Delete clip_guided_stable_diffusion.py
Browse files- clip_guided_stable_diffusion.py +0 -337
clip_guided_stable_diffusion.py
DELETED
|
@@ -1,337 +0,0 @@
|
|
| 1 |
-
import inspect
|
| 2 |
-
from typing import List, Optional, Union
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
from torch import nn
|
| 6 |
-
from torch.nn import functional as F
|
| 7 |
-
from torchvision import transforms
|
| 8 |
-
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextModel, CLIPTokenizer
|
| 9 |
-
|
| 10 |
-
from diffusers import (
|
| 11 |
-
AutoencoderKL,
|
| 12 |
-
DDIMScheduler,
|
| 13 |
-
DPMSolverMultistepScheduler,
|
| 14 |
-
LMSDiscreteScheduler,
|
| 15 |
-
PNDMScheduler,
|
| 16 |
-
UNet2DConditionModel,
|
| 17 |
-
)
|
| 18 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 19 |
-
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
class MakeCutouts(nn.Module):
|
| 23 |
-
def __init__(self, cut_size, cut_power=1.0):
|
| 24 |
-
super().__init__()
|
| 25 |
-
|
| 26 |
-
self.cut_size = cut_size
|
| 27 |
-
self.cut_power = cut_power
|
| 28 |
-
|
| 29 |
-
def forward(self, pixel_values, num_cutouts):
|
| 30 |
-
sideY, sideX = pixel_values.shape[2:4]
|
| 31 |
-
max_size = min(sideX, sideY)
|
| 32 |
-
min_size = min(sideX, sideY, self.cut_size)
|
| 33 |
-
cutouts = []
|
| 34 |
-
for _ in range(num_cutouts):
|
| 35 |
-
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
|
| 36 |
-
offsetx = torch.randint(0, sideX - size + 1, ())
|
| 37 |
-
offsety = torch.randint(0, sideY - size + 1, ())
|
| 38 |
-
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
|
| 39 |
-
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
|
| 40 |
-
return torch.cat(cutouts)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def spherical_dist_loss(x, y):
|
| 44 |
-
x = F.normalize(x, dim=-1)
|
| 45 |
-
y = F.normalize(y, dim=-1)
|
| 46 |
-
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
def set_requires_grad(model, value):
|
| 50 |
-
for param in model.parameters():
|
| 51 |
-
param.requires_grad = value
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
class CLIPGuidedStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
|
| 55 |
-
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
|
| 56 |
-
- https://github.com/Jack000/glid-3-xl
|
| 57 |
-
- https://github.dev/crowsonkb/k-diffusion
|
| 58 |
-
"""
|
| 59 |
-
|
| 60 |
-
def __init__(
|
| 61 |
-
self,
|
| 62 |
-
vae: AutoencoderKL,
|
| 63 |
-
text_encoder: CLIPTextModel,
|
| 64 |
-
clip_model: CLIPModel,
|
| 65 |
-
tokenizer: CLIPTokenizer,
|
| 66 |
-
unet: UNet2DConditionModel,
|
| 67 |
-
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
|
| 68 |
-
feature_extractor: CLIPImageProcessor,
|
| 69 |
-
):
|
| 70 |
-
super().__init__()
|
| 71 |
-
self.register_modules(
|
| 72 |
-
vae=vae,
|
| 73 |
-
text_encoder=text_encoder,
|
| 74 |
-
clip_model=clip_model,
|
| 75 |
-
tokenizer=tokenizer,
|
| 76 |
-
unet=unet,
|
| 77 |
-
scheduler=scheduler,
|
| 78 |
-
feature_extractor=feature_extractor,
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
|
| 82 |
-
self.cut_out_size = (
|
| 83 |
-
feature_extractor.size
|
| 84 |
-
if isinstance(feature_extractor.size, int)
|
| 85 |
-
else feature_extractor.size["shortest_edge"]
|
| 86 |
-
)
|
| 87 |
-
self.make_cutouts = MakeCutouts(self.cut_out_size)
|
| 88 |
-
|
| 89 |
-
set_requires_grad(self.text_encoder, False)
|
| 90 |
-
set_requires_grad(self.clip_model, False)
|
| 91 |
-
|
| 92 |
-
def freeze_vae(self):
|
| 93 |
-
set_requires_grad(self.vae, False)
|
| 94 |
-
|
| 95 |
-
def unfreeze_vae(self):
|
| 96 |
-
set_requires_grad(self.vae, True)
|
| 97 |
-
|
| 98 |
-
def freeze_unet(self):
|
| 99 |
-
set_requires_grad(self.unet, False)
|
| 100 |
-
|
| 101 |
-
def unfreeze_unet(self):
|
| 102 |
-
set_requires_grad(self.unet, True)
|
| 103 |
-
|
| 104 |
-
@torch.enable_grad()
|
| 105 |
-
def cond_fn(
|
| 106 |
-
self,
|
| 107 |
-
latents,
|
| 108 |
-
timestep,
|
| 109 |
-
index,
|
| 110 |
-
text_embeddings,
|
| 111 |
-
noise_pred_original,
|
| 112 |
-
text_embeddings_clip,
|
| 113 |
-
clip_guidance_scale,
|
| 114 |
-
num_cutouts,
|
| 115 |
-
use_cutouts=True,
|
| 116 |
-
):
|
| 117 |
-
latents = latents.detach().requires_grad_()
|
| 118 |
-
|
| 119 |
-
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
|
| 120 |
-
|
| 121 |
-
# predict the noise residual
|
| 122 |
-
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
|
| 123 |
-
|
| 124 |
-
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
|
| 125 |
-
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
| 126 |
-
beta_prod_t = 1 - alpha_prod_t
|
| 127 |
-
# compute predicted original sample from predicted noise also called
|
| 128 |
-
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
| 129 |
-
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
| 130 |
-
|
| 131 |
-
fac = torch.sqrt(beta_prod_t)
|
| 132 |
-
sample = pred_original_sample * (fac) + latents * (1 - fac)
|
| 133 |
-
elif isinstance(self.scheduler, LMSDiscreteScheduler):
|
| 134 |
-
sigma = self.scheduler.sigmas[index]
|
| 135 |
-
sample = latents - sigma * noise_pred
|
| 136 |
-
else:
|
| 137 |
-
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
|
| 138 |
-
|
| 139 |
-
sample = 1 / self.vae.config.scaling_factor * sample
|
| 140 |
-
image = self.vae.decode(sample).sample
|
| 141 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
| 142 |
-
|
| 143 |
-
if use_cutouts:
|
| 144 |
-
image = self.make_cutouts(image, num_cutouts)
|
| 145 |
-
else:
|
| 146 |
-
image = transforms.Resize(self.cut_out_size)(image)
|
| 147 |
-
image = self.normalize(image).to(latents.dtype)
|
| 148 |
-
|
| 149 |
-
image_embeddings_clip = self.clip_model.get_image_features(image)
|
| 150 |
-
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
| 151 |
-
|
| 152 |
-
if use_cutouts:
|
| 153 |
-
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
|
| 154 |
-
dists = dists.view([num_cutouts, sample.shape[0], -1])
|
| 155 |
-
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
|
| 156 |
-
else:
|
| 157 |
-
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
|
| 158 |
-
|
| 159 |
-
grads = -torch.autograd.grad(loss, latents)[0]
|
| 160 |
-
|
| 161 |
-
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
| 162 |
-
latents = latents.detach() + grads * (sigma**2)
|
| 163 |
-
noise_pred = noise_pred_original
|
| 164 |
-
else:
|
| 165 |
-
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
|
| 166 |
-
return noise_pred, latents
|
| 167 |
-
|
| 168 |
-
@torch.no_grad()
|
| 169 |
-
def __call__(
|
| 170 |
-
self,
|
| 171 |
-
prompt: Union[str, List[str]],
|
| 172 |
-
height: Optional[int] = 512,
|
| 173 |
-
width: Optional[int] = 512,
|
| 174 |
-
num_inference_steps: Optional[int] = 50,
|
| 175 |
-
guidance_scale: Optional[float] = 7.5,
|
| 176 |
-
num_images_per_prompt: Optional[int] = 1,
|
| 177 |
-
eta: float = 0.0,
|
| 178 |
-
clip_guidance_scale: Optional[float] = 100,
|
| 179 |
-
clip_prompt: Optional[Union[str, List[str]]] = None,
|
| 180 |
-
num_cutouts: Optional[int] = 4,
|
| 181 |
-
use_cutouts: Optional[bool] = True,
|
| 182 |
-
generator: Optional[torch.Generator] = None,
|
| 183 |
-
latents: Optional[torch.Tensor] = None,
|
| 184 |
-
output_type: Optional[str] = "pil",
|
| 185 |
-
return_dict: bool = True,
|
| 186 |
-
):
|
| 187 |
-
if isinstance(prompt, str):
|
| 188 |
-
batch_size = 1
|
| 189 |
-
elif isinstance(prompt, list):
|
| 190 |
-
batch_size = len(prompt)
|
| 191 |
-
else:
|
| 192 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 193 |
-
|
| 194 |
-
if height % 8 != 0 or width % 8 != 0:
|
| 195 |
-
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 196 |
-
|
| 197 |
-
# get prompt text embeddings
|
| 198 |
-
text_input = self.tokenizer(
|
| 199 |
-
prompt,
|
| 200 |
-
padding="max_length",
|
| 201 |
-
max_length=self.tokenizer.model_max_length,
|
| 202 |
-
truncation=True,
|
| 203 |
-
return_tensors="pt",
|
| 204 |
-
)
|
| 205 |
-
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
| 206 |
-
# duplicate text embeddings for each generation per prompt
|
| 207 |
-
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
|
| 208 |
-
|
| 209 |
-
if clip_guidance_scale > 0:
|
| 210 |
-
if clip_prompt is not None:
|
| 211 |
-
clip_text_input = self.tokenizer(
|
| 212 |
-
clip_prompt,
|
| 213 |
-
padding="max_length",
|
| 214 |
-
max_length=self.tokenizer.model_max_length,
|
| 215 |
-
truncation=True,
|
| 216 |
-
return_tensors="pt",
|
| 217 |
-
).input_ids.to(self.device)
|
| 218 |
-
else:
|
| 219 |
-
clip_text_input = text_input.input_ids.to(self.device)
|
| 220 |
-
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
|
| 221 |
-
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
| 222 |
-
# duplicate text embeddings clip for each generation per prompt
|
| 223 |
-
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
|
| 224 |
-
|
| 225 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 226 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 227 |
-
# corresponds to doing no classifier free guidance.
|
| 228 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
| 229 |
-
# get unconditional embeddings for classifier free guidance
|
| 230 |
-
if do_classifier_free_guidance:
|
| 231 |
-
max_length = text_input.input_ids.shape[-1]
|
| 232 |
-
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
|
| 233 |
-
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
| 234 |
-
# duplicate unconditional embeddings for each generation per prompt
|
| 235 |
-
uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
|
| 236 |
-
|
| 237 |
-
# For classifier free guidance, we need to do two forward passes.
|
| 238 |
-
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 239 |
-
# to avoid doing two forward passes
|
| 240 |
-
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 241 |
-
|
| 242 |
-
# get the initial random noise unless the user supplied it
|
| 243 |
-
|
| 244 |
-
# Unlike in other pipelines, latents need to be generated in the target device
|
| 245 |
-
# for 1-to-1 results reproducibility with the CompVis implementation.
|
| 246 |
-
# However this currently doesn't work in `mps`.
|
| 247 |
-
latents_shape = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
|
| 248 |
-
latents_dtype = text_embeddings.dtype
|
| 249 |
-
if latents is None:
|
| 250 |
-
if self.device.type == "mps":
|
| 251 |
-
# randn does not work reproducibly on mps
|
| 252 |
-
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
| 253 |
-
self.device
|
| 254 |
-
)
|
| 255 |
-
else:
|
| 256 |
-
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
| 257 |
-
else:
|
| 258 |
-
if latents.shape != latents_shape:
|
| 259 |
-
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
| 260 |
-
latents = latents.to(self.device)
|
| 261 |
-
|
| 262 |
-
# set timesteps
|
| 263 |
-
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
| 264 |
-
extra_set_kwargs = {}
|
| 265 |
-
if accepts_offset:
|
| 266 |
-
extra_set_kwargs["offset"] = 1
|
| 267 |
-
|
| 268 |
-
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
| 269 |
-
|
| 270 |
-
# Some schedulers like PNDM have timesteps as arrays
|
| 271 |
-
# It's more optimized to move all timesteps to correct device beforehand
|
| 272 |
-
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
| 273 |
-
|
| 274 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
| 275 |
-
latents = latents * self.scheduler.init_noise_sigma
|
| 276 |
-
|
| 277 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 278 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 279 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 280 |
-
# and should be between [0, 1]
|
| 281 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 282 |
-
extra_step_kwargs = {}
|
| 283 |
-
if accepts_eta:
|
| 284 |
-
extra_step_kwargs["eta"] = eta
|
| 285 |
-
|
| 286 |
-
# check if the scheduler accepts generator
|
| 287 |
-
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 288 |
-
if accepts_generator:
|
| 289 |
-
extra_step_kwargs["generator"] = generator
|
| 290 |
-
|
| 291 |
-
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
| 292 |
-
# expand the latents if we are doing classifier free guidance
|
| 293 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 294 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 295 |
-
|
| 296 |
-
# predict the noise residual
|
| 297 |
-
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
| 298 |
-
|
| 299 |
-
# perform classifier free guidance
|
| 300 |
-
if do_classifier_free_guidance:
|
| 301 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 302 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 303 |
-
|
| 304 |
-
# perform clip guidance
|
| 305 |
-
if clip_guidance_scale > 0:
|
| 306 |
-
text_embeddings_for_guidance = (
|
| 307 |
-
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
|
| 308 |
-
)
|
| 309 |
-
noise_pred, latents = self.cond_fn(
|
| 310 |
-
latents,
|
| 311 |
-
t,
|
| 312 |
-
i,
|
| 313 |
-
text_embeddings_for_guidance,
|
| 314 |
-
noise_pred,
|
| 315 |
-
text_embeddings_clip,
|
| 316 |
-
clip_guidance_scale,
|
| 317 |
-
num_cutouts,
|
| 318 |
-
use_cutouts,
|
| 319 |
-
)
|
| 320 |
-
|
| 321 |
-
# compute the previous noisy sample x_t -> x_t-1
|
| 322 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 323 |
-
|
| 324 |
-
# scale and decode the image latents with vae
|
| 325 |
-
latents = 1 / self.vae.config.scaling_factor * latents
|
| 326 |
-
image = self.vae.decode(latents).sample
|
| 327 |
-
|
| 328 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
| 329 |
-
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
| 330 |
-
|
| 331 |
-
if output_type == "pil":
|
| 332 |
-
image = self.numpy_to_pil(image)
|
| 333 |
-
|
| 334 |
-
if not return_dict:
|
| 335 |
-
return (image, None)
|
| 336 |
-
|
| 337 |
-
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|