 
					
					
						
						| 
							 | 
						        outputs = torch.stack(outputs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    elif not output_type == "pil": | 
					
					
						
						| 
							 | 
						        raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def retrieve_latents( | 
					
					
						
						| 
							 | 
						    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | 
					
					
						
						| 
							 | 
						        return encoder_output.latent_dist.sample(generator) | 
					
					
						
						| 
							 | 
						    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | 
					
					
						
						| 
							 | 
						        return encoder_output.latent_dist.mode() | 
					
					
						
						| 
							 | 
						    elif hasattr(encoder_output, "latents"): | 
					
					
						
						| 
							 | 
						        return encoder_output.latents | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        raise AttributeError("Could not access latents of provided encoder_output") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def retrieve_timesteps( | 
					
					
						
						| 
							 | 
						    scheduler, | 
					
					
						
						| 
							 | 
						    num_inference_steps: Optional[int] = None, | 
					
					
						
						| 
							 | 
						    device: Optional[Union[str, torch.device]] = None, | 
					
					
						
						| 
							 | 
						    timesteps: Optional[List[int]] = None, | 
					
					
						
						| 
							 | 
						    **kwargs, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | 
					
					
						
						| 
							 | 
						    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        scheduler (`SchedulerMixin`): | 
					
					
						
						| 
							 | 
						            The scheduler to get timesteps from. | 
					
					
						
						| 
							 | 
						        num_inference_steps (`int`): | 
					
					
						
						| 
							 | 
						            The number of diffusion steps used when generating samples with a pre-trained model. If used, | 
					
					
						
						| 
							 | 
						            `timesteps` must be `None`. | 
					
					
						
						| 
							 | 
						        device (`str` or `torch.device`, *optional*): | 
					
					
						
						| 
							 | 
						            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | 
					
					
						
						| 
							 | 
						        timesteps (`List[int]`, *optional*): | 
					
					
						
						| 
							 | 
						                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | 
					
					
						
						| 
							 | 
						                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | 
					
					
						
						| 
							 | 
						                must be `None`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | 
					
					
						
						| 
							 | 
						        second element is the number of inference steps. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    if timesteps is not None: | 
					
					
						
						| 
							 | 
						        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | 
					
					
						
						| 
							 | 
						        if not accepts_timesteps: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | 
					
					
						
						| 
							 | 
						                f" timestep schedules. Please check whether you are using the correct scheduler." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | 
					
					
						
						| 
							 | 
						        timesteps = scheduler.timesteps | 
					
					
						
						| 
							 | 
						        num_inference_steps = len(timesteps) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | 
					
					
						
						| 
							 | 
						        timesteps = scheduler.timesteps | 
					
					
						
						| 
							 | 
						    return timesteps, num_inference_steps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class AnimateDiffImgToVideoPipeline( | 
					
					
						
						| 
							 | 
						    DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Pipeline for image-to-video generation. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | 
					
					
						
						| 
							 | 
						    implemented for all pipelines (downloading, saving, running on a particular device, etc.). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    The pipeline also inherits the following loading methods: | 
					
					
						
						| 
							 | 
						        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | 
					
					
						
						| 
							 | 
						        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights | 
					
					
						
						| 
							 | 
						        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights | 
					
					
						
						| 
							 | 
						        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        vae ([`AutoencoderKL`]): | 
					
					
						
						| 
							 | 
						            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
					
						
						| 
							 | 
						        text_encoder ([`CLIPTextModel`]): | 
					
					
						
						| 
							 | 
						            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | 
					
					
						
						| 
							 | 
						        tokenizer (`CLIPTokenizer`): | 
					
					
						
						| 
							 | 
						            A [`~transformers.CLIPTokenizer`] to tokenize text. | 
					
					
						
						| 
							 | 
						        unet ([`UNet2DConditionModel`]): | 
					
					
						
						| 
							 | 
						            A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents. | 
					
					
						
						| 
							 | 
						        motion_adapter ([`MotionAdapter`]): | 
					
					
						
						| 
							 | 
						            A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents. | 
					
					
						
						| 
							 | 
						        scheduler ([`SchedulerMixin`]): | 
					
					
						
						| 
							 | 
						            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
					
						
						| 
							 | 
						            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | 
					
					
						
						| 
							 | 
						    _optional_components = ["feature_extractor", "image_encoder"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vae: AutoencoderKL, | 
					
					
						
						| 
							 | 
						        text_encoder: CLIPTextModel, | 
					
					
						
						| 
							 | 
						        tokenizer: CLIPTokenizer, | 
					
					
						
						| 
							 | 
						        unet: UNet2DConditionModel, | 
					
					
						
						| 
							 | 
						        motion_adapter: MotionAdapter, | 
					
					
						
						| 
							 | 
						        scheduler: Union[ | 
					
					
						
						| 
							 | 
						            DDIMScheduler, | 
					
					
						
						| 
							 | 
						            PNDMScheduler, | 
					
					
						
						| 
							 | 
						            LMSDiscreteScheduler, | 
					
					
						
						| 
							 | 
						            EulerDiscreteScheduler, | 
					
					
						
						| 
							 | 
						            EulerAncestralDiscreteScheduler, | 
					
					
						
						| 
							 | 
						            DPMSolverMultistepScheduler, | 
					
					
						
						| 
							 | 
						        ], | 
					
					
						
						| 
							 | 
						        feature_extractor: CLIPImageProcessor = None, | 
					
					
						
						| 
							 | 
						        image_encoder: CLIPVisionModelWithProjection = None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        unet = UNetMotionModel.from_unet2d(unet, motion_adapter) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.register_modules( | 
					
					
						
						| 
							 | 
						            vae=vae, | 
					
					
						
						| 
							 | 
						            text_encoder=text_encoder, | 
					
					
						
						| 
							 | 
						            tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						            unet=unet, | 
					
					
						
						| 
							 | 
						            motion_adapter=motion_adapter, | 
					
					
						
						| 
							 | 
						            scheduler=scheduler, | 
					
					
						
						| 
							 | 
						            feature_extractor=feature_extractor, | 
					
					
						
						| 
							 | 
						            image_encoder=image_encoder, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
					
						
						| 
							 | 
						        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def encode_prompt( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt, | 
					
					
						
						| 
							 | 
						        device, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt, | 
					
					
						
						| 
							 | 
						        do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						        negative_prompt=None, | 
					
					
						
						| 
							 | 
						        prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        lora_scale: Optional[float] = None, | 
					
					
						
						| 
							 | 
						        clip_skip: Optional[int] = None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Encodes the prompt into text encoder hidden states. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                prompt to be encoded | 
					
					
						
						| 
							 | 
						            device: (`torch.device`): | 
					
					
						
						| 
							 | 
						                torch device | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`): | 
					
					
						
						| 
							 | 
						                number of images that should be generated per prompt | 
					
					
						
						| 
							 | 
						            do_classifier_free_guidance (`bool`): | 
					
					
						
						| 
							 | 
						                whether to use classifier free guidance or not | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
					
						
						| 
							 | 
						                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
					
						
						| 
							 | 
						                less than `1`). | 
					
					
						
						| 
							 | 
						            prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
					
						
						| 
							 | 
						                provided, text embeddings will be generated from `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
					
						
						| 
							 | 
						                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
					
						
						| 
							 | 
						                argument. | 
					
					
						
						| 
							 | 
						            lora_scale (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
					
						
						| 
							 | 
						            clip_skip (`int`, *optional*): | 
					
					
						
						| 
							 | 
						                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
					
						
						| 
							 | 
						                the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if lora_scale is not None and isinstance(self, LoraLoaderMixin): | 
					
					
						
						| 
							 | 
						            self._lora_scale = lora_scale | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if not USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                scale_lora_layers(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt is not None and isinstance(prompt, str): | 
					
					
						
						| 
							 | 
						            batch_size = 1 | 
					
					
						
						| 
							 | 
						        elif prompt is not None and isinstance(prompt, list): | 
					
					
						
						| 
							 | 
						            batch_size = len(prompt) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = prompt_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt_embeds is None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if isinstance(self, TextualInversionLoaderMixin): | 
					
					
						
						| 
							 | 
						                prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            text_inputs = self.tokenizer( | 
					
					
						
						| 
							 | 
						                prompt, | 
					
					
						
						| 
							 | 
						                padding="max_length", | 
					
					
						
						| 
							 | 
						                max_length=self.tokenizer.model_max_length, | 
					
					
						
						| 
							 | 
						                truncation=True, | 
					
					
						
						| 
							 | 
						                return_tensors="pt", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            text_input_ids = text_inputs.input_ids | 
					
					
						
						| 
							 | 
						            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
					
						
						| 
							 | 
						                text_input_ids, untruncated_ids | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                removed_text = self.tokenizer.batch_decode( | 
					
					
						
						| 
							 | 
						                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                logger.warning( | 
					
					
						
						| 
							 | 
						                    "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
					
						
						| 
							 | 
						                    f" {self.tokenizer.model_max_length} tokens: {removed_text}" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
					
						
						| 
							 | 
						                attention_mask = text_inputs.attention_mask.to(device) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                attention_mask = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if clip_skip is None: | 
					
					
						
						| 
							 | 
						                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | 
					
					
						
						| 
							 | 
						                prompt_embeds = prompt_embeds[0] | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                prompt_embeds = self.text_encoder( | 
					
					
						
						| 
							 | 
						                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.text_encoder is not None: | 
					
					
						
						| 
							 | 
						            prompt_embeds_dtype = self.text_encoder.dtype | 
					
					
						
						| 
							 | 
						        elif self.unet is not None: | 
					
					
						
						| 
							 | 
						            prompt_embeds_dtype = self.unet.dtype | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            prompt_embeds_dtype = prompt_embeds.dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bs_embed, seq_len, _ = prompt_embeds.shape | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            uncond_tokens: List[str] | 
					
					
						
						| 
							 | 
						            if negative_prompt is None: | 
					
					
						
						| 
							 | 
						                uncond_tokens = [""] * batch_size | 
					
					
						
						| 
							 | 
						            elif prompt is not None and type(prompt) is not type(negative_prompt): | 
					
					
						
						| 
							 | 
						                raise TypeError( | 
					
					
						
						| 
							 | 
						                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
					
						
						| 
							 | 
						                    f" {type(prompt)}." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            elif isinstance(negative_prompt, str): | 
					
					
						
						| 
							 | 
						                uncond_tokens = [negative_prompt] | 
					
					
						
						| 
							 | 
						            elif batch_size != len(negative_prompt): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
					
						
						| 
							 | 
						                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
					
						
						| 
							 | 
						                    " the batch size of `prompt`." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                uncond_tokens = negative_prompt | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if isinstance(self, TextualInversionLoaderMixin): | 
					
					
						
						| 
							 | 
						                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            max_length = prompt_embeds.shape[1] | 
					
					
						
						| 
							 | 
						            uncond_input = self.tokenizer( | 
					
					
						
						| 
							 | 
						                uncond_tokens, | 
					
					
						
						| 
							 | 
						                padding="max_length", | 
					
					
						
						| 
							 | 
						                max_length=max_length, | 
					
					
						
						| 
							 | 
						                truncation=True, | 
					
					
						
						| 
							 | 
						                return_tensors="pt", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | 
					
					
						
						| 
							 | 
						                attention_mask = uncond_input.attention_mask.to(device) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                attention_mask = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = self.text_encoder( | 
					
					
						
						| 
							 | 
						                uncond_input.input_ids.to(device), | 
					
					
						
						| 
							 | 
						                attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            seq_len = negative_prompt_embeds.shape[1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            unscale_lora_layers(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return prompt_embeds, negative_prompt_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | 
					
					
						
						| 
							 | 
						        dtype = next(self.image_encoder.parameters()).dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not isinstance(image, torch.Tensor): | 
					
					
						
						| 
							 | 
						            image = self.feature_extractor(image, return_tensors="pt").pixel_values | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image = image.to(device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						        if output_hidden_states: | 
					
					
						
						| 
							 | 
						            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | 
					
					
						
						| 
							 | 
						            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | 
					
					
						
						| 
							 | 
						            uncond_image_enc_hidden_states = self.image_encoder( | 
					
					
						
						| 
							 | 
						                torch.zeros_like(image), output_hidden_states=True | 
					
					
						
						| 
							 | 
						            ).hidden_states[-2] | 
					
					
						
						| 
							 | 
						            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | 
					
					
						
						| 
							 | 
						                num_images_per_prompt, dim=0 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            return image_enc_hidden_states, uncond_image_enc_hidden_states | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            image_embeds = self.image_encoder(image).image_embeds | 
					
					
						
						| 
							 | 
						            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | 
					
					
						
						| 
							 | 
						            uncond_image_embeds = torch.zeros_like(image_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            return image_embeds, uncond_image_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def prepare_ip_adapter_image_embeds( | 
					
					
						
						| 
							 | 
						        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if ip_adapter_image_embeds is None: | 
					
					
						
						| 
							 | 
						            if not isinstance(ip_adapter_image, list): | 
					
					
						
						| 
							 | 
						                ip_adapter_image = [ip_adapter_image] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            image_embeds = [] | 
					
					
						
						| 
							 | 
						            for single_ip_adapter_image, image_proj_layer in zip( | 
					
					
						
						| 
							 | 
						                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | 
					
					
						
						| 
							 | 
						                single_image_embeds, single_negative_image_embeds = self.encode_image( | 
					
					
						
						| 
							 | 
						                    single_ip_adapter_image, device, 1, output_hidden_state | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) | 
					
					
						
						| 
							 | 
						                single_negative_image_embeds = torch.stack( | 
					
					
						
						| 
							 | 
						                    [single_negative_image_embeds] * num_images_per_prompt, dim=0 | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if self.do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | 
					
					
						
						| 
							 | 
						                    single_image_embeds = single_image_embeds.to(device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                image_embeds.append(single_image_embeds) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            image_embeds = ip_adapter_image_embeds | 
					
					
						
						| 
							 | 
						        return image_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def decode_latents(self, latents): | 
					
					
						
						| 
							 | 
						        latents = 1 / self.vae.config.scaling_factor * latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        batch_size, channels, num_frames, height, width = latents.shape | 
					
					
						
						| 
							 | 
						        latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image = self.vae.decode(latents).sample | 
					
					
						
						| 
							 | 
						        video = ( | 
					
					
						
						| 
							 | 
						            image[None, :] | 
					
					
						
						| 
							 | 
						            .reshape( | 
					
					
						
						| 
							 | 
						                ( | 
					
					
						
						| 
							 | 
						                    batch_size, | 
					
					
						
						| 
							 | 
						                    num_frames, | 
					
					
						
						| 
							 | 
						                    -1, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                + image.shape[2:] | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            .permute(0, 2, 1, 3, 4) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        video = video.float() | 
					
					
						
						| 
							 | 
						        return video | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def prepare_extra_step_kwargs(self, generator, eta): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
					
						
						| 
							 | 
						        extra_step_kwargs = {} | 
					
					
						
						| 
							 | 
						        if accepts_eta: | 
					
					
						
						| 
							 | 
						            extra_step_kwargs["eta"] = eta | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
					
						
						| 
							 | 
						        if accepts_generator: | 
					
					
						
						| 
							 | 
						            extra_step_kwargs["generator"] = generator | 
					
					
						
						| 
							 | 
						        return extra_step_kwargs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def check_inputs( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt, | 
					
					
						
						| 
							 | 
						        height, | 
					
					
						
						| 
							 | 
						        width, | 
					
					
						
						| 
							 | 
						        callback_steps, | 
					
					
						
						| 
							 | 
						        negative_prompt=None, | 
					
					
						
						| 
							 | 
						        prompt_embeds=None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds=None, | 
					
					
						
						| 
							 | 
						        callback_on_step_end_tensor_inputs=None, | 
					
					
						
						| 
							 | 
						        latent_interpolation_method=None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if height % 8 != 0 or width % 8 != 0: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
					
						
						| 
							 | 
						                f" {type(callback_steps)}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        if callback_on_step_end_tensor_inputs is not None and not all( | 
					
					
						
						| 
							 | 
						            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt is not None and prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
					
						
						| 
							 | 
						                " only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif prompt is None and prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
					
						
						| 
							 | 
						                f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
					
						
						| 
							 | 
						                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
					
						
						| 
							 | 
						                    f" {negative_prompt_embeds.shape}." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if latent_interpolation_method is not None: | 
					
					
						
						| 
							 | 
						            if latent_interpolation_method not in ["lerp", "slerp"] and not isinstance( | 
					
					
						
						| 
							 | 
						                latent_interpolation_method, FunctionType | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "`latent_interpolation_method` must be one of `lerp`, `slerp` or a Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_latents( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        image, | 
					
					
						
						| 
							 | 
						        strength, | 
					
					
						
						| 
							 | 
						        batch_size, | 
					
					
						
						| 
							 | 
						        num_channels_latents, | 
					
					
						
						| 
							 | 
						        num_frames, | 
					
					
						
						| 
							 | 
						        height, | 
					
					
						
						| 
							 | 
						        width, | 
					
					
						
						| 
							 | 
						        dtype, | 
					
					
						
						| 
							 | 
						        device, | 
					
					
						
						| 
							 | 
						        generator, | 
					
					
						
						| 
							 | 
						        latents=None, | 
					
					
						
						| 
							 | 
						        latent_interpolation_method="slerp", | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        shape = ( | 
					
					
						
						| 
							 | 
						            batch_size, | 
					
					
						
						| 
							 | 
						            num_channels_latents, | 
					
					
						
						| 
							 | 
						            num_frames, | 
					
					
						
						| 
							 | 
						            height // self.vae_scale_factor, | 
					
					
						
						| 
							 | 
						            width // self.vae_scale_factor, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if latents is None: | 
					
					
						
						| 
							 | 
						            image = image.to(device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if image.shape[1] == 4: | 
					
					
						
						| 
							 | 
						                latents = image | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if self.vae.config.force_upcast: | 
					
					
						
						| 
							 | 
						                    image = image.float() | 
					
					
						
						| 
							 | 
						                    self.vae.to(dtype=torch.float32) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if isinstance(generator, list): | 
					
					
						
						| 
							 | 
						                    if len(generator) != batch_size: | 
					
					
						
						| 
							 | 
						                        raise ValueError( | 
					
					
						
						| 
							 | 
						                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
					
						
						| 
							 | 
						                            f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
					
						
						| 
							 | 
						                        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    init_latents = [ | 
					
					
						
						| 
							 | 
						                        retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | 
					
					
						
						| 
							 | 
						                        for i in range(batch_size) | 
					
					
						
						| 
							 | 
						                    ] | 
					
					
						
						| 
							 | 
						                    init_latents = torch.cat(init_latents, dim=0) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if self.vae.config.force_upcast: | 
					
					
						
						| 
							 | 
						                    self.vae.to(dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                init_latents = init_latents.to(dtype) | 
					
					
						
						| 
							 | 
						                init_latents = self.vae.config.scaling_factor * init_latents | 
					
					
						
						| 
							 | 
						                latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						                latents = latents * self.scheduler.init_noise_sigma | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if latent_interpolation_method == "lerp": | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    def latent_cls(v0, v1, index): | 
					
					
						
						| 
							 | 
						                        return lerp(v0, v1, index / num_frames * (1 - strength)) | 
					
					
						
						| 
							 | 
						                elif latent_interpolation_method == "slerp": | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    def latent_cls(v0, v1, index): | 
					
					
						
						| 
							 | 
						                        return slerp(v0, v1, index / num_frames * (1 - strength)) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    latent_cls = latent_interpolation_method | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                for i in range(num_frames): | 
					
					
						
						| 
							 | 
						                    latents[:, :, i, :, :] = latent_cls(latents[:, :, i, :, :], init_latents, i) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if shape != latents.shape: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}") | 
					
					
						
						| 
							 | 
						            latents = latents.to(device, dtype=dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    def __call__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        image: PipelineImageInput, | 
					
					
						
						| 
							 | 
						        prompt: Optional[Union[str, List[str]]] = None, | 
					
					
						
						| 
							 | 
						        height: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        width: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        num_frames: int = 16, | 
					
					
						
						| 
							 | 
						        num_inference_steps: int = 50, | 
					
					
						
						| 
							 | 
						        timesteps: Optional[List[int]] = None, | 
					
					
						
						| 
							 | 
						        guidance_scale: float = 7.5, | 
					
					
						
						| 
							 | 
						        strength: float = 0.8, | 
					
					
						
						| 
							 | 
						        negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
					
						
						| 
							 | 
						        num_videos_per_prompt: Optional[int] = 1, | 
					
					
						
						| 
							 | 
						        eta: float = 0.0, | 
					
					
						
						| 
							 | 
						        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
					
						
						| 
							 | 
						        latents: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        ip_adapter_image: Optional[PipelineImageInput] = None, | 
					
					
						
						| 
							 | 
						        ip_adapter_image_embeds: Optional[PipelineImageInput] = None, | 
					
					
						
						| 
							 | 
						        output_type: Optional[str] = "pil", | 
					
					
						
						| 
							 | 
						        return_dict: bool = True, | 
					
					
						
						| 
							 | 
						        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | 
					
					
						
						| 
							 | 
						        callback_steps: Optional[int] = 1, | 
					
					
						
						| 
							 | 
						        cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
					
						
						| 
							 | 
						        clip_skip: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        latent_interpolation_method: Union[str, Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]] = "slerp", | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        The call function to the pipeline for generation. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            image (`PipelineImageInput`): | 
					
					
						
						| 
							 | 
						                The input image to condition the generation on. | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | 
					
					
						
						| 
							 | 
						            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
					
						
						| 
							 | 
						                The height in pixels of the generated video. | 
					
					
						
						| 
							 | 
						            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | 
					
					
						
						| 
							 | 
						                The width in pixels of the generated video. | 
					
					
						
						| 
							 | 
						            num_frames (`int`, *optional*, defaults to 16): | 
					
					
						
						| 
							 | 
						                The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds | 
					
					
						
						| 
							 | 
						                amounts to 2 seconds of video. | 
					
					
						
						| 
							 | 
						            num_inference_steps (`int`, *optional*, defaults to 50): | 
					
					
						
						| 
							 | 
						                The number of denoising steps. More denoising steps usually lead to a higher quality videos at the | 
					
					
						
						| 
							 | 
						                expense of slower inference. | 
					
					
						
						| 
							 | 
						            strength (`float`, *optional*, defaults to 0.8): | 
					
					
						
						| 
							 | 
						                Higher strength leads to more differences between original image and generated video. | 
					
					
						
						| 
							 | 
						            guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
					
						
						| 
							 | 
						                A higher guidance scale value encourages the model to generate images closely linked to the text | 
					
					
						
						| 
							 | 
						                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to guide what to not include in image generation. If not defined, you need to | 
					
					
						
						| 
							 | 
						                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | 
					
					
						
						| 
							 | 
						            eta (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | 
					
					
						
						| 
							 | 
						                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | 
					
					
						
						| 
							 | 
						            generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
					
						
						| 
							 | 
						                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | 
					
					
						
						| 
							 | 
						                generation deterministic. | 
					
					
						
						| 
							 | 
						            latents (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video | 
					
					
						
						| 
							 | 
						                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
					
						
						| 
							 | 
						                tensor is generated by sampling using the supplied random `generator`. Latents should be of shape | 
					
					
						
						| 
							 | 
						                `(batch_size, num_channel, num_frames, height, width)`. | 
					
					
						
						| 
							 | 
						            prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | 
					
					
						
						| 
							 | 
						                provided, text embeddings are generated from the `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | 
					
					
						
						| 
							 | 
						                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | 
					
					
						
						| 
							 | 
						            ip_adapter_image: (`PipelineImageInput`, *optional*): | 
					
					
						
						| 
							 | 
						                Optional image input to work with IP Adapters. | 
					
					
						
						| 
							 | 
						            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. | 
					
					
						
						| 
							 | 
						                Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding | 
					
					
						
						| 
							 | 
						                if `do_classifier_free_guidance` is set to `True`. | 
					
					
						
						| 
							 | 
						                If not provided, embeddings are computed from the `ip_adapter_image` input argument. | 
					
					
						
						| 
							 | 
						            output_type (`str`, *optional*, defaults to `"pil"`): | 
					
					
						
						| 
							 | 
						                The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or | 
					
					
						
						| 
							 | 
						                `np.array`. | 
					
					
						
						| 
							 | 
						            return_dict (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						                Whether or not to return a [`AnimateDiffImgToVideoPipelineOutput`] instead | 
					
					
						
						| 
							 | 
						                of a plain tuple. | 
					
					
						
						| 
							 | 
						            callback (`Callable`, *optional*): | 
					
					
						
						| 
							 | 
						                A function that calls every `callback_steps` steps during inference. The function is called with the | 
					
					
						
						| 
							 | 
						                following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | 
					
					
						
						| 
							 | 
						            callback_steps (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The frequency at which the `callback` function is called. If not specified, the callback is called at | 
					
					
						
						| 
							 | 
						                every step. | 
					
					
						
						| 
							 | 
						            cross_attention_kwargs (`dict`, *optional*): | 
					
					
						
						| 
							 | 
						                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | 
					
					
						
						| 
							 | 
						                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 
					
					
						
						| 
							 | 
						            clip_skip (`int`, *optional*): | 
					
					
						
						| 
							 | 
						                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
					
						
						| 
							 | 
						                the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
					
						
						| 
							 | 
						            latent_interpolation_method (`str` or `Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]]`, *optional*): | 
					
					
						
						| 
							 | 
						                Must be one of "lerp", "slerp" or a callable that takes in a random noisy latent, image latent and a frame index | 
					
					
						
						| 
							 | 
						                as input and returns an initial latent for sampling. | 
					
					
						
						| 
							 | 
						        Examples: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`: | 
					
					
						
						| 
							 | 
						                If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is | 
					
					
						
						| 
							 | 
						                returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        height = height or self.unet.config.sample_size * self.vae_scale_factor | 
					
					
						
						| 
							 | 
						        width = width or self.unet.config.sample_size * self.vae_scale_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        num_videos_per_prompt = 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.check_inputs( | 
					
					
						
						| 
							 | 
						            prompt=prompt, | 
					
					
						
						| 
							 | 
						            height=height, | 
					
					
						
						| 
							 | 
						            width=width, | 
					
					
						
						| 
							 | 
						            callback_steps=callback_steps, | 
					
					
						
						| 
							 | 
						            negative_prompt=negative_prompt, | 
					
					
						
						| 
							 | 
						            prompt_embeds=prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds=negative_prompt_embeds, | 
					
					
						
						| 
							 | 
						            latent_interpolation_method=latent_interpolation_method, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if prompt is not None and isinstance(prompt, str): | 
					
					
						
						| 
							 | 
						            batch_size = 1 | 
					
					
						
						| 
							 | 
						        elif prompt is not None and isinstance(prompt, list): | 
					
					
						
						| 
							 | 
						            batch_size = len(prompt) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = prompt_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        device = self._execution_device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        do_classifier_free_guidance = guidance_scale > 1.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        text_encoder_lora_scale = ( | 
					
					
						
						| 
							 | 
						            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        prompt_embeds, negative_prompt_embeds = self.encode_prompt( | 
					
					
						
						| 
							 | 
						            prompt, | 
					
					
						
						| 
							 | 
						            device, | 
					
					
						
						| 
							 | 
						            num_videos_per_prompt, | 
					
					
						
						| 
							 | 
						            do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						            negative_prompt, | 
					
					
						
						| 
							 | 
						            prompt_embeds=prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds=negative_prompt_embeds, | 
					
					
						
						| 
							 | 
						            lora_scale=text_encoder_lora_scale, | 
					
					
						
						| 
							 | 
						            clip_skip=clip_skip, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ip_adapter_image is not None: | 
					
					
						
						| 
							 | 
						            image_embeds = self.prepare_ip_adapter_image_embeds( | 
					
					
						
						| 
							 | 
						                ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        image = self.image_processor.preprocess(image, height=height, width=width) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        num_channels_latents = self.unet.config.in_channels | 
					
					
						
						| 
							 | 
						        latents = self.prepare_latents( | 
					
					
						
						| 
							 | 
						            image=image, | 
					
					
						
						| 
							 | 
						            strength=strength, | 
					
					
						
						| 
							 | 
						            batch_size=batch_size * num_videos_per_prompt, | 
					
					
						
						| 
							 | 
						            num_channels_latents=num_channels_latents, | 
					
					
						
						| 
							 | 
						            num_frames=num_frames, | 
					
					
						
						| 
							 | 
						            height=height, | 
					
					
						
						| 
							 | 
						            width=width, | 
					
					
						
						| 
							 | 
						            dtype=prompt_embeds.dtype, | 
					
					
						
						| 
							 | 
						            device=device, | 
					
					
						
						| 
							 | 
						            generator=generator, | 
					
					
						
						| 
							 | 
						            latents=latents, | 
					
					
						
						| 
							 | 
						            latent_interpolation_method=latent_interpolation_method, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        added_cond_kwargs = ( | 
					
					
						
						| 
							 | 
						            {"image_embeds": image_embeds} | 
					
					
						
						| 
							 | 
						            if ip_adapter_image is not None or ip_adapter_image_embeds is not None | 
					
					
						
						| 
							 | 
						            else None | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | 
					
					
						
						| 
							 | 
						        with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
					
						
						| 
							 | 
						            for i, t in enumerate(timesteps): | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
					
						
						| 
							 | 
						                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                noise_pred = self.unet( | 
					
					
						
						| 
							 | 
						                    latent_model_input, | 
					
					
						
						| 
							 | 
						                    t, | 
					
					
						
						| 
							 | 
						                    encoder_hidden_states=prompt_embeds, | 
					
					
						
						| 
							 | 
						                    cross_attention_kwargs=cross_attention_kwargs, | 
					
					
						
						| 
							 | 
						                    added_cond_kwargs=added_cond_kwargs, | 
					
					
						
						| 
							 | 
						                ).sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
					
						
						| 
							 | 
						                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
					
						
						| 
							 | 
						                    progress_bar.update() | 
					
					
						
						| 
							 | 
						                    if callback is not None and i % callback_steps == 0: | 
					
					
						
						| 
							 | 
						                        callback(i, t, latents) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_type == "latent": | 
					
					
						
						| 
							 | 
						            return AnimateDiffPipelineOutput(frames=latents) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if output_type == "latent": | 
					
					
						
						| 
							 | 
						            video = latents | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            video_tensor = self.decode_latents(latents) | 
					
					
						
						| 
							 | 
						            video = tensor2vid(video_tensor, self.image_processor, output_type=output_type) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.maybe_free_model_hooks() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return (video,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return AnimateDiffPipelineOutput(frames=video) | 
					
					
						
						| 
							 | 
						
 |