| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import inspect | 
					
					
						
						| 
							 | 
						from typing import Any, Callable, Dict, List, Optional, Tuple, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import PIL.Image | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torchvision | 
					
					
						
						| 
							 | 
						from transformers import ( | 
					
					
						
						| 
							 | 
						    CLIPImageProcessor, | 
					
					
						
						| 
							 | 
						    CLIPTextModel, | 
					
					
						
						| 
							 | 
						    CLIPTextModelWithProjection, | 
					
					
						
						| 
							 | 
						    CLIPTokenizer, | 
					
					
						
						| 
							 | 
						    CLIPVisionModelWithProjection, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | 
					
					
						
						| 
							 | 
						from diffusers.loaders import ( | 
					
					
						
						| 
							 | 
						    FromSingleFileMixin, | 
					
					
						
						| 
							 | 
						    IPAdapterMixin, | 
					
					
						
						| 
							 | 
						    StableDiffusionXLLoraLoaderMixin, | 
					
					
						
						| 
							 | 
						    TextualInversionLoaderMixin, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel | 
					
					
						
						| 
							 | 
						from diffusers.models.attention_processor import ( | 
					
					
						
						| 
							 | 
						    AttnProcessor2_0, | 
					
					
						
						| 
							 | 
						    LoRAAttnProcessor2_0, | 
					
					
						
						| 
							 | 
						    LoRAXFormersAttnProcessor, | 
					
					
						
						| 
							 | 
						    XFormersAttnProcessor, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from diffusers.models.lora import adjust_lora_scale_text_encoder | 
					
					
						
						| 
							 | 
						from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | 
					
					
						
						| 
							 | 
						from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | 
					
					
						
						| 
							 | 
						from diffusers.schedulers import KarrasDiffusionSchedulers | 
					
					
						
						| 
							 | 
						from diffusers.utils import ( | 
					
					
						
						| 
							 | 
						    USE_PEFT_BACKEND, | 
					
					
						
						| 
							 | 
						    deprecate, | 
					
					
						
						| 
							 | 
						    is_invisible_watermark_available, | 
					
					
						
						| 
							 | 
						    is_torch_xla_available, | 
					
					
						
						| 
							 | 
						    logging, | 
					
					
						
						| 
							 | 
						    replace_example_docstring, | 
					
					
						
						| 
							 | 
						    scale_lora_layers, | 
					
					
						
						| 
							 | 
						    unscale_lora_layers, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from diffusers.utils.torch_utils import randn_tensor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if is_invisible_watermark_available(): | 
					
					
						
						| 
							 | 
						    from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if is_torch_xla_available(): | 
					
					
						
						| 
							 | 
						    import torch_xla.core.xla_model as xm | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    XLA_AVAILABLE = True | 
					
					
						
						| 
							 | 
						else: | 
					
					
						
						| 
							 | 
						    XLA_AVAILABLE = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__)   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						EXAMPLE_DOC_STRING = """ | 
					
					
						
						| 
							 | 
						    Examples: | 
					
					
						
						| 
							 | 
						        ```py | 
					
					
						
						| 
							 | 
						        >>> import torch | 
					
					
						
						| 
							 | 
						        >>> from diffusers import StableDiffusionXLImg2ImgPipeline | 
					
					
						
						| 
							 | 
						        >>> from diffusers.utils import load_image | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( | 
					
					
						
						| 
							 | 
						        ...     "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16 | 
					
					
						
						| 
							 | 
						        ... ) | 
					
					
						
						| 
							 | 
						        >>> pipe = pipe.to("cuda") | 
					
					
						
						| 
							 | 
						        >>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> init_image = load_image(url).convert("RGB") | 
					
					
						
						| 
							 | 
						        >>> prompt = "a photo of an astronaut riding a horse on mars" | 
					
					
						
						| 
							 | 
						        >>> image = pipe(prompt, image=init_image).images[0] | 
					
					
						
						| 
							 | 
						        ``` | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | 
					
					
						
						| 
							 | 
						    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | 
					
					
						
						| 
							 | 
						    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | 
					
					
						
						| 
							 | 
						    return noise_cfg | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def retrieve_latents( | 
					
					
						
						| 
							 | 
						    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | 
					
					
						
						| 
							 | 
						        return encoder_output.latent_dist.sample(generator) | 
					
					
						
						| 
							 | 
						    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | 
					
					
						
						| 
							 | 
						        return encoder_output.latent_dist.mode() | 
					
					
						
						| 
							 | 
						    elif hasattr(encoder_output, "latents"): | 
					
					
						
						| 
							 | 
						        return encoder_output.latents | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        raise AttributeError("Could not access latents of provided encoder_output") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def retrieve_timesteps( | 
					
					
						
						| 
							 | 
						    scheduler, | 
					
					
						
						| 
							 | 
						    num_inference_steps: Optional[int] = None, | 
					
					
						
						| 
							 | 
						    device: Optional[Union[str, torch.device]] = None, | 
					
					
						
						| 
							 | 
						    timesteps: Optional[List[int]] = None, | 
					
					
						
						| 
							 | 
						    **kwargs, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | 
					
					
						
						| 
							 | 
						    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        scheduler (`SchedulerMixin`): | 
					
					
						
						| 
							 | 
						            The scheduler to get timesteps from. | 
					
					
						
						| 
							 | 
						        num_inference_steps (`int`): | 
					
					
						
						| 
							 | 
						            The number of diffusion steps used when generating samples with a pre-trained model. If used, | 
					
					
						
						| 
							 | 
						            `timesteps` must be `None`. | 
					
					
						
						| 
							 | 
						        device (`str` or `torch.device`, *optional*): | 
					
					
						
						| 
							 | 
						            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | 
					
					
						
						| 
							 | 
						        timesteps (`List[int]`, *optional*): | 
					
					
						
						| 
							 | 
						                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | 
					
					
						
						| 
							 | 
						                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | 
					
					
						
						| 
							 | 
						                must be `None`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | 
					
					
						
						| 
							 | 
						        second element is the number of inference steps. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    if timesteps is not None: | 
					
					
						
						| 
							 | 
						        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | 
					
					
						
						| 
							 | 
						        if not accepts_timesteps: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | 
					
					
						
						| 
							 | 
						                f" timestep schedules. Please check whether you are using the correct scheduler." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | 
					
					
						
						| 
							 | 
						        timesteps = scheduler.timesteps | 
					
					
						
						| 
							 | 
						        num_inference_steps = len(timesteps) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | 
					
					
						
						| 
							 | 
						        timesteps = scheduler.timesteps | 
					
					
						
						| 
							 | 
						    return timesteps, num_inference_steps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class StableDiffusionXLDifferentialImg2ImgPipeline( | 
					
					
						
						| 
							 | 
						    DiffusionPipeline, | 
					
					
						
						| 
							 | 
						    StableDiffusionMixin, | 
					
					
						
						| 
							 | 
						    TextualInversionLoaderMixin, | 
					
					
						
						| 
							 | 
						    FromSingleFileMixin, | 
					
					
						
						| 
							 | 
						    StableDiffusionXLLoraLoaderMixin, | 
					
					
						
						| 
							 | 
						    IPAdapterMixin, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    Pipeline for text-to-image generation using Stable Diffusion XL. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
					
						
						| 
							 | 
						    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    In addition the pipeline inherits the following loading methods: | 
					
					
						
						| 
							 | 
						        - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] | 
					
					
						
						| 
							 | 
						        - *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`] | 
					
					
						
						| 
							 | 
						        - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    as well as the following saving methods: | 
					
					
						
						| 
							 | 
						        - *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        vae ([`AutoencoderKL`]): | 
					
					
						
						| 
							 | 
						            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | 
					
					
						
						| 
							 | 
						        text_encoder ([`CLIPTextModel`]): | 
					
					
						
						| 
							 | 
						            Frozen text-encoder. Stable Diffusion XL uses the text portion of | 
					
					
						
						| 
							 | 
						            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | 
					
					
						
						| 
							 | 
						            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | 
					
					
						
						| 
							 | 
						        text_encoder_2 ([` CLIPTextModelWithProjection`]): | 
					
					
						
						| 
							 | 
						            Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of | 
					
					
						
						| 
							 | 
						            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | 
					
					
						
						| 
							 | 
						            specifically the | 
					
					
						
						| 
							 | 
						            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | 
					
					
						
						| 
							 | 
						            variant. | 
					
					
						
						| 
							 | 
						        tokenizer (`CLIPTokenizer`): | 
					
					
						
						| 
							 | 
						            Tokenizer of class | 
					
					
						
						| 
							 | 
						            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
					
						
						| 
							 | 
						        tokenizer_2 (`CLIPTokenizer`): | 
					
					
						
						| 
							 | 
						            Second Tokenizer of class | 
					
					
						
						| 
							 | 
						            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | 
					
					
						
						| 
							 | 
						        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | 
					
					
						
						| 
							 | 
						        scheduler ([`SchedulerMixin`]): | 
					
					
						
						| 
							 | 
						            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | 
					
					
						
						| 
							 | 
						            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" | 
					
					
						
						| 
							 | 
						    _optional_components = [ | 
					
					
						
						| 
							 | 
						        "tokenizer", | 
					
					
						
						| 
							 | 
						        "tokenizer_2", | 
					
					
						
						| 
							 | 
						        "text_encoder", | 
					
					
						
						| 
							 | 
						        "text_encoder_2", | 
					
					
						
						| 
							 | 
						        "image_encoder", | 
					
					
						
						| 
							 | 
						        "feature_extractor", | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						    _callback_tensor_inputs = [ | 
					
					
						
						| 
							 | 
						        "latents", | 
					
					
						
						| 
							 | 
						        "prompt_embeds", | 
					
					
						
						| 
							 | 
						        "negative_prompt_embeds", | 
					
					
						
						| 
							 | 
						        "add_text_embeds", | 
					
					
						
						| 
							 | 
						        "add_time_ids", | 
					
					
						
						| 
							 | 
						        "negative_pooled_prompt_embeds", | 
					
					
						
						| 
							 | 
						        "add_neg_time_ids", | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vae: AutoencoderKL, | 
					
					
						
						| 
							 | 
						        text_encoder: CLIPTextModel, | 
					
					
						
						| 
							 | 
						        text_encoder_2: CLIPTextModelWithProjection, | 
					
					
						
						| 
							 | 
						        tokenizer: CLIPTokenizer, | 
					
					
						
						| 
							 | 
						        tokenizer_2: CLIPTokenizer, | 
					
					
						
						| 
							 | 
						        unet: UNet2DConditionModel, | 
					
					
						
						| 
							 | 
						        scheduler: KarrasDiffusionSchedulers, | 
					
					
						
						| 
							 | 
						        image_encoder: CLIPVisionModelWithProjection = None, | 
					
					
						
						| 
							 | 
						        feature_extractor: CLIPImageProcessor = None, | 
					
					
						
						| 
							 | 
						        requires_aesthetics_score: bool = False, | 
					
					
						
						| 
							 | 
						        force_zeros_for_empty_prompt: bool = True, | 
					
					
						
						| 
							 | 
						        add_watermarker: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.register_modules( | 
					
					
						
						| 
							 | 
						            vae=vae, | 
					
					
						
						| 
							 | 
						            text_encoder=text_encoder, | 
					
					
						
						| 
							 | 
						            text_encoder_2=text_encoder_2, | 
					
					
						
						| 
							 | 
						            tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						            tokenizer_2=tokenizer_2, | 
					
					
						
						| 
							 | 
						            unet=unet, | 
					
					
						
						| 
							 | 
						            image_encoder=image_encoder, | 
					
					
						
						| 
							 | 
						            feature_extractor=feature_extractor, | 
					
					
						
						| 
							 | 
						            scheduler=scheduler, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | 
					
					
						
						| 
							 | 
						        self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) | 
					
					
						
						| 
							 | 
						        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | 
					
					
						
						| 
							 | 
						        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if add_watermarker: | 
					
					
						
						| 
							 | 
						            self.watermark = StableDiffusionXLWatermarker() | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.watermark = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def encode_prompt( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt: str, | 
					
					
						
						| 
							 | 
						        prompt_2: Optional[str] = None, | 
					
					
						
						| 
							 | 
						        device: Optional[torch.device] = None, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt: int = 1, | 
					
					
						
						| 
							 | 
						        do_classifier_free_guidance: bool = True, | 
					
					
						
						| 
							 | 
						        negative_prompt: Optional[str] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_2: Optional[str] = None, | 
					
					
						
						| 
							 | 
						        prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        pooled_prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        lora_scale: Optional[float] = None, | 
					
					
						
						| 
							 | 
						        clip_skip: Optional[int] = None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Encodes the prompt into text encoder hidden states. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                prompt to be encoded | 
					
					
						
						| 
							 | 
						            prompt_2 (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
					
						
						| 
							 | 
						                used in both text-encoders | 
					
					
						
						| 
							 | 
						            device: (`torch.device`): | 
					
					
						
						| 
							 | 
						                torch device | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`): | 
					
					
						
						| 
							 | 
						                number of images that should be generated per prompt | 
					
					
						
						| 
							 | 
						            do_classifier_free_guidance (`bool`): | 
					
					
						
						| 
							 | 
						                whether to use classifier free guidance or not | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
					
						
						| 
							 | 
						                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
					
						
						| 
							 | 
						                less than `1`). | 
					
					
						
						| 
							 | 
						            negative_prompt_2 (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | 
					
					
						
						| 
							 | 
						                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | 
					
					
						
						| 
							 | 
						            prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
					
						
						| 
							 | 
						                provided, text embeddings will be generated from `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
					
						
						| 
							 | 
						                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
					
						
						| 
							 | 
						                argument. | 
					
					
						
						| 
							 | 
						            pooled_prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
					
						
						| 
							 | 
						                If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
					
						
						| 
							 | 
						                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | 
					
					
						
						| 
							 | 
						                input argument. | 
					
					
						
						| 
							 | 
						            lora_scale (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | 
					
					
						
						| 
							 | 
						            clip_skip (`int`, *optional*): | 
					
					
						
						| 
							 | 
						                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | 
					
					
						
						| 
							 | 
						                the output of the pre-final layer will be used for computing the prompt embeddings. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        device = device or self._execution_device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): | 
					
					
						
						| 
							 | 
						            self._lora_scale = lora_scale | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if self.text_encoder is not None: | 
					
					
						
						| 
							 | 
						                if not USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						                    adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    scale_lora_layers(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.text_encoder_2 is not None: | 
					
					
						
						| 
							 | 
						                if not USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						                    adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    scale_lora_layers(self.text_encoder_2, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        prompt = [prompt] if isinstance(prompt, str) else prompt | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt is not None: | 
					
					
						
						| 
							 | 
						            batch_size = len(prompt) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = prompt_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | 
					
					
						
						| 
							 | 
						        text_encoders = ( | 
					
					
						
						| 
							 | 
						            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            prompt_2 = prompt_2 or prompt | 
					
					
						
						| 
							 | 
						            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            prompt_embeds_list = [] | 
					
					
						
						| 
							 | 
						            prompts = [prompt, prompt_2] | 
					
					
						
						| 
							 | 
						            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | 
					
					
						
						| 
							 | 
						                if isinstance(self, TextualInversionLoaderMixin): | 
					
					
						
						| 
							 | 
						                    prompt = self.maybe_convert_prompt(prompt, tokenizer) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                text_inputs = tokenizer( | 
					
					
						
						| 
							 | 
						                    prompt, | 
					
					
						
						| 
							 | 
						                    padding="max_length", | 
					
					
						
						| 
							 | 
						                    max_length=tokenizer.model_max_length, | 
					
					
						
						| 
							 | 
						                    truncation=True, | 
					
					
						
						| 
							 | 
						                    return_tensors="pt", | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                text_input_ids = text_inputs.input_ids | 
					
					
						
						| 
							 | 
						                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | 
					
					
						
						| 
							 | 
						                    text_input_ids, untruncated_ids | 
					
					
						
						| 
							 | 
						                ): | 
					
					
						
						| 
							 | 
						                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | 
					
					
						
						| 
							 | 
						                    logger.warning( | 
					
					
						
						| 
							 | 
						                        "The following part of your input was truncated because CLIP can only handle sequences up to" | 
					
					
						
						| 
							 | 
						                        f" {tokenizer.model_max_length} tokens: {removed_text}" | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                pooled_prompt_embeds = prompt_embeds[0] | 
					
					
						
						| 
							 | 
						                if clip_skip is None: | 
					
					
						
						| 
							 | 
						                    prompt_embeds = prompt_embeds.hidden_states[-2] | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                prompt_embeds_list.append(prompt_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = torch.zeros_like(prompt_embeds) | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | 
					
					
						
						| 
							 | 
						        elif do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            negative_prompt = negative_prompt or "" | 
					
					
						
						| 
							 | 
						            negative_prompt_2 = negative_prompt_2 or negative_prompt | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | 
					
					
						
						| 
							 | 
						            negative_prompt_2 = ( | 
					
					
						
						| 
							 | 
						                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            uncond_tokens: List[str] | 
					
					
						
						| 
							 | 
						            if prompt is not None and type(prompt) is not type(negative_prompt): | 
					
					
						
						| 
							 | 
						                raise TypeError( | 
					
					
						
						| 
							 | 
						                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
					
						
						| 
							 | 
						                    f" {type(prompt)}." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            elif batch_size != len(negative_prompt): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
					
						
						| 
							 | 
						                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
					
						
						| 
							 | 
						                    " the batch size of `prompt`." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                uncond_tokens = [negative_prompt, negative_prompt_2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds_list = [] | 
					
					
						
						| 
							 | 
						            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | 
					
					
						
						| 
							 | 
						                if isinstance(self, TextualInversionLoaderMixin): | 
					
					
						
						| 
							 | 
						                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                max_length = prompt_embeds.shape[1] | 
					
					
						
						| 
							 | 
						                uncond_input = tokenizer( | 
					
					
						
						| 
							 | 
						                    negative_prompt, | 
					
					
						
						| 
							 | 
						                    padding="max_length", | 
					
					
						
						| 
							 | 
						                    max_length=max_length, | 
					
					
						
						| 
							 | 
						                    truncation=True, | 
					
					
						
						| 
							 | 
						                    return_tensors="pt", | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                negative_prompt_embeds = text_encoder( | 
					
					
						
						| 
							 | 
						                    uncond_input.input_ids.to(device), | 
					
					
						
						| 
							 | 
						                    output_hidden_states=True, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                negative_pooled_prompt_embeds = negative_prompt_embeds[0] | 
					
					
						
						| 
							 | 
						                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                negative_prompt_embeds_list.append(negative_prompt_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.text_encoder_2 is not None: | 
					
					
						
						| 
							 | 
						            prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bs_embed, seq_len, _ = prompt_embeds.shape | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            seq_len = negative_prompt_embeds.shape[1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.text_encoder_2 is not None: | 
					
					
						
						| 
							 | 
						                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | 
					
					
						
						| 
							 | 
						            bs_embed * num_images_per_prompt, -1 | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | 
					
					
						
						| 
							 | 
						                bs_embed * num_images_per_prompt, -1 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.text_encoder is not None: | 
					
					
						
						| 
							 | 
						            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                unscale_lora_layers(self.text_encoder, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.text_encoder_2 is not None: | 
					
					
						
						| 
							 | 
						            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                unscale_lora_layers(self.text_encoder_2, lora_scale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def prepare_extra_step_kwargs(self, generator, eta): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
					
						
						| 
							 | 
						        extra_step_kwargs = {} | 
					
					
						
						| 
							 | 
						        if accepts_eta: | 
					
					
						
						| 
							 | 
						            extra_step_kwargs["eta"] = eta | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
					
						
						| 
							 | 
						        if accepts_generator: | 
					
					
						
						| 
							 | 
						            extra_step_kwargs["generator"] = generator | 
					
					
						
						| 
							 | 
						        return extra_step_kwargs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def check_inputs( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt, | 
					
					
						
						| 
							 | 
						        prompt_2, | 
					
					
						
						| 
							 | 
						        strength, | 
					
					
						
						| 
							 | 
						        num_inference_steps, | 
					
					
						
						| 
							 | 
						        callback_steps, | 
					
					
						
						| 
							 | 
						        negative_prompt=None, | 
					
					
						
						| 
							 | 
						        negative_prompt_2=None, | 
					
					
						
						| 
							 | 
						        prompt_embeds=None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds=None, | 
					
					
						
						| 
							 | 
						        ip_adapter_image=None, | 
					
					
						
						| 
							 | 
						        ip_adapter_image_embeds=None, | 
					
					
						
						| 
							 | 
						        callback_on_step_end_tensor_inputs=None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if strength < 0 or strength > 1: | 
					
					
						
						| 
							 | 
						            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | 
					
					
						
						| 
							 | 
						        if num_inference_steps is None: | 
					
					
						
						| 
							 | 
						            raise ValueError("`num_inference_steps` cannot be None.") | 
					
					
						
						| 
							 | 
						        elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type" | 
					
					
						
						| 
							 | 
						                f" {type(num_inference_steps)}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | 
					
					
						
						| 
							 | 
						                f" {type(callback_steps)}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if callback_on_step_end_tensor_inputs is not None and not all( | 
					
					
						
						| 
							 | 
						            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt is not None and prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
					
						
						| 
							 | 
						                " only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif prompt_2 is not None and prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
					
						
						| 
							 | 
						                " only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif prompt is None and prompt_embeds is None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
					
						
						| 
							 | 
						        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | 
					
					
						
						| 
							 | 
						            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
					
						
						| 
							 | 
						                f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | 
					
					
						
						| 
							 | 
						                f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
					
						
						| 
							 | 
						            if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
					
						
						| 
							 | 
						                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
					
						
						| 
							 | 
						                    f" {negative_prompt_embeds.shape}." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ip_adapter_image is not None and ip_adapter_image_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ip_adapter_image_embeds is not None: | 
					
					
						
						| 
							 | 
						            if not isinstance(ip_adapter_image_embeds, list): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            elif ip_adapter_image_embeds[0].ndim not in [3, 4]: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if denoising_start is None: | 
					
					
						
						| 
							 | 
						            init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | 
					
					
						
						| 
							 | 
						            t_start = max(num_inference_steps - init_timestep, 0) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            t_start = 0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if denoising_start is not None: | 
					
					
						
						| 
							 | 
						            discrete_timestep_cutoff = int( | 
					
					
						
						| 
							 | 
						                round( | 
					
					
						
						| 
							 | 
						                    self.scheduler.config.num_train_timesteps | 
					
					
						
						| 
							 | 
						                    - (denoising_start * self.scheduler.config.num_train_timesteps) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() | 
					
					
						
						| 
							 | 
						            if self.scheduler.order == 2 and num_inference_steps % 2 == 0: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                num_inference_steps = num_inference_steps + 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            timesteps = timesteps[-num_inference_steps:] | 
					
					
						
						| 
							 | 
						            return timesteps, num_inference_steps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return timesteps, num_inference_steps - t_start | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_latents( | 
					
					
						
						| 
							 | 
						        self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | 
					
					
						
						| 
							 | 
						            self.text_encoder_2.to("cpu") | 
					
					
						
						| 
							 | 
						            torch.cuda.empty_cache() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image = image.to(device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        batch_size = batch_size * num_images_per_prompt | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if image.shape[1] == 4: | 
					
					
						
						| 
							 | 
						            init_latents = image | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if self.vae.config.force_upcast: | 
					
					
						
						| 
							 | 
						                image = image.float() | 
					
					
						
						| 
							 | 
						                self.vae.to(dtype=torch.float32) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if isinstance(generator, list) and len(generator) != batch_size: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
					
						
						| 
							 | 
						                    f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            elif isinstance(generator, list): | 
					
					
						
						| 
							 | 
						                init_latents = [ | 
					
					
						
						| 
							 | 
						                    retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | 
					
					
						
						| 
							 | 
						                    for i in range(batch_size) | 
					
					
						
						| 
							 | 
						                ] | 
					
					
						
						| 
							 | 
						                init_latents = torch.cat(init_latents, dim=0) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.vae.config.force_upcast: | 
					
					
						
						| 
							 | 
						                self.vae.to(dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            init_latents = init_latents.to(dtype) | 
					
					
						
						| 
							 | 
						            init_latents = self.vae.config.scaling_factor * init_latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            additional_image_per_prompt = batch_size // init_latents.shape[0] | 
					
					
						
						| 
							 | 
						            init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | 
					
					
						
						| 
							 | 
						        elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            init_latents = torch.cat([init_latents], dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if add_noise: | 
					
					
						
						| 
							 | 
						            shape = init_latents.shape | 
					
					
						
						| 
							 | 
						            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        latents = init_latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | 
					
					
						
						| 
							 | 
						        dtype = next(self.image_encoder.parameters()).dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not isinstance(image, torch.Tensor): | 
					
					
						
						| 
							 | 
						            image = self.feature_extractor(image, return_tensors="pt").pixel_values | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image = image.to(device=device, dtype=dtype) | 
					
					
						
						| 
							 | 
						        if output_hidden_states: | 
					
					
						
						| 
							 | 
						            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | 
					
					
						
						| 
							 | 
						            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | 
					
					
						
						| 
							 | 
						            uncond_image_enc_hidden_states = self.image_encoder( | 
					
					
						
						| 
							 | 
						                torch.zeros_like(image), output_hidden_states=True | 
					
					
						
						| 
							 | 
						            ).hidden_states[-2] | 
					
					
						
						| 
							 | 
						            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | 
					
					
						
						| 
							 | 
						                num_images_per_prompt, dim=0 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            return image_enc_hidden_states, uncond_image_enc_hidden_states | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            image_embeds = self.image_encoder(image).image_embeds | 
					
					
						
						| 
							 | 
						            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | 
					
					
						
						| 
							 | 
						            uncond_image_embeds = torch.zeros_like(image_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            return image_embeds, uncond_image_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def prepare_ip_adapter_image_embeds( | 
					
					
						
						| 
							 | 
						        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if ip_adapter_image_embeds is None: | 
					
					
						
						| 
							 | 
						            if not isinstance(ip_adapter_image, list): | 
					
					
						
						| 
							 | 
						                ip_adapter_image = [ip_adapter_image] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            image_embeds = [] | 
					
					
						
						| 
							 | 
						            for single_ip_adapter_image, image_proj_layer in zip( | 
					
					
						
						| 
							 | 
						                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | 
					
					
						
						| 
							 | 
						                single_image_embeds, single_negative_image_embeds = self.encode_image( | 
					
					
						
						| 
							 | 
						                    single_ip_adapter_image, device, 1, output_hidden_state | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) | 
					
					
						
						| 
							 | 
						                single_negative_image_embeds = torch.stack( | 
					
					
						
						| 
							 | 
						                    [single_negative_image_embeds] * num_images_per_prompt, dim=0 | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | 
					
					
						
						| 
							 | 
						                    single_image_embeds = single_image_embeds.to(device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                image_embeds.append(single_image_embeds) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            repeat_dims = [1] | 
					
					
						
						| 
							 | 
						            image_embeds = [] | 
					
					
						
						| 
							 | 
						            for single_image_embeds in ip_adapter_image_embeds: | 
					
					
						
						| 
							 | 
						                if do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) | 
					
					
						
						| 
							 | 
						                    single_image_embeds = single_image_embeds.repeat( | 
					
					
						
						| 
							 | 
						                        num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                    single_negative_image_embeds = single_negative_image_embeds.repeat( | 
					
					
						
						| 
							 | 
						                        num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    single_image_embeds = single_image_embeds.repeat( | 
					
					
						
						| 
							 | 
						                        num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                image_embeds.append(single_image_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return image_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _get_add_time_ids( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        original_size, | 
					
					
						
						| 
							 | 
						        crops_coords_top_left, | 
					
					
						
						| 
							 | 
						        target_size, | 
					
					
						
						| 
							 | 
						        aesthetic_score, | 
					
					
						
						| 
							 | 
						        negative_aesthetic_score, | 
					
					
						
						| 
							 | 
						        negative_original_size, | 
					
					
						
						| 
							 | 
						        negative_crops_coords_top_left, | 
					
					
						
						| 
							 | 
						        negative_target_size, | 
					
					
						
						| 
							 | 
						        dtype, | 
					
					
						
						| 
							 | 
						        text_encoder_projection_dim=None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if self.config.requires_aesthetics_score: | 
					
					
						
						| 
							 | 
						            add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) | 
					
					
						
						| 
							 | 
						            add_neg_time_ids = list( | 
					
					
						
						| 
							 | 
						                negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,) | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            add_time_ids = list(original_size + crops_coords_top_left + target_size) | 
					
					
						
						| 
							 | 
						            add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        passed_add_embed_dim = ( | 
					
					
						
						| 
							 | 
						            self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            expected_add_embed_dim > passed_add_embed_dim | 
					
					
						
						| 
							 | 
						            and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif ( | 
					
					
						
						| 
							 | 
						            expected_add_embed_dim < passed_add_embed_dim | 
					
					
						
						| 
							 | 
						            and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif expected_add_embed_dim != passed_add_embed_dim: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | 
					
					
						
						| 
							 | 
						        add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return add_time_ids, add_neg_time_ids | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def upcast_vae(self): | 
					
					
						
						| 
							 | 
						        dtype = self.vae.dtype | 
					
					
						
						| 
							 | 
						        self.vae.to(dtype=torch.float32) | 
					
					
						
						| 
							 | 
						        use_torch_2_0_or_xformers = isinstance( | 
					
					
						
						| 
							 | 
						            self.vae.decoder.mid_block.attentions[0].processor, | 
					
					
						
						| 
							 | 
						            ( | 
					
					
						
						| 
							 | 
						                AttnProcessor2_0, | 
					
					
						
						| 
							 | 
						                XFormersAttnProcessor, | 
					
					
						
						| 
							 | 
						                LoRAXFormersAttnProcessor, | 
					
					
						
						| 
							 | 
						                LoRAAttnProcessor2_0, | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if use_torch_2_0_or_xformers: | 
					
					
						
						| 
							 | 
						            self.vae.post_quant_conv.to(dtype) | 
					
					
						
						| 
							 | 
						            self.vae.decoder.conv_in.to(dtype) | 
					
					
						
						| 
							 | 
						            self.vae.decoder.mid_block.to(dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def get_guidance_scale_embedding( | 
					
					
						
						| 
							 | 
						        self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 | 
					
					
						
						| 
							 | 
						    ) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            w (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. | 
					
					
						
						| 
							 | 
						            embedding_dim (`int`, *optional*, defaults to 512): | 
					
					
						
						| 
							 | 
						                Dimension of the embeddings to generate. | 
					
					
						
						| 
							 | 
						            dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): | 
					
					
						
						| 
							 | 
						                Data type of the generated embeddings. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        assert len(w.shape) == 1 | 
					
					
						
						| 
							 | 
						        w = w * 1000.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        half_dim = embedding_dim // 2 | 
					
					
						
						| 
							 | 
						        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | 
					
					
						
						| 
							 | 
						        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | 
					
					
						
						| 
							 | 
						        emb = w.to(dtype)[:, None] * emb[None, :] | 
					
					
						
						| 
							 | 
						        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | 
					
					
						
						| 
							 | 
						        if embedding_dim % 2 == 1:   | 
					
					
						
						| 
							 | 
						            emb = torch.nn.functional.pad(emb, (0, 1)) | 
					
					
						
						| 
							 | 
						        assert emb.shape == (w.shape[0], embedding_dim) | 
					
					
						
						| 
							 | 
						        return emb | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def guidance_scale(self): | 
					
					
						
						| 
							 | 
						        return self._guidance_scale | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def guidance_rescale(self): | 
					
					
						
						| 
							 | 
						        return self._guidance_rescale | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def clip_skip(self): | 
					
					
						
						| 
							 | 
						        return self._clip_skip | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def do_classifier_free_guidance(self): | 
					
					
						
						| 
							 | 
						        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def cross_attention_kwargs(self): | 
					
					
						
						| 
							 | 
						        return self._cross_attention_kwargs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def denoising_end(self): | 
					
					
						
						| 
							 | 
						        return self._denoising_end | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def denoising_start(self): | 
					
					
						
						| 
							 | 
						        return self._denoising_start | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def num_timesteps(self): | 
					
					
						
						| 
							 | 
						        return self._num_timesteps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def interrupt(self): | 
					
					
						
						| 
							 | 
						        return self._interrupt | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
					
						
						| 
							 | 
						    def __call__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        prompt: Union[str, List[str]] = None, | 
					
					
						
						| 
							 | 
						        prompt_2: Optional[Union[str, List[str]]] = None, | 
					
					
						
						| 
							 | 
						        image: Union[ | 
					
					
						
						| 
							 | 
						            torch.Tensor, | 
					
					
						
						| 
							 | 
						            PIL.Image.Image, | 
					
					
						
						| 
							 | 
						            np.ndarray, | 
					
					
						
						| 
							 | 
						            List[torch.Tensor], | 
					
					
						
						| 
							 | 
						            List[PIL.Image.Image], | 
					
					
						
						| 
							 | 
						            List[np.ndarray], | 
					
					
						
						| 
							 | 
						        ] = None, | 
					
					
						
						| 
							 | 
						        strength: float = 0.3, | 
					
					
						
						| 
							 | 
						        num_inference_steps: int = 50, | 
					
					
						
						| 
							 | 
						        timesteps: List[int] = None, | 
					
					
						
						| 
							 | 
						        denoising_start: Optional[float] = None, | 
					
					
						
						| 
							 | 
						        denoising_end: Optional[float] = None, | 
					
					
						
						| 
							 | 
						        guidance_scale: float = 5.0, | 
					
					
						
						| 
							 | 
						        negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_2: Optional[Union[str, List[str]]] = None, | 
					
					
						
						| 
							 | 
						        num_images_per_prompt: Optional[int] = 1, | 
					
					
						
						| 
							 | 
						        eta: float = 0.0, | 
					
					
						
						| 
							 | 
						        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
					
						
						| 
							 | 
						        latents: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        pooled_prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        ip_adapter_image: Optional[PipelineImageInput] = None, | 
					
					
						
						| 
							 | 
						        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						        output_type: Optional[str] = "pil", | 
					
					
						
						| 
							 | 
						        return_dict: bool = True, | 
					
					
						
						| 
							 | 
						        cross_attention_kwargs: Optional[Dict[str, Any]] = None, | 
					
					
						
						| 
							 | 
						        guidance_rescale: float = 0.0, | 
					
					
						
						| 
							 | 
						        original_size: Tuple[int, int] = None, | 
					
					
						
						| 
							 | 
						        crops_coords_top_left: Tuple[int, int] = (0, 0), | 
					
					
						
						| 
							 | 
						        target_size: Tuple[int, int] = None, | 
					
					
						
						| 
							 | 
						        negative_original_size: Optional[Tuple[int, int]] = None, | 
					
					
						
						| 
							 | 
						        negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | 
					
					
						
						| 
							 | 
						        negative_target_size: Optional[Tuple[int, int]] = None, | 
					
					
						
						| 
							 | 
						        aesthetic_score: float = 6.0, | 
					
					
						
						| 
							 | 
						        negative_aesthetic_score: float = 2.5, | 
					
					
						
						| 
							 | 
						        clip_skip: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | 
					
					
						
						| 
							 | 
						        callback_on_step_end_tensor_inputs: List[str] = ["latents"], | 
					
					
						
						| 
							 | 
						        map: torch.Tensor = None, | 
					
					
						
						| 
							 | 
						        original_image: Union[ | 
					
					
						
						| 
							 | 
						            torch.Tensor, | 
					
					
						
						| 
							 | 
						            PIL.Image.Image, | 
					
					
						
						| 
							 | 
						            np.ndarray, | 
					
					
						
						| 
							 | 
						            List[torch.Tensor], | 
					
					
						
						| 
							 | 
						            List[PIL.Image.Image], | 
					
					
						
						| 
							 | 
						            List[np.ndarray], | 
					
					
						
						| 
							 | 
						        ] = None, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Function invoked when calling the pipeline for generation. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | 
					
					
						
						| 
							 | 
						                instead. | 
					
					
						
						| 
							 | 
						            prompt_2 (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | 
					
					
						
						| 
							 | 
						                used in both text-encoders | 
					
					
						
						| 
							 | 
						            image (`torch.Tensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`): | 
					
					
						
						| 
							 | 
						                The image(s) to modify with the pipeline. | 
					
					
						
						| 
							 | 
						            strength (`float`, *optional*, defaults to 0.3): | 
					
					
						
						| 
							 | 
						                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` | 
					
					
						
						| 
							 | 
						                will be used as a starting point, adding more noise to it the larger the `strength`. The number of | 
					
					
						
						| 
							 | 
						                denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will | 
					
					
						
						| 
							 | 
						                be maximum and the denoising process will run for the full number of iterations specified in | 
					
					
						
						| 
							 | 
						                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of | 
					
					
						
						| 
							 | 
						                `denoising_start` being declared as an integer, the value of `strength` will be ignored. | 
					
					
						
						| 
							 | 
						            num_inference_steps (`int`, *optional*, defaults to 50): | 
					
					
						
						| 
							 | 
						                The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
					
						
						| 
							 | 
						                expense of slower inference. | 
					
					
						
						| 
							 | 
						            denoising_start (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be | 
					
					
						
						| 
							 | 
						                bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and | 
					
					
						
						| 
							 | 
						                it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, | 
					
					
						
						| 
							 | 
						                strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline | 
					
					
						
						| 
							 | 
						                is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image | 
					
					
						
						| 
							 | 
						                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output). | 
					
					
						
						| 
							 | 
						            denoising_end (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | 
					
					
						
						| 
							 | 
						                completed before it is intentionally prematurely terminated. As a result, the returned sample will | 
					
					
						
						| 
							 | 
						                still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be | 
					
					
						
						| 
							 | 
						                denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the | 
					
					
						
						| 
							 | 
						                final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline | 
					
					
						
						| 
							 | 
						                forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | 
					
					
						
						| 
							 | 
						                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output). | 
					
					
						
						| 
							 | 
						            guidance_scale (`float`, *optional*, defaults to 7.5): | 
					
					
						
						| 
							 | 
						                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
					
						
						| 
							 | 
						                `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
					
						
						| 
							 | 
						                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
					
						
						| 
							 | 
						                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
					
						
						| 
							 | 
						                usually at the expense of lower image quality. | 
					
					
						
						| 
							 | 
						            negative_prompt (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
					
						
						| 
							 | 
						                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
					
						
						| 
							 | 
						                less than `1`). | 
					
					
						
						| 
							 | 
						            negative_prompt_2 (`str` or `List[str]`, *optional*): | 
					
					
						
						| 
							 | 
						                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | 
					
					
						
						| 
							 | 
						                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | 
					
					
						
						| 
							 | 
						            num_images_per_prompt (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The number of images to generate per prompt. | 
					
					
						
						| 
							 | 
						            eta (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | 
					
					
						
						| 
							 | 
						                [`schedulers.DDIMScheduler`], will be ignored for others. | 
					
					
						
						| 
							 | 
						            generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
					
						
						| 
							 | 
						                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | 
					
					
						
						| 
							 | 
						                to make generation deterministic. | 
					
					
						
						| 
							 | 
						            latents (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
					
						
						| 
							 | 
						                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
					
						
						| 
							 | 
						                tensor will ge generated by sampling using the supplied random `generator`. | 
					
					
						
						| 
							 | 
						            prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
					
						
						| 
							 | 
						                provided, text embeddings will be generated from `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
					
						
						| 
							 | 
						                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
					
						
						| 
							 | 
						                argument. | 
					
					
						
						| 
							 | 
						            pooled_prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | 
					
					
						
						| 
							 | 
						                If not provided, pooled text embeddings will be generated from `prompt` input argument. | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
					
						
						| 
							 | 
						                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | 
					
					
						
						| 
							 | 
						                input argument. | 
					
					
						
						| 
							 | 
						            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | 
					
					
						
						| 
							 | 
						            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | 
					
					
						
						| 
							 | 
						                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. | 
					
					
						
						| 
							 | 
						                Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding | 
					
					
						
						| 
							 | 
						                if `do_classifier_free_guidance` is set to `True`. | 
					
					
						
						| 
							 | 
						                If not provided, embeddings are computed from the `ip_adapter_image` input argument. | 
					
					
						
						| 
							 | 
						            output_type (`str`, *optional*, defaults to `"pil"`): | 
					
					
						
						| 
							 | 
						                The output format of the generate image. Choose between | 
					
					
						
						| 
							 | 
						                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
					
						
						| 
							 | 
						            return_dict (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a | 
					
					
						
						| 
							 | 
						                plain tuple. | 
					
					
						
						| 
							 | 
						            callback (`Callable`, *optional*): | 
					
					
						
						| 
							 | 
						                A function that will be called every `callback_steps` steps during inference. The function will be | 
					
					
						
						| 
							 | 
						                called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | 
					
					
						
						| 
							 | 
						            callback_steps (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						                The frequency at which the `callback` function will be called. If not specified, the callback will be | 
					
					
						
						| 
							 | 
						                called at every step. | 
					
					
						
						| 
							 | 
						            cross_attention_kwargs (`dict`, *optional*): | 
					
					
						
						| 
							 | 
						                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | 
					
					
						
						| 
							 | 
						                `self.processor` in | 
					
					
						
						| 
							 | 
						                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | 
					
					
						
						| 
							 | 
						            guidance_rescale (`float`, *optional*, defaults to 0.7): | 
					
					
						
						| 
							 | 
						                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | 
					
					
						
						| 
							 | 
						                Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | 
					
					
						
						| 
							 | 
						                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | 
					
					
						
						| 
							 | 
						                Guidance rescale factor should fix overexposure when using zero terminal SNR. | 
					
					
						
						| 
							 | 
						            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
					
						
						| 
							 | 
						                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | 
					
					
						
						| 
							 | 
						                `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as | 
					
					
						
						| 
							 | 
						                explained in section 2.2 of | 
					
					
						
						| 
							 | 
						                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
					
						
						| 
							 | 
						            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | 
					
					
						
						| 
							 | 
						                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | 
					
					
						
						| 
							 | 
						                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | 
					
					
						
						| 
							 | 
						                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | 
					
					
						
						| 
							 | 
						                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
					
						
						| 
							 | 
						            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | 
					
					
						
						| 
							 | 
						                For most cases, `target_size` should be set to the desired height and width of the generated image. If | 
					
					
						
						| 
							 | 
						                not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in | 
					
					
						
						| 
							 | 
						                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
					
						
						| 
							 | 
						            aesthetic_score (`float`, *optional*, defaults to 6.0): | 
					
					
						
						| 
							 | 
						                Used to simulate an aesthetic score of the generated image by influencing the positive text condition. | 
					
					
						
						| 
							 | 
						                Part of SDXL's micro-conditioning as explained in section 2.2 of | 
					
					
						
						| 
							 | 
						                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 
					
					
						
						| 
							 | 
						            negative_aesthetic_score (`float`, *optional*, defaults to 2.5): | 
					
					
						
						| 
							 | 
						                Part of SDXL's micro-conditioning as explained in section 2.2 of | 
					
					
						
						| 
							 | 
						                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to | 
					
					
						
						| 
							 | 
						                simulate an aesthetic score of the generated image by influencing the negative text condition. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Examples: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`: | 
					
					
						
						| 
							 | 
						            [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | 
					
					
						
						| 
							 | 
						            `tuple. When returning a tuple, the first element is a list with the generated images. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        callback = kwargs.pop("callback", None) | 
					
					
						
						| 
							 | 
						        callback_steps = kwargs.pop("callback_steps", None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if callback is not None: | 
					
					
						
						| 
							 | 
						            deprecate( | 
					
					
						
						| 
							 | 
						                "callback", | 
					
					
						
						| 
							 | 
						                "1.0.0", | 
					
					
						
						| 
							 | 
						                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        if callback_steps is not None: | 
					
					
						
						| 
							 | 
						            deprecate( | 
					
					
						
						| 
							 | 
						                "callback_steps", | 
					
					
						
						| 
							 | 
						                "1.0.0", | 
					
					
						
						| 
							 | 
						                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.check_inputs( | 
					
					
						
						| 
							 | 
						            prompt, | 
					
					
						
						| 
							 | 
						            prompt_2, | 
					
					
						
						| 
							 | 
						            strength, | 
					
					
						
						| 
							 | 
						            num_inference_steps, | 
					
					
						
						| 
							 | 
						            callback_steps, | 
					
					
						
						| 
							 | 
						            negative_prompt, | 
					
					
						
						| 
							 | 
						            negative_prompt_2, | 
					
					
						
						| 
							 | 
						            prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds, | 
					
					
						
						| 
							 | 
						            ip_adapter_image, | 
					
					
						
						| 
							 | 
						            ip_adapter_image_embeds, | 
					
					
						
						| 
							 | 
						            callback_on_step_end_tensor_inputs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self._guidance_scale = guidance_scale | 
					
					
						
						| 
							 | 
						        self._guidance_rescale = guidance_rescale | 
					
					
						
						| 
							 | 
						        self._clip_skip = clip_skip | 
					
					
						
						| 
							 | 
						        self._cross_attention_kwargs = cross_attention_kwargs | 
					
					
						
						| 
							 | 
						        self._denoising_end = denoising_end | 
					
					
						
						| 
							 | 
						        self._denoising_start = denoising_start | 
					
					
						
						| 
							 | 
						        self._interrupt = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if prompt is not None and isinstance(prompt, str): | 
					
					
						
						| 
							 | 
						            batch_size = 1 | 
					
					
						
						| 
							 | 
						        elif prompt is not None and isinstance(prompt, list): | 
					
					
						
						| 
							 | 
						            batch_size = len(prompt) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = prompt_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        device = self._execution_device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        text_encoder_lora_scale = ( | 
					
					
						
						| 
							 | 
						            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        ( | 
					
					
						
						| 
							 | 
						            prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds, | 
					
					
						
						| 
							 | 
						            pooled_prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds, | 
					
					
						
						| 
							 | 
						        ) = self.encode_prompt( | 
					
					
						
						| 
							 | 
						            prompt=prompt, | 
					
					
						
						| 
							 | 
						            prompt_2=prompt_2, | 
					
					
						
						| 
							 | 
						            device=device, | 
					
					
						
						| 
							 | 
						            num_images_per_prompt=num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            do_classifier_free_guidance=self.do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						            negative_prompt=negative_prompt, | 
					
					
						
						| 
							 | 
						            negative_prompt_2=negative_prompt_2, | 
					
					
						
						| 
							 | 
						            prompt_embeds=prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_prompt_embeds=negative_prompt_embeds, | 
					
					
						
						| 
							 | 
						            pooled_prompt_embeds=pooled_prompt_embeds, | 
					
					
						
						| 
							 | 
						            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | 
					
					
						
						| 
							 | 
						            lora_scale=text_encoder_lora_scale, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        map = torchvision.transforms.Resize( | 
					
					
						
						| 
							 | 
						            tuple(s // self.vae_scale_factor for s in original_image.shape[2:]), antialias=None | 
					
					
						
						| 
							 | 
						        )(map) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        def denoising_value_valid(dnv): | 
					
					
						
						| 
							 | 
						            return isinstance(dnv, float) and 0 < dnv < 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        total_time_steps = num_inference_steps | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        timesteps, num_inference_steps = self.get_timesteps( | 
					
					
						
						| 
							 | 
						            num_inference_steps, | 
					
					
						
						| 
							 | 
						            strength, | 
					
					
						
						| 
							 | 
						            device, | 
					
					
						
						| 
							 | 
						            denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        add_noise = True if denoising_start is None else False | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        latents = self.prepare_latents( | 
					
					
						
						| 
							 | 
						            image, | 
					
					
						
						| 
							 | 
						            latent_timestep, | 
					
					
						
						| 
							 | 
						            batch_size, | 
					
					
						
						| 
							 | 
						            num_images_per_prompt, | 
					
					
						
						| 
							 | 
						            prompt_embeds.dtype, | 
					
					
						
						| 
							 | 
						            device, | 
					
					
						
						| 
							 | 
						            generator, | 
					
					
						
						| 
							 | 
						            add_noise, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        height, width = latents.shape[-2:] | 
					
					
						
						| 
							 | 
						        height = height * self.vae_scale_factor | 
					
					
						
						| 
							 | 
						        width = width * self.vae_scale_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        original_size = original_size or (height, width) | 
					
					
						
						| 
							 | 
						        target_size = target_size or (height, width) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if negative_original_size is None: | 
					
					
						
						| 
							 | 
						            negative_original_size = original_size | 
					
					
						
						| 
							 | 
						        if negative_target_size is None: | 
					
					
						
						| 
							 | 
						            negative_target_size = target_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        add_text_embeds = pooled_prompt_embeds | 
					
					
						
						| 
							 | 
						        if self.text_encoder_2 is None: | 
					
					
						
						| 
							 | 
						            text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        add_time_ids, add_neg_time_ids = self._get_add_time_ids( | 
					
					
						
						| 
							 | 
						            original_size, | 
					
					
						
						| 
							 | 
						            crops_coords_top_left, | 
					
					
						
						| 
							 | 
						            target_size, | 
					
					
						
						| 
							 | 
						            aesthetic_score, | 
					
					
						
						| 
							 | 
						            negative_aesthetic_score, | 
					
					
						
						| 
							 | 
						            negative_original_size, | 
					
					
						
						| 
							 | 
						            negative_crops_coords_top_left, | 
					
					
						
						| 
							 | 
						            negative_target_size, | 
					
					
						
						| 
							 | 
						            dtype=prompt_embeds.dtype, | 
					
					
						
						| 
							 | 
						            text_encoder_projection_dim=text_encoder_projection_dim, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | 
					
					
						
						| 
							 | 
						            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | 
					
					
						
						| 
							 | 
						            add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) | 
					
					
						
						| 
							 | 
						            add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        prompt_embeds = prompt_embeds.to(device) | 
					
					
						
						| 
							 | 
						        add_text_embeds = add_text_embeds.to(device) | 
					
					
						
						| 
							 | 
						        add_time_ids = add_time_ids.to(device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | 
					
					
						
						| 
							 | 
						            image_embeds = self.prepare_ip_adapter_image_embeds( | 
					
					
						
						| 
							 | 
						                ip_adapter_image, | 
					
					
						
						| 
							 | 
						                ip_adapter_image_embeds, | 
					
					
						
						| 
							 | 
						                device, | 
					
					
						
						| 
							 | 
						                batch_size * num_images_per_prompt, | 
					
					
						
						| 
							 | 
						                self.do_classifier_free_guidance, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            denoising_end is not None | 
					
					
						
						| 
							 | 
						            and denoising_start is not None | 
					
					
						
						| 
							 | 
						            and denoising_value_valid(denoising_end) | 
					
					
						
						| 
							 | 
						            and denoising_value_valid(denoising_start) | 
					
					
						
						| 
							 | 
						            and denoising_start >= denoising_end | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: " | 
					
					
						
						| 
							 | 
						                + f" {denoising_end} when using type float." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif denoising_end is not None and denoising_value_valid(denoising_end): | 
					
					
						
						| 
							 | 
						            discrete_timestep_cutoff = int( | 
					
					
						
						| 
							 | 
						                round( | 
					
					
						
						| 
							 | 
						                    self.scheduler.config.num_train_timesteps | 
					
					
						
						| 
							 | 
						                    - (denoising_end * self.scheduler.config.num_train_timesteps) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | 
					
					
						
						| 
							 | 
						            timesteps = timesteps[:num_inference_steps] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        original_with_noise = self.prepare_latents( | 
					
					
						
						| 
							 | 
						            original_image, timesteps, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        thresholds = torch.arange(total_time_steps, dtype=map.dtype) / total_time_steps | 
					
					
						
						| 
							 | 
						        thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(device) | 
					
					
						
						| 
							 | 
						        masks = map > (thresholds + (denoising_start or 0)) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        timestep_cond = None | 
					
					
						
						| 
							 | 
						        if self.unet.config.time_cond_proj_dim is not None: | 
					
					
						
						| 
							 | 
						            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | 
					
					
						
						| 
							 | 
						            timestep_cond = self.get_guidance_scale_embedding( | 
					
					
						
						| 
							 | 
						                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | 
					
					
						
						| 
							 | 
						            ).to(device=device, dtype=latents.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self._num_timesteps = len(timesteps) | 
					
					
						
						| 
							 | 
						        with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
					
						
						| 
							 | 
						            for i, t in enumerate(timesteps): | 
					
					
						
						| 
							 | 
						                if self.interrupt: | 
					
					
						
						| 
							 | 
						                    continue | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if i == 0 and denoising_start is None: | 
					
					
						
						| 
							 | 
						                    latents = original_with_noise[:1] | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    mask = masks[i].unsqueeze(0) | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    mask = mask.to(latents.dtype) | 
					
					
						
						| 
							 | 
						                    mask = mask.unsqueeze(1)   | 
					
					
						
						| 
							 | 
						                    latents = original_with_noise[i] * mask + latents * (1 - mask) | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | 
					
					
						
						| 
							 | 
						                if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | 
					
					
						
						| 
							 | 
						                    added_cond_kwargs["image_embeds"] = image_embeds | 
					
					
						
						| 
							 | 
						                noise_pred = self.unet( | 
					
					
						
						| 
							 | 
						                    latent_model_input, | 
					
					
						
						| 
							 | 
						                    t, | 
					
					
						
						| 
							 | 
						                    encoder_hidden_states=prompt_embeds, | 
					
					
						
						| 
							 | 
						                    timestep_cond=timestep_cond, | 
					
					
						
						| 
							 | 
						                    cross_attention_kwargs=cross_attention_kwargs, | 
					
					
						
						| 
							 | 
						                    added_cond_kwargs=added_cond_kwargs, | 
					
					
						
						| 
							 | 
						                    return_dict=False, | 
					
					
						
						| 
							 | 
						                )[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if self.do_classifier_free_guidance: | 
					
					
						
						| 
							 | 
						                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
					
						
						| 
							 | 
						                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if self.do_classifier_free_guidance and guidance_rescale > 0.0: | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                latents_dtype = latents.dtype | 
					
					
						
						| 
							 | 
						                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | 
					
					
						
						| 
							 | 
						                if latents.dtype != latents_dtype: | 
					
					
						
						| 
							 | 
						                    if torch.backends.mps.is_available(): | 
					
					
						
						| 
							 | 
						                         | 
					
					
						
						| 
							 | 
						                        latents = latents.to(latents_dtype) | 
					
					
						
						| 
							 | 
						                    else: | 
					
					
						
						| 
							 | 
						                        raise ValueError( | 
					
					
						
						| 
							 | 
						                            "For the given accelerator, there seems to be an unexpected problem in type-casting. Please file an issue on the PyTorch GitHub repository. See also: https://github.com/huggingface/diffusers/pull/7446/." | 
					
					
						
						| 
							 | 
						                        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if callback_on_step_end is not None: | 
					
					
						
						| 
							 | 
						                    callback_kwargs = {} | 
					
					
						
						| 
							 | 
						                    for k in callback_on_step_end_tensor_inputs: | 
					
					
						
						| 
							 | 
						                        callback_kwargs[k] = locals()[k] | 
					
					
						
						| 
							 | 
						                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    latents = callback_outputs.pop("latents", latents) | 
					
					
						
						| 
							 | 
						                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | 
					
					
						
						| 
							 | 
						                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | 
					
					
						
						| 
							 | 
						                    add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) | 
					
					
						
						| 
							 | 
						                    negative_pooled_prompt_embeds = callback_outputs.pop( | 
					
					
						
						| 
							 | 
						                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                    add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) | 
					
					
						
						| 
							 | 
						                    add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
					
						
						| 
							 | 
						                    progress_bar.update() | 
					
					
						
						| 
							 | 
						                    if callback is not None and i % callback_steps == 0: | 
					
					
						
						| 
							 | 
						                        step_idx = i // getattr(self.scheduler, "order", 1) | 
					
					
						
						| 
							 | 
						                        callback(step_idx, t, latents) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if XLA_AVAILABLE: | 
					
					
						
						| 
							 | 
						                    xm.mark_step() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_type == "latent": | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if needs_upcasting: | 
					
					
						
						| 
							 | 
						                self.upcast_vae() | 
					
					
						
						| 
							 | 
						                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | 
					
					
						
						| 
							 | 
						            elif latents.dtype != self.vae.dtype: | 
					
					
						
						| 
							 | 
						                if torch.backends.mps.is_available(): | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    self.vae = self.vae.to(latents.dtype) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    raise ValueError( | 
					
					
						
						| 
							 | 
						                        "For the given accelerator, there seems to be an unexpected problem in type-casting. Please file an issue on the PyTorch GitHub repository. See also: https://github.com/huggingface/diffusers/pull/7446/." | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None | 
					
					
						
						| 
							 | 
						            has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None | 
					
					
						
						| 
							 | 
						            if has_latents_mean and has_latents_std: | 
					
					
						
						| 
							 | 
						                latents_mean = ( | 
					
					
						
						| 
							 | 
						                    torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                latents_std = ( | 
					
					
						
						| 
							 | 
						                    torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                latents = latents / self.vae.config.scaling_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            image = self.vae.decode(latents, return_dict=False)[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if needs_upcasting: | 
					
					
						
						| 
							 | 
						                self.vae.to(dtype=torch.float16) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            image = latents | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.watermark is not None: | 
					
					
						
						| 
							 | 
						            image = self.watermark.apply_watermark(image) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image = self.image_processor.postprocess(image, output_type=output_type) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.maybe_free_model_hooks() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return (image,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return StableDiffusionXLPipelineOutput(images=image) | 
					
					
						
						| 
							 | 
						
 |