Upload folder using huggingface_hub
Browse files
main/stable_diffusion_xl_controlnet_reference.py
CHANGED
|
@@ -193,7 +193,8 @@ class StableDiffusionXLControlNetReferencePipeline(StableDiffusionXLControlNetPi
|
|
| 193 |
|
| 194 |
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
|
| 195 |
refimage = refimage.to(device=device)
|
| 196 |
-
|
|
|
|
| 197 |
self.upcast_vae()
|
| 198 |
refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 199 |
if refimage.dtype != self.vae.dtype:
|
|
@@ -223,6 +224,11 @@ class StableDiffusionXLControlNetReferencePipeline(StableDiffusionXLControlNetPi
|
|
| 223 |
|
| 224 |
# aligning device to prevent device errors when concating it with the latent model input
|
| 225 |
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
return ref_image_latents
|
| 227 |
|
| 228 |
def prepare_ref_image(
|
|
|
|
| 193 |
|
| 194 |
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
|
| 195 |
refimage = refimage.to(device=device)
|
| 196 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 197 |
+
if needs_upcasting:
|
| 198 |
self.upcast_vae()
|
| 199 |
refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 200 |
if refimage.dtype != self.vae.dtype:
|
|
|
|
| 224 |
|
| 225 |
# aligning device to prevent device errors when concating it with the latent model input
|
| 226 |
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
|
| 227 |
+
|
| 228 |
+
# cast back to fp16 if needed
|
| 229 |
+
if needs_upcasting:
|
| 230 |
+
self.vae.to(dtype=torch.float16)
|
| 231 |
+
|
| 232 |
return ref_image_latents
|
| 233 |
|
| 234 |
def prepare_ref_image(
|
main/stable_diffusion_xl_reference.py
CHANGED
|
@@ -139,7 +139,8 @@ def retrieve_timesteps(
|
|
| 139 |
class StableDiffusionXLReferencePipeline(StableDiffusionXLPipeline):
|
| 140 |
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
|
| 141 |
refimage = refimage.to(device=device)
|
| 142 |
-
|
|
|
|
| 143 |
self.upcast_vae()
|
| 144 |
refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 145 |
if refimage.dtype != self.vae.dtype:
|
|
@@ -169,6 +170,11 @@ class StableDiffusionXLReferencePipeline(StableDiffusionXLPipeline):
|
|
| 169 |
|
| 170 |
# aligning device to prevent device errors when concating it with the latent model input
|
| 171 |
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
return ref_image_latents
|
| 173 |
|
| 174 |
def prepare_ref_image(
|
|
|
|
| 139 |
class StableDiffusionXLReferencePipeline(StableDiffusionXLPipeline):
|
| 140 |
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
|
| 141 |
refimage = refimage.to(device=device)
|
| 142 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 143 |
+
if needs_upcasting:
|
| 144 |
self.upcast_vae()
|
| 145 |
refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 146 |
if refimage.dtype != self.vae.dtype:
|
|
|
|
| 170 |
|
| 171 |
# aligning device to prevent device errors when concating it with the latent model input
|
| 172 |
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
|
| 173 |
+
|
| 174 |
+
# cast back to fp16 if needed
|
| 175 |
+
if needs_upcasting:
|
| 176 |
+
self.vae.to(dtype=torch.float16)
|
| 177 |
+
|
| 178 |
return ref_image_latents
|
| 179 |
|
| 180 |
def prepare_ref_image(
|